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PREFACE 

The study of real analysis is indispensible for a prospective graduate student of pure or 
applied mathematics. It also has great value for any undergraduate student who wishes 
to go beyond the routine manipulations of formulas to solve standard problems, because 
it develops the ability to think deductively, analyze mathematical situations, and extend 
ideas to a new context. In recent years, mathematics has become valuable in many areas, 
including economics and management science as well as the physical sciences, engineering, 
and computer science. Our goal is to provide an accessible, reasonably paced textbook in 
the fundamental concepts and techniques of real analysis for students in these areas. This 
book is designed for students who have studied calculus as it is traditionally presented in 
the United States. While students find this book challenging, our experience is that serious 
students at this level are fully capable of mastering the material presented here. 

The first two editions of this book were very well received, and we have taken pains 
to maintain the same spirit and user-friendly approach. In preparing this edition, we have 
examined every section and set of exercises, streamlined some arguments, provided a few 
new examples, moved certain topics to new locations, and made revisions. Except for the 
new Chapter 10, which deals with the generalized Riemann integral, we have not added 
much new material. While there is more material than can be covered in one semester, 
instructors may wish to use certain topics as honors projects or extra credit assignments. 

It is desirable that the student have had some exposure to proofs, but we do not assume 
that to be the case. To provide some help for students in analyzing proofs of theorems, 
we include an appendix on "Logic and Proofs" that discusses topics such as implications, 
quantifiers, negations, contrapositives, and different types of proofs. We have kept the 
discussion informal to avoid becoming mired in the technical details of formal logic. We 
feel that it is a more useful experience to learn how to construct proofs by first watching 
and then doing than by reading about techniques of proof. 

We have adopted a medium level of generality consistently throughout Ute book: we 
present results that are general enough to cover cases that actually arise, but we do not strive 
for maximum generality. In the main, we proceed from the particular to the general. Thus 
we consider continuous functions on open and closed intervals in detail, but we are careful 
to present proofs that can readily be adapted to a more general situation. (In Chapter 11 
we take particular advantage of the approach.) We believe that it is important to provide 
the student with many examples to aid them in their understanding, and we have compiled 
rather extensive lists of exercises to challenge them. While we do leave routine proofs as 
exercises, we do not try to attain brevity by relegating difficult proofs to the exercises. 
However, in some of the later sections, we do break down a moderately difficult exercise 
into a sequence of steps. 

In Chapter 1 we present a brief summary of the notions and notations for sets and 
functions that we use. A discussion of Mathematical Induction is also given, since inductive 
proofs arise frequently. We also include a short section on finite, countable and infinite sets. 
We recommend that this chapter be covered quickly, or used as background material, 
returning later as necessary. 
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Chapter 2 presents the properties of the real number system IR. The first two sections 
deal with the Algebraic and Order Properties and provide some practice in writing proofs 
of elementary results. The crucial Completeness Property is given in Section 2.3 as the 
Supremum Property, and its ramifications are discussed throughout the remainder of this 
chapter. 

In Chapter 3 we give a thorough treatment of sequences in IR and the associated limit 
concepts. The material is of the greatest importance; fortunately, students find it rather 
natural although it takes some time for them to become fully accustomed to the use of E. 

In the new Section 3.7, we give a brief introduction to infinite series, so that this important 
topic will not be omitted due to a shortage of time. 

Chapter 4 on limits of functions and Chapter 5 on continuous functions constitute 
the heart of the book. Our discussion of limits and continuity relies heavily on the use of 
sequences, and the closely parallel approach of these chapters reinforces the understanding 
of these essential topics. The fundamental properties of continuous functions (on intervals) 
are discussed in Section 5.3 and 5.4. The notion of a "gauge" is introduced in Section 5.5 
and used to give alternative proofs of these properties. Monotone functions are discussed 
in Section 5.6. 

The basic theory of the derivative is given in the first part of Chapter 6. This important 
material is standard, except that we have used a result of Caratheodory to giv~· simpler 
proofs of the Chain Rule and the Inversion Theorem. The remainder of this chapter consists 
of applications of the Mean Value Theorem and may be explored as time permits. 

Chapter 7, dealing with the Riemann integral, has been completely revised in this 
edition. Rather than introducing upper and lower integrals (as we did in the previous 
editions), we here define the integral as a limit of Riemann sums. This has the advantage that 
it is consistent with the students' first exposure to the integral in calculus and in applications; 
since it is not dependent on order properties, it permits immediate generalization to complex
and vector-valued functions that students may encounter in later courses. Contrary to 
popular opinion, this limit approach is no more difficult than the order approach. It also is 
consistent with the generalized Riemann integral that is discussed in detail in Chapter 10. 
Section 7.4 gives a brief discussion of the familiar numerical methods of calculating the 
integral of continuous functions. 

Sequences of functions and uniform convergence are discussed in the first two sec
tions of Chapter 8, and the basic transcendental functions are put on a firm foundation in 
Section 8.3 and 8.4 by using uniform convergence. Chapter 9 completes our discussion of 
infinite series. Chapters 8 and 9 are intrinsically important, and they also show how the 
material in the earlier chapters can be applied. 

Chapter 10 is completely new; it is a presentation of the generalized Riemann integral 
(sometimes called the "Henstock-Kurzweil" or the "gauge" integral). It will be new to many 
readers, and we think they will be amazed that such an apparently minor modification of 
the definition of the Riemann integral can lead to an integral that is more general than the 
Lebesgue integral. We believe that this relatively new approach to integration theory is both 
accessible and exciting to anyone who has studied the basic Riemann integral. 

The final Chapter 11 deals with topological concepts. Earlier proofs given for intervals 
are extended to a more abstract setting. For example, the concept of compactness is given 
proper emphasis and metric spaces are introduced. This chapter will be very useful for 
students continuing to graduate courses in mathematics. 

Throughout the book we have paid more attention to topics from numerical analysis 
and approximation theory than is usual. We have done so because of the importance of 
these areas, and to show that real analysis is not merely an exercise in abstract thought. 

-------------



PREFACE vii 

We have provided rather lengthy lists of exercises, some easy and some challenging. 
We have provided "hints" for many of these exercises, to help students get started toward a 
solution or to check their "answer''. More complete solutions of almost every exercise are 
given in a separate Instructor's Manual, which is available to teachers upon request to the 
publisher. 

It is a satisfying experience to see how the mathematical maturity of the students 
increases and how the students gradually learn to work comfortably with concepts that 
initially seemed so mysterious. But there is no doubt that a lot of hard work is required on 
the part of both the students and the teachers. 

In order to enrich the historical perspective of the book, we include brief biographical 
sketches of some famous mathematicians who contributed to this area. We are particularly 
indebted to Dr. Patrick Muldowney for providing us with his photograph of Professors 
Henstock and Kurzweil. We also thank John Wiley & Sons for obtaining photographs of 
the other mathematicians. 

We have received many helpful comments from colleagues at a wide variety of in
stitutions who have taught from earlier editions and liked the book enough to express 
their opinions about how to improve it. We appreciate their remarks and suggestions, even 
though we did not always follow their advice. We thank them for communicating with us 
and wish them well in their endeavors to impart the challenge and excitement of learning 
real analysis and "real" mathematics. It is our hope that they will find this new edition even 
more helpful than the earlier ones. 

February 24, 1999 
Ypsilanti and Urbana 
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CHAPTER 1 

PRELIMINARIES 

In this initial chapter we will present the background needed for the study of real analysis. 
Section 1.1 consists of a brief survey of set operations and functions, two vital tools for all 
of mathematics. In it we establish the notation and state the basic definitions and properties 
that will be used throughout the book. We will regard the word "set" as synonymous with 
the words "class", "collection", and "family", and we will not define these terms or give a 
list of axioms for set theory. This approach, often referred to as "naive" set theory, is quite 
adequate for working with sets in the context of real analysis. 

Section 1.2 is concerned with a special method of proof called Mathematical Induction. 
It is related to the fundamental properties of the natural number system and, though it is 
restricted to proving particular types of statements, it is important and used frequently." An 
informal discussion of the different types of proofs that are used in mathematics, such as 
contrapositives and proofs by contradiction. can be found in Appendix A. 

In Section 1.3 we apply some of the tools presented in the first two sections of this 
chapter to a discussion of what it means for a set to be finite or infinite. Careful definitions 
are given and some basic consequences of these definitions are derived. The important 
result that the set of rational numbers is countably infinite is established. 

In addition to introducing basic concepts and establishing terminology and notation, 
this chapter also provides the reader with some initial experience in working with precise 
definitions and writing proofs. The careful study of real analysis unavoidably entails the 
reading and writing of proofs, and like any skill, it is necessary to practice. This chapter is 
a starting point. 

Section 1.1 Sets and Functions 

To the reader: In this section we give a brief review of the terminology and notation that 
will be used in this text. We suggest that you look through quickly and come back later 
when you need to recall the meaning of a term or a symbol. 

If an element xis in a set A, we write 

xeA 

and say that xis a member of A, or that x belongs to A. If xis not in A, we write 

X¢ A. 

If every element of a set A also belongs to a set B, we say that A is a subset of B and write 

or 

We say that a set A is a proper subset of a set B if A c B, but there is at least one element 
of B that is not in A. In this case we sometimes write 

A C B. 
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1.1.1 Definition Two sets A and Bare said to be equal, and we write A= B, if they 
contain the same elements. 

Thus, to prove that the sets A and B are equal, we must show that 

ACB and BCA. 

A set is normally defined by either listing its elements explicitly, or by specifying a 
property that determines the elements of the set. If P denotes a property that is meaningful 
and unambiguous for elements of a set S, then we write 

{xeS: P(x)} 

for the set of all elements x in S for which the property P is true. If the set S is understood 
from the context, then it is often omitted in this notation. 

Several special sets are used throughout this book, and they are denoted by standard 
symbols. (We will use the symbol:= to mean that the symbol on the left is being defined 
by the symbol on the right.) 

• The set of natural numbers~:= {1, 2, 3, · · ·}, 

• The set of integers Z := {0, 1, -1, 2, -2, · · · }, 

• The set of rational numbers Q := {m/n: m, n e Z and n ¢ 0}, 

• The set of real numbers JR. 

The set 1R of real numbers is of fundamental importance for us and will be discussed 
at length in Chapter 2. 

1.1.2 Examples (a) The set 

{x e N : x 2 
- 3x + 2 = 0} 

consists of those natural numbers satisfying the stated equation. Since the only solutions of 
this quadratic equation are x = 1 and x = 2, we can denote this set more simply by { 1, 2}. 

(b) A natural number n is even if it has the form n = 2k for some k e N. The set of even 
natural numbers can be written 

{2k: keN}, 

which is less cumbersome than {n eN: n = 2k, keN}. Similarly, the set of odd natural 
numbers can be written 

{2k - 1 : k e N}. 0 

SetOperations ------------------------------------------------

We now define the methods of obtaining new sets from given ones. Note that these set 
operations are based on the meaning of the words "or'', "and", and "not". For the union, 
it is important to be aware of the fact that the word "or'' is used in the inclusive sense, 
allowing the possibility that x may belong to both sets. In legal tenninology, this inclusive 
sense is sometimes indicated by "and/or''. 

1.1.3 Definition (a) The union of sets A and B is the set 

A u B := {x : x e A or x e B} . 
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(b) The intersection of the sets A and B is the set 

A n B := {x : x e A and x e B}. 

(c) The complement of B relative to A is the set 

A\B := {x :x e Aandx ¢ B}. 

AU B [[ID A\B ~ 

Figure 1.1.1 (a) A U B (b) An B (c) A\B 

The set that has no elements is called the empty set and is denoted by the symbol 0. 
Two sets A and B are said to be disjoint if they have no elements in common; this can be 
expressed by writing A n B = 0. 

To illustrate the method of proving set equalities, we will next establish one of the 
De Morgan laws for three sets. The proof of the other one is left as an exercise. 

1.1.4 Theorem If A, B, C are sets, then 

(a) A \(B U C)= (A \B) n (A \C), 

(b) A \(B n C)= (A \B) U (A \C). 

Proof. To prove (a), we will show that every element in A \(B U C) is contained in both 
(A \B) and (A \C), and conversely. 

If x is in A \(B U C), then x is in A, but x is not in B U C. Hence x is in A, but x 
is neither in B nor in C. Therefore, x is in A but not B, and x is in A but not C. Thus, 
x e A \Band x e A \C, which shows that x e (A \B) n (A \C). 

Conversely, if x e (A \B) n (A \C), then x e (A \B) and x e (A \C). Hence x e A 
and both x ¢Band x ¢C. Therefore, x e A and x ¢ (B U C), so that x e A \(B U C). 

Since the sets (A \B) n (A \C) and A \(B U C) contain the same elements, they are 
equal by Definition 1.1.1. Q.E.D. 

There are times when it is desirable to form unions and intersections of more than two 
sets. For a finite collection of sets {A 1, A 2, ···,An}, their union is the set A consisting of 
all elements that belong to at least one of the sets A k, and their intersection consists of all 
elements that belong to all of the sets Ak. · 

This is extended to an infinite collection of sets {A 1, A 2 , • • • , An, · · ·} as follows. Their 
union is the set of elements that belong to at least one of the sets An. In this case we 
write 

00 

U An := {x : x E An for some n E N}. 
n=l 
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Similarly, their intersection is the set of elements that belong to all of these sets A,.. In this 
case we write 

00 n A,. := {x :X e A,. for all n e N} . 
11=1 

Cartesian Products 

In order to discuss functions, we define the Cartesian product of two sets. 

1.1.5 Definition H A and B are nonempty sets, then the Cartesian product A x B of A 
and B is the set of all ordered pairs (a, b) with a e A and b e B. That is, 

A x B :={(a, b) :a e A, be B}. 

Thus if A = { 1, 2, 3} and B = { 1, 5}, then the set A x B is the set whose elements are 
the ordered pairs 

(1, 1), (1, 5), (2, 1), (2, 5), (3, 1), (3, 5). 

We may visualize the set A x B as the set of six points in the plane with the coordinates 
that we have just listed. 

We often draw a diagram (such as Figure 1.1.2) to indicate the Cartesian product of 
two sets A and B. However, it should be realized that this diagram may be a simplification. 
For example, if A := {x e lR : 1 ~ x ~ 2} and B := {y e lR : 0 ~ y ~ 1 or 2 ~ y ~ 3}, 
then instead of a rectangle, we should have a drawing such as Figure 1.1.3. 

We will now discuss the fundamental notion of a function or a mapping. 
To the mathematician of the early nineteenth century, the word "function" meant a 

definite formula, such as f(x) := x 2 + 3x- 5, which associates to each real number x 
another number f(x). (Here, /(0) = -5, /(1) = -1, /(5) = 35.) This understanding 
excluded the case of different formulas on different intervals, so that functions could not 
be defined "in pieces". 

B 
b ------.,(a, b) 

I 
I 
I 
I 
I 
1 

a 

AxB 

A 

Figure 1.1.2 

AxB 

1 

1 2 

Figure 1.1.3 
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As mathematics developed, it became clear that a more general definition of "function" 
would be useful. It also became evident that it is important to make a clear distinction 
between the function itself and the values of the function. A revised definition might be: 

A function f from a set A into a set B is a rule of correspondence that assigns to 
each element x in A a uniquely determined element f (x) in B. 

But however suggestive this revised definition might be, there is the difficulty of interpreting 
the phrase "rule of correspondence". In order to clarify this, we will express the definition 
entirely in terms of sets; in effect, we wiii define a function to be its graph. While this has 
the disadvantage of being somewhat artificial, it has the advantage of being unambiguous 
and clearer. 

1.1.6 Definition Let A and B be sets. Then a function from A to B is a set f of ordered 
pairs in A x B such that for each a e A there exists a unique b e B with (a, b) e f. (In 
other words, if (a, b) e f and (a, b') e f, then b = b'.) 

The set A of first elements of a function f is called the domain of f and is often 
denoted by D(f). The set of all second elements in f is called the range off and i_s 
often denoted by R(f). Note that, although D(f) = A, we only have R(/) ~ B. (See 
Figure 1.1.4.) 

The essential condition that: 

(a, b) e f and (a, b') e f implies that b = b' 

is sometimes called the vertical line test. In geometrical terms it says every vertical line 
x =a with a e A intersects the graph off exactly once. 

The notation 

f:A~ B 

is often used to indicate that f is a function from A into B. We will also say that f is a 
mapping of A into B, or that f maps A into B. If (a, b) is an element in f, it is customary 
to write 

b = f(a) or sometimes a~ b. 

~1•--------A=DV)---a------~•1 
Figure 1.1.4 A function as a graph 
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If b = f (a), we often refer to b as the value of f at a, or as the image of a under f. 

Transformations and Machines ------------------

Aside from using graphs, we can visualize a function as a transformation of the set D(l) = 
A into the set R(f) c B. In this phraseology, when (a, b) e f, we think off as taking 
the element a from A and ''transforming" or "mapping" it into an element b = I (a) in 
R(f) c B. We often draw a diagram, such as Figure 1.1.5, even when the sets A and B are 
not subsets of the plane. 

I 
~ 

b =l(a) 

Figure 1.1.5 A function as a transformation 

R(f) 

There is another way of visualizing a function: namely, as a machine that accepts 
elements of D(l) =A as inputs and produces corresponding elements of R(f) c Bas 
outputs. If we take an element x e D(l) and put it into f, then out comes the corresponding 
value f (x ). If we put a different element y e D(l) into I, then out comes I (y) which may 
or may not differ from f(x). If we try to insert something that does not belong to D(/) 
into f, we find that it is not accepted, for I can operate only on elements from D(l). (See 
Figure 1.1.6.) 

This last visualization makes clear the distinction between f and I (x): the first is the 
machine itself, and the second is the output of the machine f when x is the input. Whereas 
no one is likely to confuse a meat grinder with ground meat, enough people have confused 
functions with their values that it is worth distinguishing between them notationally. 

I 

l<x> 

Figure 1.1.6 A function as a machine 
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Direct and Inverse Images --------------------

Let f: A~ B be a function with domain D(f) =A and rangeR(/) c B. 

1.1.7 Definition If Eisa subset of A, then the direct image of E under f is the subset 
f(E) of B given by 

f(E) := {f(x) : x e E}. 

If H is a subset of B, then the inverse image of H under f is the subset f- 1 (H) of A 
given by 

f- 1(H) := {x e A : f(x) e H}. 

Remark The notation f- 1 (H) used in this connection has its disadvantages. However, 
we will use it since it is the standard notation. 

Thus, if we are given a set E ~ A, then a point y1 e B is in the direct image f(E) 

if and ~nly if there exists at least one point x 1 e E such that y 1 = f (x 1). Similarly, given 
a set H ~ B, then a point x 2 is in the inverse image /- 1 (H) if and only if y2 := f(x2 ) 

belongs to H. (See Figure 1.1.7.) 

1.1.8 Examples (a) Let f : 1R ~ 1R be defined by f (x) := x 2
• Then the direct image 

of the set E := {x : 0 ~ x ~ 2} is the set f(E) = {y : 0 ~ y ~ 4}. 
If G := {y : 0 ~ y ~ 4}, then the inverse image of G is the set f- 1 (G)= {x : -2 ~ 

x ~ 2}. Thus, in this case, we see that f- 1 (f(E)) #- E. 
On the other hand, we have f (f- 1 (G)) =G. But if H := {y : -1 ~ y ~ 1}, then 

we have f (/-1(H)) = {y: 0 ~ y ~ 1} #-H. 
A sketch of the graph of f may help to visualize these sets. 

(b) Let f : A ~ B, and let G, H be subsets of B. We will show that 

f- 1 (G n H) ~ f- 1 (G) n f- 1 (H). 

For, if x e f- 1 (G n H), then f(x) e G n H, so that f(x) e G and f(x) e H. But this 
impliesthatx e f- 1(G) andx e f- 1(H), whencex e f- 1(G) n f- 1(H). Thus the stated 
implication is proved. [The opposite inclusion is also true, so that we actually have set 
equality between these sets; see Exercise 13.] 0 

Further facts about direct and inverse images are given in the exercises. 

E 

I 
~ 

H 

Figure 1.1.7 Direct and inverse images 
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Special Types of Functions -------------------

The following definitions identify some very important types of functions. 

1.1.9 Definition Let f : A ..... B be a function from A to B. 

(a) The function f is said to be injective (or to be one-one) if whenever x 1 -:f= x2, then 
f(x 1) "# f(x2). Iff is an injective function, we also say that f is an injection. 

(b) The function f is said to be surjective (or to map A onto B) if f(A) = B; that is, if 
the range R(f) = B. Iff is a surjective function, we also say that f is a surjection. 

(c) Iff is both injective and surjective, then f is said to be bijective. Iff is bijective, we 
also say that f is a bijection. 

• In order to prove that a function f is injective, we must establish that: 

for all x 1, x2 in A, if f(x 1) = f(x2), then x 1 = x2• 

To do this we assume that f (x 1) = f (x2 ) and show that x 1 = x2 • 

[In other words, the graph of f satisfies the first horizontal line test: Every horizontal 
line y = b with b e B intersects the graph f in at most one point.] 

• To prove that a function f is surjective, we must show that for any b e B there exists at 
least one x e A such that f(x) =b. 
[In other words, the graph of f satisfies the second horizontal line test: Every horizontal 
line y = b with be B intersects the graph fin at least one point.] 

1.1.10 Example LetA:= {x e IR: x =F 1}anddefinef(x) := 2xl(x- 1)forallx eA. 
To show that f is injective, we take x 1 and x2 in A and assume that f(x 1) = f(x2). Thu5 
we have 

2xl - 2x2 
x

1
- 1 - x

2
- 1' 

which implies that x 1 (x2 - 1) = x2(x1 - 1), and hence x 1 = x2• Therefore f is injective. 
To determine the range of f, we solve the equation y = 2x I (x - 1) for x in terms o: 

y. We obtain x = y I (y - 2), which is meaningful for y =F 2. Thus the range of f is the se 
B := {y e IR: y =F 2}. Thus, f is a bijection of A onto B. C 

InveneFunctions ----------------------------------------------

Iff is a function from A into B, then f is a special subset of A x B (namely, one passin~ 
the vertical line test.) The set of ordered pairs in B x A obtained by interchanging the 
members of ordered pairs in f is not generally a function. (That is, the set f may not pas 
both of the horizontal line tests.) However, iff is a bijection, then this interchange doe 
lead to a function, called the "inverse function" of f. 

1.1.11 Definition Iff: A ..... B is a bijection of A onto B, then 

g := {(b, a) e B x A : (a, b) e f} 

is a function on B into A. This function is called the invene function of f, and is denote 
by f- 1

• The function /-1 is also called the inverse of f. 
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We can also express the connection between f and its inverse f- 1 by noting that 
D(f) = R(/-1) and R(/) = D(f-1

) and that 

b = f(a) if and only if a = f- 1 (b). 

For example, we saw in Example I.I.I 0 that the function 

2x 
f(x) := x- 1 

is a bijection of A := {x e 1R : x =F I} onto the set B := {y e IR : y =F 2}. The function 
inverse to f is given by 

/-t(y) := _Y_ 
y-2 

for y e B. 

Remark We introduced the notation f- 1 (H) in Definition 1.1.7. It makes sense even if 
f does not have an inverse function. However, if the inverse function f - 1 does exist, then 
f- 1(H) is the direct image of the setH c B under f- 1

• 

Composition of Functions 

It often happens that we want to "compose" two functions f, g by first finding f (x) and 
then applying g to get g(f(x)); however, this is possible only when f(x) belongs to the 
domain of g. In order to be able to do this for all f(x), we must assume that the range of 
f is contained in the domain of g. (See Figure 1.I.8.) 

1.1.12 Definition Iff: A~ B and g: B ~ C, and if R(f) c D(g) = B, then the 
composite function go f (note the order!) is the function from A into C defined by 

(go f)(x) := g(f(x)) for all x eA. 

1.1.13 Examples (a) The order of the composition must be carefully noted. For, let f 
and g be the functions whose values at x e IR are given by 

f(x) := 2x and g(x) := 3x2
- 1. 

Since D(g) = 1R and R(f) c 1R = D(g), then the domain D(g o /)is also equal to 1R, and 
the composite function g o f is given by 

A 

(go f)(x) = 3(2x)2
- I = I2x2

- 1. 

f 
~ 

B 

goj 

g 
~ 

Figure 1.1.8 The composition off and g 

c 
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On the other hand, the domain of the composite function f o g is also JR., but 

(I o g)(x) = 2(3x2
- 1) = 6x2 - 2. 

Thus, in this case, we have g o I ':/: I o g. 

(b) In considering g o I, some care must be exercised to be sure that the range of f is 
contained in the domain of g. For example, if 

l(x):=1-x2 and g(x) := ~, 

then, since D(g) = {x : x ~ 0}, the composite function go f is given by the formula 

(go l)(x) = J1- x 2 

only for x e D(/) that satisfy I (x) ~ 0; that is, for x satisfying -1 ~ x ~ 1. 
We note that if we reverse the order, then the composition I o g is given by the formula 

(I og)(x) = 1-x, 

but only for those x in the domain D(g) = {x: x ~ 0}. D 

We now give the relationship between composite functions and inverse images. The 
proof is left as an instructive exercise. 

1.1.14 Theorem Let I : A --. B and g : B --. C be functions and let H be a subset of 
C. Then we have 

(go 1)-t (H) = 1-t (g-t (H)). 

Note the reversal in the order of the functions. 

R~trictionsofFunctions -------------------------------------------

If I : A ~ B is a function and if A 1 c A, we can define a function It : At --. B by 

11 (x) := l(x) for x eAt. 

The function 11 is called the restriction of I to At. Sometimes it is denoted by It = I I At. 
It may seem strange to the reader that one would ever choose to throw away a part of a 

function, but there are some good reasons for doing so. For example, if f : 1R ~ 1R is the 
squaring function: 

for x e JR., 

then I is not injective, so it cannot have an inverse function. However, if we restrict f to 
the set A 1 := {x : x ~ 0}, then the restriction /IA1 is a bijection of A1 onto A1• Therefore, 
this restriction has an inverse function, which is the positive square root function. (Sketch 
a graph.) 

Similarly, the trigonometric functions S (x) := sin x and C (x) := cos x are not injective 
on all of 1R. However, by making suitable resttictions of these functions, one can obtain 
the inverse sine and the inverse cosine functions that the reader has undoubtedly already 
encountered. 
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Exercises for Section 1.1 

I. If A and Bare sets, show that A £;; B if and only if An B =A. 

2. Prove the second De Morgan Law [Theorem 1.1.4(b)]. 

3. Prove the Distributive Laws: 
(a) A n (B U C) = (A n B) U (A n C), 
(b) A U (B n C) = (A U B) n (A U C). 

4. The symmetric difference of two sets A and B is the set D of all elements that belong to either 
A or B but not both. Represent D with a diagram. 
(a) Show that D = (A \B) U (B\A). 
(b) Show that Dis also given by D = (AU B)\(A n B). 

5. For each n EN, let An= {(n + I)k: kEN}. 
(a) What is A1 n A2? 
(b) Determine the sets UlAn : n E N} and n{An : n E N}. 

6. Draw diagrams in the plane of the Cartesian products A x B for the given sets A and B. 
(a) A = {x E 1R : I ~ x ~ 2 or 3 ~ x ~ 4}, B = {x E 1R : x = I or x = 2}. 
(b) A = { 1, 2, 3}, B = {x E 1R : 1 ~ x ~ 3}. 

7. Let A:= B := {x E 1R: -I ~ x ~ I} and consider the subset C := {(x, y): x 2 + y2 = I} of 
A x B. Is this set a function? Explain. 

8. Let j(x) := lfx2
• x =/: 0, x E JR. 

(a) Determine the direct image /(E) where E := {x E 1R : 1 ~ x ~ 2}. 
(b) Determine the inverse image f- 1 (G) where G := {x E 1R: 1 ~ x ~ 4}. 

9. Let g(x) := x 2 and f(x) := x + 2 for x E R, and let h be the composite function h :=go f. 
(a) Find the direct image h(E) of E := {x E 1R: 0 ~ x ~ 1}. 
(b) Find the inverse image h- 1 (G) of G := {x E 1R: 0 ~ x ~ 4}. 

10. Let f(x) := x 2 for x E R, and let E := {x E 1R: -I ~ x ~ 0} and F := {x E 1R: 0 ~ x ~ I}. 
Show that En F = {0} and f(E n F)= {0}, while /(E)= f(F) = {y E 1R: 0 ~ y ~ I}. 
Hence f(E n F) is a proper subset of f(E) n /(F). What happens ifO is deleted from the sets 
E and F? 

11. Let f and E. F be as in Exercise 10. Find the sets E\F and f(E)\f(F) and show that it is not 
true that f(E\F) £;; f(E)\f(F). 

I2. Show that if f: A~ B and E, F are subsets of A, then f(E U F)= f(E) U /(F) and 
j(E n F) £;; /(E) n /(F). 

I3. Show that iff: A~ Band G, Hare subsets of B, then f- 1(G U H)= f- 1(G) U f- 1(H) 
and /- 1(G n H)= /- 1(G) n f- 1(H). 

I4. Show that the function f defined by f(x) := x/J x 2 + 1, x E R, is a bijection of 1R onto 
{y:-I<y<I}. 

I5. For a, bE 1R with a < b, find an explicit bijection of A := {x :a < x < b} onto B := {y : 0 < 
y <I}. 

I6. Give an example of two functions f, g on 1R to 1R such that f =/: g, but such that f o g = g o f. 

I7. (a) Show that iff: A~ B is injective and E ~A, then f- 1(/(E)) =E. Give an example 
to show that equality need not hold if f is not injective. 

(b) Show that if I : A ~ B is surjective and H S B, then I (1- 1 (H)) = H. Give an example 
to show that equality need not hold if f is not surjective. 

18. (a) Suppose that f is an injection. Show that f- 1 o f(x) = x for all x E D(/) and that 
f o f- 1 (y) = y for ally E R(j). 

(b) Iff is a bijection of A onto B, show that f- 1 is a bijection of B onto A. 
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19. Prove that if f : A .... B is bijective and g : B .... C is bijective, then the composite g o f is a 
bijective map of A onto C. 

20. Let f : A .... B and g : B .... C be functions. 
(a) Show that if go f is injective, then f is injective. 
(b) Show that if g o f is surjective, then g is surjective. 

21. Prove Theorem 1.1.14. 

22. Let f, g be functions such that (go f)(x) = x for all x e D(/) and (/ o g)(y) = y for all 
y e D(g). Prove that g = f- 1• 

Section 1.2 Mathematical Induction 

Mathematical Induction is a powerful method of proof that is frequently used to establish 
the validity of statements that are given in terms of the natural numbers. Although its utility 
is restricted to this rather special context, Mathematical Induction is an indispensable tool 
in all branches of mathematics. Since many induction proofs follow the same formal lines 
of argument, we will often state only that a· result follows from Mathematical Induction 
and leave it to the reader to provide the necessary details. In this section, we will state the 
principle and give several examples to illustrate how inductive proofs proceed. 

We shall assume familiarity with the set of natural numbers: 

N :={I, 2, 3, · · ·}, 

with the usual arithmetic operations of addition and multiplication, and with the meaning 
of a natural number being less than another one. We will also assume the following 
fundamental property of N. 

1.2.1 WeD-Ordering Property of N Every nonempty subset of N has a least element. 

A more detailed statement of this property is as follows: If S is a subset of N and if 
S =I= 0, then there exists m e S such that m ~ k for all k e S. 

On the basis of the Well-Ordering Property, we shall derive a version of the Principle 
of Mathematical Induction that is expressed in terms of subsets of N. 

1.2.2 Principle of Mathematical Induction Let S be a subset of N that possesses the 
two properties: 

(1) The number 1 e S. 
(2) For every keN, if k e S, then k + 1 e S. 

Then we haveS= N. 

Proof. Suppose to the contrary that S =I= N. Then the set N\S is not empty, so by the 
Well-Ordering Principle it has a least element m. Since 1 e S by hypothesis (1), we know 
that m > 1. But this implies that m - 1 is also a natural number. Since m - 1 < m and 
since m is the least element in N such that m ' S, we conclude that m - 1 e S. 

We now apply hypothesis (2) to the element k := m- 1 inS, to infer that k + 1 = 
(m - 1) + 1 = m belongs to S. But this statement conttadicts the fact that m ' S. Since m 
was obtained from the assumption that N\S is not empty, we have obtained a contradiction. 
Therefore we must have S = N. Q.E.D. 
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The Principle of Mathematical Induction is often set forth in the framework of proper
ties or statements about natural numbers. If P(n) is a meaningful statement about n e N, 
then P(n) may be true for some values of n and false for others. For example, if P1 (n) is 
the statement: "n 2 = n ", then P1 ( 1) is true while P1 (n) is false for all n > 1, n e N. On 
the other hand, if P2(n) is the statement: "n 2 > 1", then P2(1) is false, while P2(n) is true 
for all n > 1, n e N. 

In this context, the Principle of Mathematical Induction can be formulated as follows. 

For each n e N, let P(n) be a statement about n. Suppose that: 

(1') P(1)istrue. 
(2') For every keN, if P(k) is true, then P(k + 1) is true. 

Then P(n) is true for all n eN. 

The connection with the preceding version of Mathematical Induction, given in 1.2.2, 
is made by letting S := {n e N: P(n) is true}. Then the conditions (1) and (2) of 1.2.2 
correspond exactly to the conditions ( 1 ') and (2'), respectively. The conclusion that S = N 
in 1.2.2 corresponds to the conclusion that P(n) is true for all n e N. 

In (2') the assumption "if P(k) is true" is called the induction hypothesis. In estab
lishing (2'), we are not concerned with the actual truth or falsity of P(k), but only with 
the validity of the implication "if P(k), then P(k + 1)". For example, if we consider the 
statements P(n): "n = n + 5", then (2') is logically correct, for we can simply add 1 to 
both sides of P(k) to obtain P(k + 1). However, since the statement P(1): "1 = 6" is false, 
we cannot use Mathematical Induction to conclude that n = n + 5 for all n e N. 

It may happen that statements P (n) are false for certain natural numbers but then are 
true for all n :::: n0 for some particular n0 . The Principle of Mathematical Induction can be 
modified to deal with this situation. We will formulate the modified principle, but leave its 
verification as an exercise. (See Exercise 12.) 

1.2.3 Principle of Mathematical Induction (second version) Let n0 eN and let P(n) 
be a statement for each natural number n :::: n0 • Suppose that: 

(1) The statement P(n0 ) is true. 
(2) For all k :::: n0 , the truth of P(k) implies the truth of P(k + 1). 

Then P(n) is true for all n :::: n0 . 

Sometimes the number n0 in ( 1) is called the base, since it serves as the starting point, 
and the implication in (2), which can be written P(k) ~ P(k + 1), is called the bridge, 
since it connects the case k to the case k + 1. 

The following examples illustrate how Mathematical Induction is used to prove asser
tions about natural numbers. 

1.2.4 Examples (a) For each n e N, the sum of the first n natural numbers is given by 

1 + 2 + · · · + n = 4n(n + 1). 

To prove this formula, we let S be the set of all n e N for which the formula is true. 
We must verify that conditions ( 1) and (2) of 1.2.2 are satisfied. If n = 1, then we have 
1 = ! · 1 · ( 1 + 1) so that 1 E S, and ( 1) is satisfied. Next, we assume that k E S and wish 
to infer from this assumption that k + 1 e S. Indeed, if k e S, then 

1 + 2 + ... + k = ik(k + 1). 



14 CHAPTER 1 PRELIMINARIES 

If we add k + 1 to both sides of the assumed equality, we obtain 

1 + 2 + ... + k + (k + 1) = !k(k + 1) + (k + 1) 

= !<k + 1)(k + 2). 

Since this is the stated formula for n = k + 1, we conclude that k + 1 e S. Therefore, 
condition (2) of 1.2.2 is satisfied. Consequently, by the Principle of Mathematical Induction, 
we infer that S = N, so the formula holds for all n e N. 

(b) For each n e N, the sum of the squares of the first n natural numbers is given by 

12 + 22 + · · · + n2 = 1n(n + 1)(2n + 1). 

To establish this formula, we note that it is true for n = 1, since 12 = 1 · 1 · 2 · 3. If 

we assume it is true fork, then adding (k + 1)2 to both sides of the assumed formula gives 

12 + 22 + ... + k2 + (k + 1)2 = 1k(k + 1)(2k + 1) + (k + 1)2 

= 1 (k + 1)(2k2 + k + 6k + 6) 

= 1<k + 1)(k + 2)(2k + 3). 

Consequently, the formula is valid for all n e N. 

(c) Given two real numbers a and b, we will prove that a- b is a factor of an- bn for 
alln eN. 

First we see that the statement is clearly true for n = 1. If we now assume that a - b 
is a factor of ale - ble, then 

ale+ I _ blc+t = ale+ I _able +able _ blc+t 

= a(alc - ble) + blc(a -b). 

By the induction hypothesis, a - b is a factor of a(alc - ble) and it is plainly a factor of 
blc(a- b). Therefore, a - b is a factor of alc+t - blc+t, and it follows from Mathematical 
Induction that a - b is a factor of an - bn for all n e N. 

A variety of divisibility results can be derived from this fact. For example, since 
11 - 7 = 4, we see that 11n - 7n is divisible by 4 for all n eN. 

(d) The inequality 2n > 2n + 1 is false for n = 1, 2, but it is true for n = 3. If we assume 
that 2/c > 2k + 1, then multiplication by 2 gives, when 2k + 2 > 3, the inequality 

21e+l > 2(2k + 1) = 4k + 2 = 2k + (2k + 2) > 2k + 3 = 2(k + 1) + 1. 

Since 2k + 2 > 3 for all k ~ 1, the bridge is valid for all k ~ 1 (even though the statement 
is false fork= 1, 2). Hence, with the base n0 = 3, we can apply Mathematical Induction 
to conclude that the inequality holds for all n ~ 3. 

(e) The inequality 2n ~ (n + 1)! can be established by Mathematical Induction. 
We first observe that it is true for n = 1, since 21 = 2 = 1 + 1. If we assume that 

21e ~ (k + 1)!, it follows from the fact that 2 ~ k + 2 that 

21e+l = 2. 2/c ~ 2(k + 1)! ~ (k + 2)(k + 1)! = (k + 2)!. 

Thus, if the inequality holds for k, then it also holds for k + 1. Therefore, Mathematical 
Induction implies that the inequality is true for all n e N. 

(f) If r e R, r :1= 1, and n eN, then 

2 1- rn+l 
l+r+r +···+rn= . 

1-r 
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This is the formula for the sum of the terms in a "geometric progression". It can 
be established using Mathematical Induction as follows. First, if n = I, then I + r = 
(I - r 2

) I (I - r). If we assume the truth of the formula for n = k and add the term rk+ 1 to 
both sides, we get (after a little algebra) 

I - rk+ 1 1 - rk+2 
1 + r + rk + ... + rk+1 = + rk+l = ' 

1-r 1-r 

which is the formula for n = k + 1. Therefore, Mathematical Induction implies the validity 
of the formula for all n e N. 

[This result can also be proved without using Mathematical Induction. If we let 
sn := 1 + r + r 2 + · · · + rn, then r sn = r + r 2 + · · · + rn+ 1

, so that 

(I - r)sn = sn - rsn = I - rn+1
• 

If we divide by 1 - r, we obtain the stated formula.] 

(g) Careless use of the Principle of Mathematical Induction can lead to obviously absurd 
conclusions. The reader is invited to find the error in the "proof' of the following assertion. 

Claim: If n eN and if the maximum of the natural numbers p and q is n, then p_-:-- q. 

''Proof." Let S be the subset of N for which the claim is true. Evidently, 1 e S since if 
p, q eN and their maximum is 1, then both equal1 and sop= q. Now assume that k e S 
and that the maximum of p and q is k +I. Then the maximum of p- 1 and q- I is k. But 
since k e S, then p - 1 = q - 1 and therefore p = q. Thus, k + 1 e S, and we conclude 
that the assertion is true for all n e N. 

(h) There are statements that are true for many natural numbers but that are not true for 
all of them. 

For example, the formula p (n) : = n 2 
- n + 41 gives a prime number for n = 1, 2, · · · , 

40. However, p(41) is obviously divisible by 41, so it is not a prime number. D 

Another version of the Principle of Mathematical Induction is sometimes quite useful. 
It is called the" Principle of Strong Induction", even though it is in fact equivalent to I.2.2. 

1.2.5 Principle of Strong Induction Let S be a subset of N such that 

(1") 1 e s. 
(2") For every keN, if {1, 2, · · ·, k} c S, then k + 1 e S. 

Then S = N. 

We will leave it to the reader to establish the equivalence of I.2.2 and I.2.5. 

Exercises for Section 1.2 

1. Prove that 1/1 · 2 + 1/2 · 3 + · · · + 1/n(n + 1) = n/(n + 1) for all n eN. 

2. Prove that 13 + 23 + · · · + n3 = [4n(n + 0]2 
for all n eN. 

3. Prove that 3 + 11 + · · · + (8n- 5) = 4n2
- n for all n eN. 

4. Prove that 12 + 32 + · · · + (2n- 1)2 = (4n3
- n)/3 for all n eN. 

5. Prove that 12 -22 + 32 + · · · + (-1)"+1n2 = (-1)"+1n(n + 1)/2 for all n eN. 
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6. Prove that n3 + 5n is divisible by 6 for all n eN. 

7. Prove that 52n - 1 is divisible by 8 for all n eN. 

8. Prove that 5" - 4n- 1 is divisible by 16 for all n eN. 

9. Prove that n3 + (n + 1)3 + (n + 2)3 is divisible by 9 for all n eN. 

10. Conjecture a formula for the sum 1/1 . 3 + 1/3 · 5 + · · · + 1/(2n- 1)(2n + 1), and prove your 
conjecture by using Mathematical Induction. 

11. Conjecture a formula for the sum of the first n odd natural numbers 1 + 3 + · · · + (2n- 1), 
and prove your formula by using Mathematical Induction. 

12. Prove the Principle of Mathematical Induction 1.2.3 (second version). 

13. Prove that n < 2" for all n eN. 

14. Prove that 2" < n! for all n ~ 4, n eN. 

15. Prove that 2n- 3 ~ 2"-2 for all n ~ 5, n eN. 

16. Find all natural numbers n such that n2 < 2". Prove your assertion. 

17. Find the largest natural number m such that n3
- n is divisible by m for all n eN. Prove your 

assertion. 

18. Prove that 1/.Jl + 1/v'2 7".· · · + 1/.fn > ,fn for all n eN. 

19. Let S be a subset of N such that (a) 2/c e S for all keN, and (b) if k e S and k ~ 2, then 
k - 1 e S. Prove that S = N. 

20. Let the numbers xn be defined as follows: x1 := 1, x2 := 2, and xn+l := !<xn+l + xn) for all 
n eN. Use the Principle of Strong Induction (1.2.5) to show that 1 ~ xn ~ 2 for all n eN. 

Section 1.3 Finite and Infinite Sets 

When we count the elements in a set, we say "one, two, three,.··", stopping when we 
have exhausted the set. From a mathematical perspective, what we are doing is defining a 
bijective mapping between the set and a portion of the set of natural numbers. If the set is 
such that the counting does not terminate, such as the set of natural numbers itself, then we 
describe the set as being infinite. 

The notions of "finite" and "infinite" are extremely primitive, and it is very likely 
that the reader has never examined these notions very carefully. In this section we will 
define these terms precisely and establish a few basic results and state some other important 
results that seem obvious but whose proofs are a bit tricky. These proofs can be found in 
Appendix B and can be read later. 

1.3.1 Definition (a) The empty set 0 is said to have 0 elements. 

(b) If n e N, a set S is said to have n elements if there exists a bijection from the set 
Nn := {1, 2, · · ·, n} onto S. 

(c) A setS is said to be finite if it is either empty or it has n elements for some n eN. 
(d) A set S is said to be infinite if it is not finite. 

Since the inverse of a bijection is a bijection, it is easy to see that a set S has n 
elements if and only if there is a bijection from S onto the set { 1, 2, · · · , n}. Also, since the 
composition of two bijections is a bijection, we see that a set S1 has n elements if and only 
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if there is a bijection from S 1 onto another set S2 that has n elements. Further, a set T1 is 
finite if and only if there is a bijection from T1 onto another set T2 that is finite. 

It is now necessary to establish some basic properties of finite sets to be sure that the 
definitions do not lead to conclusions that conflict with our experience of counting. From 
the definitions, it is not entirely clear that a finite set might not have n elements for more 
than one value of n. Also it is conceivably possible that the set N := {1, 2, 3, ···}might be 
a finite set according to this definition. The reader will be relieved that these possibilities 
do not occur, as the next two theorems state. The proofs of these assertions, which use the 
fundamental properties of N described in Section 1.2, are given in Appendix B. 

1.3.2 Uniqueness Theorem If S is a finite set, then the number of elements in S is a 
unique number in N. 

1.3.3 Theorem The set N of natural numbers is an infinite set. 

The next result gives some elementary properties of finite and infinite sets. 

1.3.4 Theorem (a) If A is a set with m elements and B is a set with n elements and if 
A n B = 0, then A U B has m + n elements. 

(b) If A is a set with m e N elements and C ~ A is a set with 1 element, then A\ C is a 
set with m - 1 elements. 

(c) If C is an infinite set and B is a finite set, then C\B is an infinite set. 

Proof. (a) Let I be a bijection of Nm onto A, and let g be a bijection of Nn onto 
B. We define h on Nm+n by h(i) := /(i) for i = l, · · ·, m and h(i) := g(i - m) for 
i = m + 1, · · ·, m + n. We leave it as an exercise to show that h is a bijection from Nm+n 
onto AU B. 

The proofs of parts (b) and (c) are left to the reader, see Exercise 2. Q.E.D. 

It may seem "obvious" that a subset of a finite set is also finite, but the assertion must 
be deduced from the definitions. This and the corresponding statement for infinite sets are 
established next. 

1.3.5 Theorem Suppose that S and T are sets and that T ~ S. 

(a) If S is a finite set, then T is a finite set. 

(b) If T is an infinite set, then S is an infinite set. 

Proof. (a) If T = 0, we already know that Tis a finite set. Thus we may suppose that 
T :p 0. The proof is by induction on the number of elements in S. 

If S has 1 element, then the only nonempty subset T of S must coincide with S, so T 
is a finite set. 

Suppose that every nonempty subset of a set with k elements is finite. Now let S be 
a set having k + 1 elements (so there exists a bijection I of Nk+I onto S), and letT c S. 
If l(k + 1) ~ T, we can consider T to be a subset of S1 := S\{l(k + 1)}, which has k 
elements by Theorem 1.3.4(b). Hence, by the induction hypothesis, Tis a finite set. 

On the other hand, if l(k + 1) e T, then T1 := T\{/(k + 1)} is a subset of S1• Since 
S 1 has k elements, the induction hypothesis implies that T1 is a finite set. But this implies 
that T = T1 U {/(k + 1)} is also a finite set. 

(b) This assertion is the contrapositive of the assertion in (a). (See Appendix A for a 
discussion of the contrapositive.) Q.E.D. 
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CounubleSeu ------------------------------------------------
We now introduce an important type of infinite set. 

1.3.6 Definition (a) A setS is said to be denumerable (or counubly infinite) if there 
exists a bijection of N onto S. 

(b) A set S is said to be counuble if it is either finite or denumerable. 

(c) A set Sis said to be uncounuble if it is not countable. 

From the properties of bijections, it is clear that S is denumerable if and only if there · 
exists a bijection of S onto N. Also a set S 1 is denumerable if and only if there exists a 
bijection from S 1 onto a set S2 that is denumerable. Further, a set T1 is countable if and 
only if there exists a bijection from T1 onto a set T2 that is countable. Finally, an infinite 
countable set is denumerable. 

1.3.7 Examples (a) The set E := {2n : n e N} of even natural numbers is denumerable, 
since the mapping f : N --+ E defined by f (n) := 2n for n e N, is a bijection of N onto E. 

Similarly, the set 0 := {2n - 1 : n e N} of odd natural numbers is denumerable. 

(b) The set Z of all integers is denumerable. 
To construct a bijection of N onto Z, we map 1 onto 0, we map the set of even natural 

numbers onto the set N of positive integers, and we map the set of odd natural numbers 
onto the negative integers. This mapping can be displayed by the enumeration: 

z = {0, 1, -1, 2, -2, 3, -3, .. ·}. 

(c) The union of two disjoint denumerable sets is denumerable. 
Indeed, if A = {a1, a2 , a3 , • • ·} and B = {b1, b2, b3 , • • ·}, we can enumerate the ele

ments of A U B as: 

0 

1.3.8 Theorem The set N x N is denumerable. 

lnjontllll Proof. Recall that N x N consists of all ordered pairs (m, n), where m, n eN. 
We can enumerate these pairs as: 

(1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), (1, 4), ... ' 

according to increasing sum m + n, and increasing m. (See Figure 1.3.1.) Q.E.D. 

The enumeration just described is an instance of a "diagonal procedure", since we 
move along diagonals that each contain finitely many tenns as illustrated in Figure 1.3.1. 
While this argument is satisfying in that it shows exactly what the bijection of N x N --+ N 
should do, it is not a "formal proor', since it doesn't define this bijection precisely. (See 
Appendix B for a more formal proof.) 

As we have remarked, the construction of an explicit bijection between sets is often 
complicated. The next two results are useful in establishing the countability of sets, since 
they do not involve showing that certain mappings are bijections. The first result may seem 
intuitively clear, but its proof is rather technical; it will be given iil Appendix B. 
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Figure 1.3.1 The set N x N 

1.3.9 Theorem Suppose that S and T are sets and that T c S. 

(a) If Sis a countable set, then Tis a countable set. 

(b) If T is an uncountable set, then S is an uncountable set. 

1.3.10 Theorem The following statements are equivalent: 

(a) S is a countable set. 

(b) There exists a surjection of N onto S. 

(c) There exists an injection of S into N. 

Proof. (a) =>(b) If Sis finite, there exists a bijection h of some set Nn onto Sand we 
define H on N by 

H(k) := {:~:~ 
Then H is a surjection of N onto S. 

for k = 1, · · · , n, 
for k > n. 

If S is denumerable, there exists a bijection H of N onto S, which is also a surjection 
ofN onto S. 

(b) => (c) If H is a surjection of N onto S, we define H1 : S--+ N by letting H1 (s) be 
the least element in the set H-1(s) := {n eN: H(n) = s}. To see that H 1 is an injection 
of SintoN, note that if s, t e Sand ns, := H1 (s) = H1 (t), then s = H (ns,) = t. 

(c) => (a) If H1 is an injection of SintoN, then it is a bijection of S onto H1 (S) ~ N. 
By Theorem 1.3.9(a), H 1 (S) is countable, whence the set Sis countable. Q.E.D. 

1.3.11 Theorem The set Q of all rational numbers is denumerable. 

Proof. The idea of the proof is to observe that the set Q+ of positive rational numbers is 
contained in the enumeration: 

which is another "diagonal mapping" (see Figure 1.3.2). However, this mapping is not an 
injection, since the different fractions ! and ~ represent the same rational number. 

To proceed more formally, note that since N x N is countable (by Theorem 1.3.8), 
it follows from Theorem 1.3.10(b) that there exists a surjection f of N onto N x N. If 
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Figure 1.3.2 The set Q+ 

g : N x N ~ Q+ is the mapping that sends the ordered pair (m, n) into the rational num
ber having a representation m 1 n, then g is a surjection onto Q+. Therefore, the composition 
g o 1 is a surjection of N onto Q+, and Theorem 1.3.1 0 implies that Q+ is a countable set. 

Similarly, the set Q- of all negative rational numbers is countable. It follows as in 
Example 1.3.7(b) that the set Q = Q- U {0} U Q+ is countable. Since Q contains N, it 
must be a denu~erable set. Q.E.D. 

The next result is concerned with unions of sets. In view of Theorem 1.3.10, we need 
not be worried about possible overlapping of the sets. Also, we do not have to construct a 
bijection. 

1.3.12 Theorem If Am is a countable set for each m e N, then the union A := U:=l Am 
is countable. 

Proof. For each m eN, let fJm be a surjection of N onto Am. We define 1/1 : N x N ~ A 
by 

1/l(m, n) := fJm (n). 

We claim that 1/1 is a surjection. Indeed, if a e A, then there exists a least m e N such that 
a e Am, whence there exists a least n E N such that a = fJm (n). Therefore, a = 1/l(m, n). 

Since N x N is countable, it follows from Theorem 1.3 .1 0 that there exists a surjection 
1: N ~ N x N whence 1/1 o I is a surjection of N onto A. Now apply Theorem 1.3.10 
again to conclude that A is countable. Q.E.D. 

Remark A less formal (but more intuitive) way to see the truth of Theorem 1.3.12 is to 
enumerate the elements of Am, meN, as: 

AI = {all' al2' a13' • • • }, 

A2 = {a21' a22' a23, · · ·}, 
A3 = {all' a32' a33' · · · }, 

We then enumerate this array using the "diagonal procedure": 

as was displayed in Figure 1.3.1. 
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The argument that the set Q of rational numbers is countable was first given in 1874 
by Georg Cantor ( 1845-1918). He was the first mathematician to examine the concept of 
infinite set in rigorous detail. In contrast to the countability of Q, he also proved the set R 
of real numbers is an uncountable set. (This result will be established in Section 2.5.) 

In a series of important papers, Cantor developed an extensive theory of infinite sets and 
transfinite arithmetic. Some of his results were quite surprising and generated considerable 
controversy among mathematicians of that era. In a 1877 letter to his colleague Richard ( 
Dedekind, he wrote, after proving an unexpected theorem, "I see it, but I do not believe it". 

We close this section with one of Cantor's more remarkable dteorems. 

1.3.13 Cantor's Theorem H A is any set, then there is no surjection of A onto the set 
'P(A) of all subsets of A. 

Proof. Suppose that q> : A --+ 'P(A) is a surjection. Since q>(a) is a subset of A, either a 
belongs to q>(a) or it does not belong to this set. We let 

D := {a e A :a ~ q>(a)}. 

Since Dis a subset of A, if lfJ is a surjection, then D = q>(a0) for some a0 e A. 
We must have either a0 e D or a0 ~D. If a0 e D, then since D = q>(a0 ), we must 

have a0 e q>(a0), contrary to the definition of D. Similarly, i~ <'o ~ D, then a0 ~ q>(a0 ) so 
that a0 e D, which is also a contradiction. 

Therefore, lfJ cannot be a surjection. Q.E.D. 

Cantor's Theorem implies that there is an unending progression of larger and larger 
sets. In particular, it implies that the collection 'P(N) of all subsets of the natural numbers 
N is uncountable. 

Exercises for Section 1.3 

1. Prove that a nonempty set T1 is finite if and only if there is a bijection from T1 onto a finite 
set T2• 

2. Prove parts (b) and (c) of Theorem 1.3.4. 

3. LetS:= (1, 2} and T :=(a, b, c}. 
(a) Determine the number of different injections from S into T. 
(b) Determine the number of different surjections from T onto S. 

4. Exhibit a bijection between Nand the set of all odd integers greater than 13. 

5." Give an explicit definition of the bijection f from N onto Z described in Example 1.3.7(b). 

6. Exhibit a bijection between N and a proper subset of itself. 

7. Prove that a set T1 is denumerable if and only if there is a bijection from T1 onto a denumerable 
set T2• 

8. Give an example of a countable collection of finite sets whose union is not finite. 

9. Prove in detail that if S and T are denumerable, then S U T is denumerable. 

10. Determine the number of elements in 1'(S), the collection of all subsets of S, for each of the 
following sets: 
(a) S := (1, 2}, 
(b) s := (1, 2, 3}, 
(c) S := (1. 2, 3, 4}. 
Be sure to include the empty set and the setS itself in 1'(S). 

11. Use Mathematical Induction to prove that if the set S has n elements, then 'f?(S) has 2" elements. 

- 12. Prove that the collection F(N) of all finite subsets of N is countable. 



CHAPTER2 

THE REAL NUMBERS 

In this chapter we will discuss the essential properties of the real number system R. 
Although it is possible to give a formal construction of this system on the basis of a more 
primitive set (such as the set N of natural numbers or the set Q of rational numbers), we 
have chosen not to do so. Instead, we exhibit a list of fundamental properties associated 
with the real numbers and show how further properties can be deduced from them. This 
kind of activity is much more useful in learning the tools of analysis than examining the 
logical difficulties of constructing a model for R. 

The real number system can be described as a "complete ordered field", and we 
will discuss that description in considerable detail. In Section 2.1, we first introduce the 
"algebraic" properties-often called the "field" properties in abstract algebra-that are 
based on the two operations of addition and multiplication. We continue the section with 
the introduction of the "order" properties of R and we derive some consequences of these 
properties and illustrate their use in working with inequalities. The notion of absolute value, 
which is based on the order properties, is discussed in Section 2.2. 

In Section 2.3, we make the final step by adding the crucial "completeness" property to 
the algebraic and order properties of R. It is this property, which was not fully understood 
until the late nineteenth century, that underlies the theory of limits and continuity and 
essentially all that follows in this book. The rigorous development of real analysis would 
not be possible without this essential property. 

In Section 2.4, we apply the Completeness Property to derive several fundamental 
results concerning R, including the Archimedean Property, the existence of square roots, 
and the density of rational numbers in R. We establish, in Section 2.5, the Nested Interval 
Property and use it to prove the uncountability of R. We also discuss its relation to binary 
and decimal representations of.real numbers. 

Part of the purpose of Sections 2.1 and 2.2 is to provide examples of proofs of 
elementary theorems from explicitly stated assumptions. Students can thus gain experience 
in writing formal proofs before encountering the more subtle and complicated arguments 
related to the Completeness Property and its consequences. However, students who have 
previously studied the axiomatic method and the technique of proofs (perhaps in a course 
on abstract algebra) can move to Section 2.3 after a cursory look at the earlier sections. A 
brief discussion of logic and types of proofs can be found in Appendix A at the back of the 
book. 

Section 2.1 The Algebraic and Order Properties of 1R 

We begin with a brief discussion of the "algebraic structure" of the real number system. We 
will give a short list of basic properties of addition and multiplication from which all other 
algebraic properties can be derived as theorems. In the terminology of abstract algebra, the 
system of real numbers is a "field" with respect to addition and multiplication. The basic 

22 



2.1 THE ALGEBRAIC AND ORDER PROPERTIES OF R 23 

properties listed in 2.1.1 are known as the field axioms. A binary operation associates with 
each pair (a, b) a unique element B(a, b), but we will use the conventional notations of 
a + b and a · b when discussing the properties of addition and multiplication. 

2.1.1 Algebraic Properties of R On the set R of real numbers there are two binary 
operations, denoted by + and · and called addition and multipUcation, respectively. These 
operations satisfy the following properties: 

(A1) a+ b = b +a for all a, bin R (commutative property of addition); 
(A2) (a +b) + c =a + (b +c) for all a, b, c in R (associative property of addition); 
(A3) there exists an element 0 in R such that 0 + a = a and a + 0 = a for all a in R 

(existence of a zero element); 
(A4) for each a in R there exists an element -a in R such that a + (-a) = 0 and 

(-a)+ a= 0 (existence of negative elements); 
(M1) a· b = b ·a for all a, bin R (commutative property of multiplication); 
(M2) (a· b)· c =a· (b ·c) for all a, b, c in R (associative property of multiplication); 
(M3) there exists an element 1 in R distinct from 0 such that 1 · a = a and a · 1 = a for 

all a in R (existence of a unit element); 
(M4) for each a :f= 0 in R there exists an element 1/a in R such that a· (1/a) = 1 and 

(1/a) ·a= 1 (existence of reciprocals); 
(D) a · (b +c) = (a ·b) + (a ·c) and (b +c) ·a = (b ·a) + (c ·a) for all a, b, c in R 

(distributive property of multiplication over addition). 

These properties should be familiar to the reader. The first four are concerned with 
addition, the next four with multiplication, and the last one connects the two operations. 
The point of the list is that all the familiar techniques of algebra can be derived from these 
nine properties, in much the same spirit that the theorems of Euclidean geometry can be 
deduced from the five basic axioms stated by Euclid in his Elements. Since this task more 
properly belongs to a course in abstract algebra, we will not carry it out here. However, to 
exhibit the spirit of the endeavor, we will sample a few results and their proofs. 

We first establish the basic fact that the elements 0 and 1, whose existence were asserted 
in (A3) and (M3), are in fact unique. We also show that multiplication by 0 always results 
inO. 

2.1.2 Theorem (a) Hz and a are elements in R with z + a = a, then z = 0. 

(b) Ifu and b :f= 0 are elements in R with u · b = b, then u = 1. 

(c) H a e R, then a · 0 = 0. 

Proof. (a) Using (A3), (A4), (A2), the hypothesis z +a =a, and (A4), we get 

z= z+O = z+ (a+ (-a))= (z+a) +(-a)= a+ (-a)= 0. 

(b) Using (M3), (M4), (M2), the assumed equality u · b = b, and (M4) again, we get 

u = u · 1 = u · (b · (1/b)) = (u ·b) · (1/b) = b · (1/b) = 1. 

(c) We have (why?) 

a +a · 0 = a · 1 +a · 0 = a · (1 + 0) =a · 1 = a. 

Therefore, we conclude from (a) that a· 0 = 0. Q.E.D . 
• 
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We next establish two important properties of multiplication: the uniqueness of recip
rocals and the fact that a product of two numbers is zero only when one of the factors is 
zero. 

2.1.3 Theorem (a) If a :f: 0 and bin 1R are such that a · b = 1, then b = 11a. 

(b) If a· b = 0, then either a= 0 orb= 0. 

Proof. (a) Using (M3), (M4), (M2), the hypothesis a · b = 1, and (M3), we have 

b = 1 . b = ((11a) . a) · b = (11a) . (a . b) = (11a) . 1 = 11a. 

(b) It suffices to assume a :f: 0 and prove that b = 0. (Why?) We multiply a · b by 1 I a and 
apply (M2), (M4) and (M3) to get 

(11a) . (a . b) = ((11a) . a) . b = 1 . b = b. 

Since a· b = 0, by 2.1.2(c) this also equals 

(11a). (a· b)= (11a). 0 = 0. 

Thus we have b = 0. Q.E.D. 

These theorems represent a small sample of the algebraic properties of the real number 
system. Some additional consequences of the field properties are given in the exercises. 

The operation of subtraction is defined by a - b := a + (-b) for a, b in JR. Similarly, 
division is defined for a, b in 1R with b :f: 0 by alb:= a · (11b). In the following, we 
will use this customary notation for subtraction and division, and we will use all the 
familiar properties of these operations. We will ordinarily drop the use of the dot to indicate 
multiplication and write ab for a · b. Similarly, we will use the usual notation for exponents 
and write a2 for aa, a 3 for (a 2 )a; and, in general, we define an+l := (an)a for n e N. We 
agree to adopt the convention that a 1 = a. Further, if a =F 0, we write a0 = 1 and a -l for 
11a, and if n eN, we will write a-n for (11a)n, when it is convenient to do so. In general, 
we will freely apply all the usual techniques of algebra without further elaboration. 

Rational and Irrational Numbers -----------------

We regard the set N of natural numbers as a su~set of JR, by identifying the natural number 
n e N with then-fold sum of the unit element 1 e 1R. Similarly, we identify 0 e Z with the 
zero element of 0 e 1R, and we identify then-fold sum of -1 with the integer -n. Thus, 
we consider N and Z to be subsets of 1R. 

Elements of 1R that can be written in the form b I a where a, b e Z and a :f: 0 are called 
rational numbers. The set of all rational numbers in 1R will be denoted by the standard 
notation Q. The sum and product of two rational numbers is again a rational number (prove 
this), and moreover, the field properties listed at the beginning of this section can be shown 
to hold for Q. 

The fact that there are elements in 1R that are not in Q is not immediately apparent. 
In the sixth century B.C. the ancient Greek society of Pythagoreans discovered that the 
diagonal of a square with unit sides could not be expressed as a ratio of integers. In view 
of the Pythagorean Theorem for right triangles, this implies that the square of no rational 
number can equal 2. This discovery had a profound impact on the development of Greek 
mathematics. One consequence is that elements of 1R that are not in Q became known 
as irrational numbers, meaning that they are not _ratios of integers. Although the word 

t 
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"irrational" in modem English usage has a quite different meaning, we shall adopt the 
standard mathematical usage of this term. 

We will now prove that there does not exist a rational number whose square is 2. In the 
proof we use the notions of even and odd numbers. Recall that a natural number is even if 
it has the form 2n for some n e N, and it is odd if it has the form 2n - 1 for some n e N. 
Every natural number is either even or odd, and no natural number is both even and odd. 

2.1.4 Theorem There does not exist a rational number r such that r2 = 2. 

Proof. Suppose, on the contrary, that p and q are integers such that (pI q )2 = 2. We 
may assume that p and q are positive and have no common integer factors other than 1. 
(Why?) Since p 2 = 2q2, we see that p 2 is even. This implies that p is also even (because 
if p = 2n- 1 is odd, then its square p 2 = 2(2n2 - 2n + 1)- 1 is also odd). Therefore, 
since p and q do not have 2 as a common factor, then q must be an odd natural number. 

Since pis even, then p = 2m for some m e N, and hence 4m2 = 2q2
, so that 2m2 = q2• 

Therefore, q 2 is even, and it follows from the argument in the preceding paragraph that q 
is an even natural number. 

Since the hypothesis that (pI q )2 = 2 leads to the contradictory conclusion that q is 
both even and odd, it must be false. Q.E.D. 

The Order Properties of IR 

The "order properties" of 1R refer to the notions of positivity and inequalities between real 
numbers. As with the algebraic structure of the system of real numbers, we proceed by 
isolating three basic properties from which all other order properties and calculations with 
inequalities can be deduced. The simplest way to do this is to identify a special subset of 1R 
by using the notion of "positivity". 

2.1.5 The Order Properties of 1R There is a nonempty subset P of JR, called the set of 
positive real numbers, that satisfies the following properties: 

(i) If a, b belong toP, then a+ b belongs toP. 
(ii) If a, b belong toP, then ab belongs toP. 
(iii) If a belongs to IR, then exactly one of the following holds: 

a e P, a=O, -a eP. 

The first two conditions ensure the compatibility of order with the operations of addi
tion and multiplication, respectively. Condition 2.1.5(iii) is usually called the Trichotomy 
Property, since it divides 1R into three distinct types of elements. It states that the set 
{-a : a e P} of negative real numbers has no elements in c mmon with the set P of 
positive real numbers, and, moreover, the set 1R is the union of ee disjoint sets. 

If a e P, we write a > 0 and say that a is a positive (or a stri y positive) real number. 
If a e P U {0}, we write a ~ 0 and say that a is a nonnegative~ al number. Similarly, if 
-a e P, we write a < 0 and say that a is a negative (or a stricti negative) real number. 
If -a e P U {0}, we write a < 0 and say that a is a nonpositive re number. 

The notion of inequality between two real numbers will now defined in terms of the 
set P of positive elements. 

2.1.6 Definition Let a._b be elements of.1R. 

(a) If a - b e P, then we write a > b orb < a. 
(b) If a - b e P U {0}, then we write a > b oi: b !:: a. 
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The Trichotomy Property 2.1.5(iii) implies that for a, b e IR exactly one of the follow
ing will hold: 

a> b, a= b, a< b. 

Therefore, if both a ~ b and b ~ a, then a = b. 
For notational convenience, we will write 

a<b<c 

to mean that both a < b and b < c are satisfied. The other "double" inequalities a ~ b < c, 
a ~ b ~ c, and a < b ~ c are defined in a similar manner. 

To illustrate how the basic Order Properties are used to derive the "rules of inequalities", 
we will now establish several results that the reader has used in earlier mathematics courses. 

2.1.7 Theorem Leta, b, c be any elements of IR. 

(a) If a >band b > c, then a > c. 

(b) If a > b, then a + c > b + c. 
(c) If a > b and c > 0, then ca > cb. 

If a > b and c < 0, then ca < cb. 

Proof. (a) If a -be IP and b- c e IP, then 2.1.5(i) implies that (a- b)+ (b- c) = 
a- c belongs to IP. Hence a >c. 
(b) If a - b e IP, then (a + c) - (b + c) = a - b is in IP. Thus a + c > b + c. 
(c) If a-be IP and c e IP, then ca- cb = c(a- b) is in IP by 2.1.5(ii). Thus ca > cb 
when c > 0. 

On the other hand, if c < 0, then -c e IP, so that cb- ca = ( -c)(a -b) is in IP. Thus 
cb > ca when c < 0. Q.E.D. 

It is natural to expect that the natural numbers are positive real numbers. This property 
is derived from the basic properties of order. The key observation is that the square of any 
nonzero real number is positive. 

2.1.8 Theorem (a) If a e IR and a -:1= 0, then a 2 > 0. 

(b) 1 > 0. 

(c) lin eN, then n > 0. 

Proof. (a) By the Trichotomy Property, if a '# 0, then either a e IP or -a e IP. If a e IP, 
then by 2.1.5(ii), a2 =a· a e IP. Also, if -a e P, then a2 = (-a)(-a) e P. We conclude 
that if a '# 0, then a2 > 0. 

(b) Since 1 = 12
, it follows from (a) that 1 > 0. 

(c) We use Mathematical Induction. The assertion for n = 1 is true by (b). If we suppose the 
assertion is true for the natural number k, then k e P, and since 1 e P, we have k + 1 e IP 
by 2.1.5(i). Therefore, the assertion is true for all natural numbers. Q.E.D. 

It is worth noting that no smallest positive real number can exist. This follows by 
observing that if a > 0, then since ~ > 0 (why?), we have that 

0 <!a< a. 

----------
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Thus if it is claimed that a is the smallest positive real number, we can exhibit a smaller 
positive number !a. 

This observation leads to the next result, which will be used frequently as a method of 
proof. For instance, to prove that a number a > 0 is actually equal to zero, we see that it 
suffices to show that a is smaller than an arbitrary positive number. 

2.1.9 Theorem If a e 1R is such that 0 < a < e for evezy e > 0, then a = 0. 

Proof. Supposetothecontrarythata > 0. Thenifwetakee0 :=!a, wehaveO < e0 <a. 
Therefore, it is false that a < e for every e > 0 and we conclude that a = 0. Q.E.D. 

Remark It is an exercise to show that if a e 1R is such that 0 < a ~ e for every e > 0, 
then a= 0. 

The product of two positive numbers is positive. However, the positivity of a product 
of two numbers does not imply that each factor is positive. The correct conclusion is given 
in the next theorem. It is an important tool in working with inequalities. 

2.1.10 Theorem If ab > 0, then either 

(i) a > 0 and b > 0, or 
(ii) a < 0 and b < 0. 

Proof. First we note that ab > 0 implies that a :1: 0 and b :1: 0. (Why?) From the Tri
chotomy Property, either a > 0 or a < 0. If a > 0, then 1/a > 0 (why?), and therefore 
b = (1/a)(ab) > 0. Similarly, if a < 0, then 1/a < 0, so that b = (1/a)(ab) < 0. Q.E.D. 

2.1.11 Coronary If ab < 0, then either 

(i) a < 0 and b > 0, or 
(ii) a > 0 and b < 0. 

IDequallti~ ---------------------------------------------------

We now show how the Order Properties presented in this section can be used to "solve" 
certain inequalities. The reader should justify each of the steps. 

2.1.12 E:xampl~ (a) Determine the set A of all real numbers x such that 2x + 3 ~ 6. 
We note that we have t 

xeA 

Therefore A = { x e 1R : x ~ l}. 
(b) Determine the set B := {x e 1R: x2 + x > 2}. 

We rewrite the inequality so that Theorem 2.1.1 0 can be applied. Note that 

X E B <==> x 2 
+X - 2 > 0 <==> (x - 1)(x + 2) > 0. 

Therefore, we either have (i) x - 1 > 0 and x + 2 > 0, or we have (ii) x - 1 < 0 and 
x + 2 < 0. In case (i) we must have both x > 1 and x > -2, which is satisfied if and only 

tThe symbol <==> should be read "if and only if". 
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if x > 1. In case (ii) we must have both x < 1 and x < -2, which is satisfied if and only 
ifx<-2. 

We conclude that B = {x e R: x > 1} U {x e R: x < -2}. 
(c) Detennine the set 

We note that 

xeC 

{ 
2x+1 } c := X E R : X + 2 < 1 . 

x-1 
--<0. 
x+2 

Therefore we have either (i) x - 1 < 0 and x + 2 > 0, or (ii) x - 1 > 0 and x + 2 < 0. 
(Why?) In case (i) we must have both x < 1 and x > -2, which is satisfied if and only if 
-2 < x < 1. In case (ii), we must have both x > 1 and x < -2, which is never satisfied. 

We conclude that C = {x e R: -2 < x < 1}. 0 

The following examples illustrate the use of the Order Properties of R in establishing 
certain inequalities. The reader should verify the steps in the arguments by identifying the 
properties that are employed. 

It should be noted that the existence of square roots of positive numbers has not yet 
been established; however, we assume the existence of these roots for the purpose of these 
examples. (The existence of square roots will be discussed in Section 2.4.) 

2.1.13 Examples (a) Let a ::: 0 and b ::: 0. Then 

(1) 

We consider the case where a > 0 and b > 0, leaving the case a = 0 to the reader. It follows 
from 2.1.5(i) that a+ b > 0. Since b2 - a2 = (b- a)(b +a), it follows from 2.1.7(c) that 
b- a > 0 implies that b2

- a2 > 0. Also, it follows from 2.1.10 that b2 - a2 > 0 implies 
that b- a> 0. 

If a> 0 and b > 0, then Ja > 0 and .Jb > 0. Since a= (~2 
and b = (../b)2

, the 
second implication is a consequence of the first one when a and b are replaced by Ja and 
,Jb, respectively. 

We also leave it to the reader to show that if a ::: 0 and b::: 0, then 

(1') a ~ b {:::=} a2 ~ b2 
{:::=} -Ja ~ Jb 

(b) If a and b are positive real numbers, then their arithmetic mean is J (a + b) and their 
geometric mean is ../iib. The Arithmetic-Geometric Mean lnequallty for a, b is 

(2) ..fiib ~ J<a +b) 

with equality occurring if and only if a = b. 
To prove this, note that if a > 0, b > 0, and a :f: b, then ,Ja > 0, .Jb > 0 and ,Ja :f: 

.Jb. (Why?) Therefore it follows from 2.1.8(a) that ( ,Ja- ../b)2 > 0. Expanding this 
square, we obtain 

a - 2../iib + b > 0, 

whence it follows that 
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Therefore (2) holds (with strict inequality) when a :f: b. Moreover, if a = b(> 0), then both 
sides of (2) equal a, so (2) becomes an equality. This proves that (2) holds for a > 0, b > 0. 

On the other hand, suppose that a > 0, b > 0 and that ~ = ~(a + b). Then, squar
ing both sides and multiplying by 4, we obtain 

4ab =(a+ b)2 = a2 + 2ab + b2, 

whence it follows that 

0 = a2 
- 2ab + b2 = (a - b)2

• 

But this equality implies that a = b. (Why?) Thus, equality in (2) implies that a = b. 

Remark The general Arithmetic-Geometric Mean Inequality for the positive real num
bers a1' a2, ... 'an is 

(3) 1/n a1 + a2 + · · · + an 
(a1a2 •.. an) ~ 

n 
with equality occurring if and only if a1 = a2 = · · · = an. It is possible to prove this more 
general statement using Mathematical Induction, but the proof is somewhat intricate. A 
more elegant proof that uses properties of the exponential function is indicated in Exercise 
8.3.9 in Chapter 8. 

(c) BemouUi's Inequality. If x > -1, then 

( 4) ( 1 + x )n :::: I + nx for all n e N 

The proof uses Mathematical Induction. The case n = I yields equality, so the assertion 
is valid in this case. Next, we assume the validity of the inequality ( 4) for k e N and will 
deduce it for k + 1. Indeed, the assumptions that ( 1 + x )k :::: 1 + kx and that 1 + x > 0 
imply (why?) that 

( 1 + X )k+ 1 = ( 1 + X )k · ( 1 + X) 

::::(I +kx) · (1 +x) = 1 + (k + 1)x +kx2 

:::: 1 + (k + 1)x. 

Thus, inequality ( 4) holds for n = k + 1. Therefore, ( 4) holds for all n e N. 

Exercises for Section 2.1 

1. H a, b e R, prove the following. , 
(a) H a + b = 0, then b = -a, 
(c) (-l)a =-a, 

2. Prove that if a, b e R, then 
(a) -(a+ b)= (-a)+ (-b), 
(c) 1/( -a) = -(1/a), 

(b) -(-a) =a, 
(d) (-1)(-1) = 1. 

(b) (-a)· (-b)= a· b, 
(d) -(a/b) = ( -a)/b if b :f: 0. 

0 

3. Solve the following equations, justifying each step by referring to an appropriate property or 
theorem. 
(a) 2x + S = 8, 
(c) x 2

- 1 = 3, 
(b) x2 = 2x, 
(d) (x - 1) (x + 2) = 0. 

4. If a e R satisfies a · a = a, prove that either a = 0 or a = 1. 

S. If a :f: 0 and b :f: 0, show that 1/(ab) = (1/a)(1/b). 
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--~ qse the argument in the proof of Theorem 2.1.4 to show that there does not exist a rational 
"numbers such that s2 = 6. 

7. Modify the proof of Theorem 2.1.4 to show that there does not exist a rational number t such 
that t 2 = 3. 

8. (a) Show that if x, y are rational numbers, then x + y and xy are rational numbers. 
(b) Prove that if x is a rational number and y is an irrational number, then x + y is an irrational 

number. If, in addition, x ::!= 0, then show that x y is an irrational number. 

9. Let K := {s + t~: s, t e Q}. Show that K satisfies the following: 
(a) If x 1, x2 e K, then x 1 + x2 e K and x 1 x2 e K. 
(b) If x ::!= 0 and x e K, then 1 I x e K. 
(Thus the set K is a subfield of R. With the order inherited from R, the set K is an ordered field 
that lies between Q and R.). 

10. (a) If a <band c ~ d, prove that a+ c < b +d. 
(b) If 0 < a < b and 0 ~ c ~ d, prove that 0 ~ ac ~ bd. 

11. (a) Show that if a > 0, then 1/a > 0 and 1/(1/a) =a. 
(b) Show that if a < b, then a< 4<a +b) <b. 

12. Let a, b, c, d be numbers satisfying 0 < a < b and c < d ~< 0. Give an example where ac < bd, 
and one where bd < ac. 

13. If a, b e R, show that a2 + b2 = 0 if and only if a= 0 and b = 0. 

14. If 0 ~ a < b, show that a2 ~ ab < b2
• Show by example that it does not follow that a2 < ab < 

b2. 

15. IfO <a < b, show that (a) a < ..fiib < b, and (b) 1/b < 1/a. 

16. Find all real numbers x that satisfy the following inequalities. 
(a) x 2 > 3x + 4, (b) 1 < x 2 < 4, 
(c) 1/x < x, (d) 1/x < x 2

• 

17. Prove the following form of Theorem 2.1.9: If a e R is such that 0 ~a~ e for every e > 0, 
then a= 0. 

18. Let a, b e R, and suppose that for every e > 0 we have a ~ b + e. Show that a ~ b. 

19. Prove that [!<a+ b) ]
2 ~ 4 (a 2 + b2

) for all a, be R. Show that equality holds if and only if 
a=b. 

20. (a) If 0 < c < 1, show that 0 < c2 < c < 1. 
(b) If 1 < c, show that 1 < c < c2

• 

21. (a) Prove there is non e N such that 0 < n < 1. (Use the Well-Ordering Property of N.) 
(b) Prove that no natural number can be both even and odd. 

22. (a) If c > 1, show that c" ~ c for all n eN, and that c" > c for n > 1. 
(b) If 0 < c < 1, show that c" ~ c for all n e N, and that c" < c for n > 1. 

23. If a > 0, b > 0 and n e N, show that a < b if and only if a" < b". [Hint: Use Mathematical 
Induction]. 

24. (a) If c > 1 and m, n e N, show that c"' > c" if and only if m > n. 
(b) HO < c < 1 and m, n eN, show that c"' < c" if and only ifm > n. 

25. Assuming the existence of roots, show that if c > 1, then c 1/m < c 1
'" if and only if m > n. 

26. Use Mathematical Induction to show that if a e R and m, n, eN, then am+n = ama11 and 
(am)n =am". 
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Section 2.2 Absolute Value and the Real Line 

From the Trichotomy Property 2.1.5(iii), we are assured that if a e 1R and a =F 0, then 
exactly one of the numbers a and -a is positive. The absolute value of a =F 0 is defined to 
be the positive one of these two numbers. The absolute value of 0 is defined to be 0. 

2.2.1 Definition The absolute value of a real number a, denoted by Ia I, is defined by 

I

a if a> 0, 
Ia I := 0 if a = 0, 

-a if a< 0. 

For example, 151 = 5 and 1- 81 = 8. We see from the definition that lal ~ 0 for 
all a e 1R, and that Ia I = 0 if and only if a= 0. Also I- al = Ia I for all a e 1R. Some 
additional properties are as follows. 

2.2.2 Theorem (a) lab I = lallbl for all a, b e 1R. 
(b) lal2 = a2 for all a e 1R. 
(c) lfc ~ 0, then lal ~ c if and only if -c ~a~ c. 
(d) -Ia I ~a~ Ia I for all a e 1R. 

Proof. (a) If either a orb is 0, then both sides are equal to 0. There are four other cases 
to consider. H a > 0, b > 0, then ab > 0, so that labl = ab = lallbl. If a > 0, b < 0, then 
ab < 0, so that lab I= -ab =a( -b)= lallbl. The remaining cases are treated similarly. 
(b) Since a 2 ~ 0, we have a 2 = la2 1 = laal =lalla I= lal2

• 

(c) H Ia I ~ c, then we have both a~ c and -a~ c (why?), which is equivalent to -c ~ 
a~ c. Conversely, if -c ~a~ c, then we have both a < c and -a~ c (why?), so that 
lal ~c. 
(d) Take c = Ia I in part (c). Q.E.D. 

The following important inequality will be used frequently. 

2.2.3 1iiangle Inequality If a, be 1R, then Ia + bl < Ia I+ lbl. 

Proof. From 2.2.2(d), we have -Jal ~a~ Ia I and -lbl < .b ~ lbl. On adding these 
inequalities, we obtain 

- (Ia I+ lbl> ~a+ b ~ Ia I+ lbl. 

Hence, by 2.2.2(c) we have Ia + bl ~ Ia I+ lbl. Q.E.D. 

It can be shown that equality occurs in the Triangle Inequality if and only if ab > 0, 
which is equivalent to saying that a and b have the same sign. (See Exercise 2.) 

There are many useful variations of the Triangle Inequality. Here are two. 

2.2.4 Corollary If a, b e 1R, then 

(a) Hal - lbll ~ Ia - bl, 

(b) Ia - bl ~ Ia I + lbl. 

Proof. (a) We write a= a- b +band then apply the Triangle Inequality to get Ia I= 
- l(a- b)+ bl ~ Ia- bl + lbl. Now subtract lbl to get Ia I - lbl ~ Ia- bl. Similarly, from 
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lbl = lb-a +al ~ lb -al + lal,weobtain-la -bl = -lb -al ~ lal-lbl.lfwecom
bine these two inequalities, using 2.2.2(c), we get the inequality in (a). 

(b) Replace b in the Triangle Inequality by -b to get Ia - b I ~ Ia I + I - b 1. Since I - bl = 
lbl we obtain the inequality in (b). Q.E.D. 

A straightforward application of Mathematical Induction extends the Triangle Inequal
ity to any finite number of elements of 1R. 

2.2.5 Corollary If a 1 , a.,, · · · , a are any real numbers, then 
- n 

The following examples illustrate how the properties of absolute value can be used. 

2.2.6 Examples (a) Determine the set A of x e 1R such that 12x + 31 < 7. 
From a modification of 2.2.2( c) for the case of strict inequality, we see that x e A if 

and only if -7 < 2x + 3 < 7, which is satisfied if and only if -10 < 2x < 4. Dividing by 
2, we conclude that A = {x e 1R : -5 < x < 2}. 

(b) Determine the set B := {x e JR.: lx- 11 < lxl}. 
One method is to consider cases so that the absolute value symbols can be removed. 

Here we take the cases 

(i)x::: 1, (ii) 0 ~X < 1, (iii) X < 0. 

(Why did we choose these three cases?) In case (i) the inequality becomes x - 1 < x, 
which is satisfied without further restriction. Therefore all x such that x ::: 1 belong to the 
set B. In case (ii), the inequality becomes - (x - 1) < x, which requires that x > ~. Thus, 
this case contributes all x such that ~ < x < 1 to the set B. In case (iii), the inequality 
becomes - (x - 1) < - x, which is equivalent to 1 < 0. Since this statement is false, no 
value of x from case (iii) satisfies the inequality. Forming the union of the three cases, we 
conclude that B = {x e IR: x > ~ }. 

There is a second method of determining the set B based on the fact that a < b if 
and only if a 2 < b2 when both a ::: 0 and b::: 0. (See 2.1.13(a).) Thus, the inequality 
lx - 11 < lx I is equivalent to the inequality lx - 112 < lx 12• Since Ia 12 = a2 for any a by 
2.2.2(b ), we can expand the square to obtain x 2 

- 2x + 1 < x 2
, which simplifies to x > ~. 

Thus, we again find that B = { x e JR. : x > ! } . This method of squaring can sometimes be 
used to advantage, but often a case analysis cannot be avoided when dealing with absolute 
values. 

(c) Let the function f be defined by f(x) := (2x2 + 3x + 1)/(2x- 1) for 2 ~ x ~ 3. 
Find a constant M such that If (x) I ~ M for all x satisfying 2 ~ x ~ 3. 

We consider separately the numerator and denominator of 

12x2 +3x + 11 
1/(x)l = 12x- 11 . 

From the Triangle Inequality, we obtain 

12x2 + 3x + 11 ~ 21xl2 + 31xl + 1 ~ 2 · 32 + 3 · 3 + 1 = 28 

since lx I ~ 3 for the x under consideration. Also, 12x - 11 > 21x I - 1 ~ 2 · 2 - 1 = : -
since lxl > 2 for the x under consideration. Thus, 1/12x- 11 ~ 1/3 for x ::: 2. (Why?: 
Therefore, for 2 < x ~ 3 we have 1/(x)l ~ 28/3. Hence we can take M = 28/3. (Nott 

----------------------
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that we have found one such constant M; evidently any number H > 28/3 will also satisfy 
1/(x)l ~ H. It is also possible that 28/3 is not the smallest possible choice forM.) 0 

The Real Line 

A convenient and familiar geometric interpretation of the real number system is the real 
line. In this interpretation, the absolute value Ia I of an element a in 1R is regarded as the 
distance from a to the origin 0. More generally, the distance between elements a and b in 
1R is Ia- bl. (See Figure 2.2.1.) 

We will later need precise language to discuss the notion of one real number being 
"close to" another. If a is a given real number, then saying that a real number x is "close to" a 
should mean that the distance lx - a I between them is "small". A context in which this idea 
can be discussed is provided by the terminology of neighborhoods, which we now define. 

-4 -3 -2 -1 0 
I I I 

1 
I 

2 
I 

3 
I 

~-+1• --I (-2>- C3>1 = 5 ------+~•1 

4 
I 

Figure 2.2.1 The distance between a= -2 and b = 3 

• 

2.2.7 Definition Let a e 1R and e > 0. Then thee-neighborhood of a is the set V
6
(a) := 

{x e JR: lx - a I < e}. 

For a e JR, the statement that X belongs to v£ (a) is equivalent to either of the statements 
(see Figure 2.2.2) 

-e < x- a < e <===> a- e < x <a+ e. 

a-£ a a+£ 

Figure 2.2.2 An £-neighborhood of a 

2.2.8 Theorem Let a e JR. If x belongs to the neighborhood Ve (a) for every e > 0, then 
x =a. 

Proof. If a particular x satisfies lx - a I < e for every e > 0, then it follows from 2.1.9 
that lx - a I = 0, and hence x = a. Q.E.D. 

2.2.9 Examples (a) Let U := {x : 0 < x < 1}. If a e U, then let e be the smaller of 
the two numbers a and 1- a. Then it is an exercise to show that V

6
(a) is contained in U. 

Thus each element of U has some £-neighborhood of it contained in U. 

(b) If I := {x : 0 ~ x ~ 1}, then for any e > 0, thee-neighborhood V
6
(0) of 0 contains 

points not in I, and so V
6 
(0) is not contained in I. For example, the number x

6 
:= -e /2 is 

in V
6 
(0) but not in I. 

(c) If lx- al < e and IY- bl < e, then the Triangle Inequality implies that 

l(x + y)- (a+ b)l = l(x- a)+ (y- b)l 
~ lx- al + IY- bl < 2e. 
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Thus if x, y belong to the £-neighborhoods of a, b, respectively, then x + y belongs to the 
2e-neighborhood of a+ b·(but not necessarily to thee-neighborhood of a+ b). D 

Exercises for Section 2.2 

1. If a, be Rand b :f: 0, show that: 

(a) lal = N, (b) la/bl = lal/lbl. 

2. If a, b e R, show that Ia + bl = Ia I + lbl if and only if ab ~ 0. 

3. If x, y, z e Rand x !:: z, show that x!:: y!:: zifand only if lx- yl + IY- zl = lx- zl. Inter-
pret this geometrically. 

4. Show that lx - a I < e if and only if a - e < x < a + e. 

5. If a < x < band a < y < b, show that lx - Yl < b- a. Interpret this geometrically. 

6. Find all x e R that satisfy the following inequalities: 
(a) 14x -51 !:: 13, (b) lx2 

- 11 !:: 3. 

7. Find all x e R that satisfy the equation lx + 11 + lx- 21 = 7. 

8. Find all x e R that satisfy the following inequalities. 
(a) lx- 11 > lx + 11, (b) lxl + lx + 11 < 2. 

9. Sketch the graph of the equation y = lx I - lx - 11. 

10. Find all x e R that satisfy the inequality 4 < lx + 21 + lx- 11 < 5. 

11. Find all x e R that satisfy both 12x- 31 < 5 and lx + 11 > 2 simultaneously. 

12. Determine and sketch the set of pairs (x, y) in R x R that satisfy: 
(a) lxl = lyl, (b) lxl + IYI = 1, 
(c) lxyl = 2, (d) lxl - IYI = 2. 

13. Determine and sketch the set of pairs (x, y) in R x R that satisfy: 
(a) lxl !:: lyl, (b) lxl + IYI !:: 1, 
(c) lxyl !:: 2, (d) lxl - IYI 2: 2. 

14. Let e > 0 and & > 0, and a e R. Show that V
6
(a) n V15 (a) and V

6
(a) U V15 (a) are y-neighbor

hoods of a for appropriate values of y. 

15. Show that if a, be R, and a :f: b, then there exist £-neighborhoods U of a and V of b such that 
un v =0. 

16. Show that if a, be R then 
(a) max{a, b} = 1<a + b + Ia- bl) and min{a, b} =!<a+ b -Ia- bl). 
(b) min{a, b, c} = min{min{a, b}, c}. 

17. Show that if a, b, c e R, then the "middle number" ismid{a, b, c} = min{max{a, b}, max(b, c}, 
max(c, a}}. 

Section 2.3 The Completeness Property of R 

Thus far, we have discussed the algebraic properties and the order p~perties of the real 
number system R. In this section we shall present one more property ofR that is often called 
the "Completeness Property". The system Q of rational numbers also has the algebraic and 
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order properties described in the preceding sections, but we have seen that v'2 cannot be 
represented as a rational number; therefore v'2 does not belong to Q. This observation 
shows the necessity of an additional property to characterize the real number system. This 
additional property, the Completeness (or the Supremum) Property, is an essential property 
of IR, and we will say that IR is a complete ordered field. It is this special property that 
permits us to define and develop the various limiting procedures that will be discussed in 
the chapters that follow. 

There are several different ways to describe the Completeness Property. We choose to 
give what is probably the most efficient approach by assuming that each nonempty bounded 
subset of IR has a supremum. 

Suprema and Infima ----------------------

We now introduce the notions of upper bound and lower bound for a set of real numbers. 
These ideas will be of utmost importance in later sections. 

2.3.1 Definition Let S be a nonempty subset of IR. 

(a) The setS is said to be bounded above if there exists a number u e IR such that s ~ u 
for all s e S. Each such number u is called an upper bound of S. 

(b) The set S is said to be bounded below if there exists a number w e IR such that w ~ s 
for all s e S. Each such number w is called a lower bound of S. 

(c) A set is said to be bounded if it is both bounded above and bounded below. A set is 
said to be unbounded if it is not bounded. 

For example, the setS:= {x e IR: x < 2} is bounded above; the number 2 and any 
number larger than 2 is an upper bound of S. This set has no lower bounds, so that the set 
is not bounded below. Thus it is unbounded (even though it is bounded above). 

If a set has one upper bound, then it has infinitely many upper bounds, because if u 
is an upper bound of S, then the numbers u + 1, u + 2, · · · are also upper bounds of S. 
(A similar observation is valid for lower bounds.) 

In the set of upper bounds of S and the set of lower bounds of S, we single out their 
least and greatest elements, respectively, for special attention in the following definition. 
(See Figure 2.3.1.) 

~ \.. v 
lower bounds of S upper bounds of S 

Figure 2.3.1 inf S and sup S 

2.3.2 Definition Let S be a nonempty subset of IR. 

(a) If Sis bounded above, then a number u is said to be a supremum (or a least upper 
bound) of S if it satisfies the conditions: 

~ 

(1) u is an upper bound of S, and 

(2) if v is any upper bound of S, then u ~ v. 
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(b) If S is bounded below, then a number w is said to be an infimum (or a greatest lower 
bound) of S if it satisfies the conditions: 

(1') w is a lower hound of S, and 

(2') if t is any lower bound of S, then t ~ w. 

It is not difficult to see that there can be only one supremum of a given subset S of R. 
(Then we can refer to the supremum of a set instead of a supremum.) For, suppose that 
u 1 and u2 are both suprema of S. If u1 < u2, then the hypothesis that u2 is a supremum 
implies that u·1 cannot be an upper bound of S. Similarly~ we see that u2 < u 1 is not 
possible. Therefore, we must have u 1 = u2 • A similar argument can be given to show that 
the infimum of a set is uniquely determined. · 

If the supremum or the in·fimum of a set S exists, we will denote them by 

supS and inf S. 

We also observe that if u' is an arbitrary upper bound of a nonempty set S, then sup S ~ u'. 
This is because sup S is the least of the upper bounds of S. 

First of all, it needs to be emphasiz~d that in order for a nonempty set S in R to have 
a supremum, it must have an upper bound. Thus, not every subset of R has a supremum; 
similarly, not every subset of IR has an infimum. Indeed, there are four possibilities for a 
nonempty subset S of IR: it can 

(i) have both a supremum and an infimum, 
(ii) have a supremum but no infimum, 
(iii) have a infimum but no supremum, 
(iv) have neither a supremum nor an infimum. 

We also wish to stress that in order to show that u = supS for some nonempty subset S 
ofiR, we need to show that both (1) and (2) of Definition 2.3.2(a) hold. It will be instructive 
to reformulate these statements. First the reader should see that the following two statements 
about a number u and a set S are equivalent: 

(1) u is an upper bound of S, 
( 1 ') s ~ u for all s e S. 

Also, the following statements about an upper bound u of a set S are equivalent: 

(2) if vis any upper bound of S, then u ~ v, 
(2') if z < u, then z is not an upper bound of S, 
(2") if z < u, then there exists sz e S such that z < sz, 
(2"') if e > 0, then there ~xists s 

6 
· e S such that u - £ < s 

6
• 

Therefore, we can state two alternate formulations for the. supremum. 

2.3.3 Lemma A number u is the supremum of a nonempty subset S of R if and only i1 
u satisfies the conditions: 

(1) s ~ u for all s e S, 
(2) ifv < u, then there exists s' e S such tbat v < s'. 

We leave it to the reader to write out the details of the proof. , 

2.3.4 Lemma An upper bound u of a nonempty set S in R is the supremum of S if an, 
only if for evezy £ > 0 there exists an s 

6 
e S such that u - £ < s 

6
• 
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Proof. If u is an upper bound of S that satisfies the stated condition and if v < u, then we 
puts:= u- v. Then s > 0, so there exists se e S such that v =u-s < se. Therefore, v 
is not an upper bound of S, and we conclude that u = supS. 

Conversely, suppose that u =supS and lets> 0. Since u-s< u, then u-s is not 
an upper bound of S. Therefore, some element s e of S must be greater than u - s; that is, 
u - s < s

8
• (See Figure 2.3.2.) Q.E.D. 

u-£ Se u ·- t I - I 

"V" 
..) 

s 

Figure 2.3.2 u = supS 

It is important to realize that the supremum of a set may or may not be an element 
of the set. Sometimes it is and sometimes it is not, depending on the particular set. We 
consider a few examples. 

2.3.5 Examples (a) If a nonempty set S1 has a finite number of elements, then it can 
be shown that S1 has a largest element u and a least element w. Then u =sup S1 and 
w = inf S1, and they are both members of S1• (This is clear if S1 has only one element, and 
it can be proved by induction on the number of elements in S1; see Exercises 11 and 12.) 

(b) The set s2 := {x : 0 ~X ~ 1} clearly has 1 for an upper bound: We prove that 1 is 
its supremum as follows. If v < 1, there exists an element s' e S2 such that v < s'. (Name 
one such elements'.) Therefore vis not an upper bound of S2 and, since vis an arbitrary 
number v < I, we conclude that sup S2 = 1. It is similarly shown that inf S2 = 0. Note that 
both the supremum and the infimum of s2 are contained in s2. 
(c) The set S3 := {x : 0 < x < I} clearly has I for an upper bound. Using the same 
argument as given in (b), we see that sup S3 = I. In this case, the set S3 does not contain 
its supremum. Similarly, inf S3 = 0 is not contained in S3• D 

The Completeness Property of R 

It is not possible to prove on the basis of the field and order properties of 1R that were 
discussed in Section 2.1 that every nonempty subset of R that is bounded above has a 
supremum in R. However, it is a deep and fundamental property of the real number system 
that this is indeed the case. We will make frequent and essential use of this property, 
especially in our discussion of limiting processes. The following statement concerning the 
existence .of suprema is our final assumption about R. Thus, we say that 1R is a complete 
ordered field. 

2.3.6 The Completeness Property of R Every nonempty set of real numbers that has 
an upper bound also has a supremum in R. 

This property is also called the Supremum Property of R. The analogous property 
for infima can be deduced from the Completeness Property as follows. Suppose that S is 
a nonempty subset of R that is bounded below. Then the nonempty set S := { -s : s e S} 
is bounded above, ·and the Supremum Property implies that u := supS exists in R. The 
reader should verify in detail that -u is the infimum of S. 
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Exercises for Section 2.3 

1. Let S1 := {x e 1R : x ~ 0}. Show in detail that the set S 1 has lower bounds, but no upper bounds. 
Show that inf S 1 = 0. 

2. Let S2 ={X E JR: X> 0}. Does S2 have lower bounds? Does S2 have upper bounds? Does 
inf s2 exist? Does sup s2 exist? Prove your statements. 

3. Let s3 = { 1 In : n e N}. Show that sup s3 = 1 and inf s3 ~ 0. (It will follow from the Archi-
medean Property in Section 2.4 that inf S3 = 0.) 

4. Let S4 := {1- (-1)11 In: n eN}. Find inf S4 and supS4 • 

5. LetS be a nonempty subset of:R that is bounded below. Prove that inf S =- sup{-s: s e S}. 

6. If a set S ~ 1R contains one of its upper bounds, show that this upper bound is the supremum of 
s. 

7. Let S ~ 1R be nonempty. Show that u e R is an upper bound of S if and only if the conditions 
t e 1R and t > u imply that t ¢ S. 

8. Let S ~ 1R be nonempty. Show that if u = sup S, then for every number n e N the number 
u - 1 In is not an upper bound of S, but the number u + 1 In is an upper bound of S. (The 
converse is also true; see Exercise 2.4.3.) 

9. Show that if A and B are bounded subsets of R, then A U B is a bounded set. Show that 
sup(A U B)= sup{supA, sup B}. 

10. Let S be a bounded set in 1R and let S0 be a nonempty subset of S. Show that inf S !S inf S0 !S 
sup S0 !S supS. 

11. Let S ~ 1R and suppose that s* :=supS belongs to S. If u ~ S, show that sup(S U {u}) = 
sup{s*, u}. 

12. Show that a nonempty finite setS~ R contains its supremum. [Hint: Use Mathematical Induc-
tion and the preceding exercise.] 

13. Show that the assertions (1) and (1') before Lemma 2.3.3 are equivalent. 

14. Show that the assertions (2), (2'), (2"), and (2"') before Lemma 2.3.3 are equivalent. 

15. Write out the details of the proof of Lemma 2.3.3. 

Section 2.4 Applications of the Supremum Property 

We will now discuss how to work with suprema and infima. We will also give some very 
important applications of these concepts to derive fundamental properties of 1R. We begin 
with examples that illustrate useful techniques in applying the ideas of supremum and 
infimum. 

2.4.1 Example (a) It is an important fact that taking suprema and infima of sets is com
patible with the algebraic properties of 1R. As an example, we present here the compatibility 
of taking suprema and addition. 

Let S be a nonempty subset of 1R that is bounded above, and let a be any number in 
1R. Define the set a+ S :={a+ s: s e S}. We will prove that 

sup(a + S) =a+ supS. 
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Ifweletu := supS,thenx ,::s uforallx e S,sothata +x <a +u. Therefore,a +u 
is an upper bound for the set a+ S; consequently, we have sup( a+ S) ,::sa+ u. 

Now if vis any upper bound of the set a+ S, then a+ x ,::s v for all xeS. Con
sequently x ,::s v - a for all x e S, so that v - a is an upper bound of S. Therefore, 
u = sup S .::S v - a, which gives us a + u ,::s v. Since v is any upper bound of a + S, 
we can replace v by sup(a + S) to get a+ u ,::s sup(a + S). 

Combining these inequalities, we conclude that 

sup(a + S) =a+ u =a+ supS. 

For similar relationships between the suprema and infima of sets and the operations of 
addition and multiplication, see the exercises. 

(b) If the suprema or infima of two sets are involved, it is often necessary to establish 
results in two stages, working with one set at a time. Here is an example. 

Suppose that A and B are nonempty subsets of R that satisfy the property: 

a_::sb for all a e A and all b e B. 

We will prove that 

sup A ,::s inf B. 

For, given b e B, we have a ,::s b for all a e A. This means that b is an upper bound of A, so 
that sup A ,::s b. Next, since the last inequality holds for all b e B, we see that the number 
sup A is a lower bound for the set B. Therefore, we conclude that sup A ,::s inf B. D 

Functions 

The idea of upper bound and lower bound is applied to functions by considering the 
range of a function. Given a function f : D ~ R, we say that f is bounded above if 
the set /(D) = {f(x) : x e D} is bounded above in R; that is, there exists B e R such 
that f(x) ,::s B for all x e D. Similarly, the function f is bounded below if the set /(D) 
is bounded below. We say that f is bounded if it is bounded above and below; this is 
equivalent to saying that there exists B e R such that If (x) I ,::s B for all x e D. 

The following example illustrates how to work with suprema and infima of functions. 

2.4.2 Example Suppose that f and g are real-valued functions with common domain 
D c R. We assume that f and g are bounded. 

(a) H f(x) ,::s g(x) for all x e D, then sup /(D) ,::s sup g(D), which is sometimes written: 

sup f(x) .::S sup g(x). 
xeD xeD 

We first note that f(x) ,::s g(x) ,::s sup g(D), which implies that the number sup g(D) 
is an upper bound for f (D). Therefore, sup f (D) < sup g(D). 

(b) We note that the hypothesis f(x) ,::s g(x) for all x e Din part (a) does not imply any 
relation between sup /(D) and inf g(D). 

For example, if f(x) := x2 and g(x) := x with D = {x : 0 =s x < 1}, then f(x) =s 
g(x)forallx e D. However, weseethatsupf(D) = 1 andinf g(D) = O.Sincesupg(D) = 
1, the conclusion of (a) holds. 
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(c) H f(x) ~ g(y) for all x, y e D, then we may conclude that sup /(D)~ inf g(D), 
which we may write as: 

sup /(x) ~ inf g(y). 
xeD yeD 

(Note that the functions in (b) do not satisfy this hypothesis.) 
The proof proceeds in two stages as in Example 2.4.1 (b). The reader should write out 

the details of the argument. D 

Further relationships between suprema and infima of functions are given in the exer
cises. 

The An:himedean Property -----------------

Because of your familiarity with the set R and the customary picture of the real line, it may 
seem obvious that the set N of natural numbers is not bounded in R. How can we prove this 
"obvious" fact? In fact, we cannot do so by using only the Algebraic and Order Properties 
given in Section 2.1. Indeed, we must use the Completeness Property of R as well as the 
Inductive Property of N (that is, if n e N, then n + 1 e N). 

The absence of upper bounds for N means that given any real number x there exists a 
natural number n (depending on x) such that x < n. 

2.4.3 An:himedean Property H x e R, then there exists n x e N such that x < n x. 

Proof. H the assertion is false, then n ~ x for all n e N; therefore, x is an upper bound of 
N. Therefore, by the Completeness Property, the nonempty set N has a supremum u e R. 
Subtracting 1 from u gives a number u- 1 which is smaller than the supremum u of N. 
Therefore u - 1 is not an upper bound of N, so there exists m e N with u - 1 < m. Adding 
1 gives u < m + 1, and since m + 1 eN, this inequality contradicts the fact that u is an 
upper bound of N. Q.E.D. 

2.4.4 Coronary If S := {11n : n eN}, then inf S = 0. 

Proof. Since S '# 0 is bounded below by 0, it has an infimum and we let w := inf S. It is 
clear that w 2:::: 0. For any e > 0, the Archimedean Property implies that there exists n e N 
such that 1 I e < n, which implies 11 n < e. Therefore we have 

0 < w ~ 11n <e. 

But since e > 0 is arbitrary, it follows from Theorem 2.1.9 that w = 0. Q.E.D. 

2.4.5 Coronary Ht > 0, there exists n, eN such thatO < 11n, < t. 

Proof. Since inf { 1 In : n e N} = 0 and t > 0, then t is not a lower bound for the set 
{11n : n eN}. Thus there exists n, eN such that 0 < 1/n, < t. Q.E.D. 

2.4.6 CoroUary Hy > 0, there exists n
1 

eN such that n
1

- 1 < y < n
1

• 
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Proof. The Archimedean Property ensures that the subset EY :={meN: y < m} of N 
is not empty. By the Well-Ordering Property 1.2.1, E Y has a least element, which we denote 
by ny. Then ny- 1 does not belong to EY, and hence we have ny- 1 ~ y < ny. Q.E.D. 

Collectively, the Corollaries 2.4.4-2.4.6 are sometimes referred to as the Archimedean 
Property of R. 

TheE~~nceof~ ----------------------------------------------------------------

The importance of the Supremum Property lies in the fact that it guarantees the existence of 
real numbers under certain hypotheses. We shall make use of it in this way many times. At 
the moment, we shall illustrate this use by proving the existence of a positive real number 
x such that x 2 = 2; that is, the positive square root of 2. It was shown earlier (see Theorem 
2.1.4) that such an x cannot be a rational number; thus, we will be deriving the existence 
of at least one irrational number. 

2.4. 7 Theorem There exists a positive real number x such that x 2 = 2. 

Proof. Let S := {s e R: 0 ~ s, s2 < 2}. Since 1 e S, the set is not empty. Also, S is 
bounded above by 2, because if t > 2, then t 2 > 4 so that t ' S. Therefore the Supremum 
Property implies that the set S has a supremum in R, and we let x :=supS. Note that 
X> 1. 

We will prove that x 2 = 2 by ruling out the other two possibilities: x 2 < 2 and x 2 > 2. 
First assume that x 2 < 2. We will show that this assumption contradicts the fact that 

x = sup S by finding an n e N such that x + 1 In e S, thus implying that x is not an upper 
bound for S. To see how to choose n, note that 1 In 2 ~ 1 In so that 

( x + !)2 

= x2 + 2x + ~ ~ x2 +.!. (2x + 1). 
n n n n 

Hence if we can choose n so that 

!(2x+1)<2-x2
, 

n 

then we get (x + 1 In )2 < x 2 + (2 - x 2
) = 2. By assumption we have 2 - x 2 > 0, so that 

(2- x 2 )1(2x + 1) > 0. Hence the Archimedean Property (Corollary 2.4.5) can be used to 
obtain n e N such that 

1 2 -x2 

- < . 
n 2x + 1 

These steps can be reversed to show that for this choice of n we have x + 1 In e S, which 
contradicts the fact that x is an upper bound of S. Therefore we cannot have x 2 < 2. 

Now assume that x 2 > 2. We will show that it is then possible to find m e N such that 
x - 11m is also an upper bound of S, contradicting the fact that x = sup S. To do this, note 
that 

(
x - 2.)2 = x2 - 2x + _1_ > x2 - 2x. 

m m m2 m 

Hence if we can choose m so that 

2x 2 
-<X -2, 
m 

\ 
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then (x - 1 I m )2 > x 2 
- (x 2 

- 2) = 2. Now by assumption we have x 2 
- 2 > 0, so that 

(x2 - 2)12x > 0. Hence, by the Archimedean Property, there exists meN such that 

1 x 2
- 2 

m < 2x . 

These steps can be reversed to show that for this choice of m we have (x - 11m )2 > 2. Now 
if s e S, then s2 < 2 < (x- 11m)2, whence it follows from 2.1.13(a) that s < x- 11m. 
This implies that x - 1 I m is an upper bound for S, which contradicts the fact that x = sup S. 
Therefore we cannot have x 2 > 2. 

Since the possibilities x 2 < 2 and x 2 > 2 have been excluded, we must have x 2 = 2. 
Q.E.D. 

By slightly modifying the preceding argument, the reader can show that if a > 0, then 
there is a unique b > 0 such that b2 = a. We call b the positive square root of a and denote 
it by b = Ja or b = a 112

• A slightly more complicated argument involving the binomial 
theorem can be formulated to establish the existence of a unique positive nth root of a, 
denoted by~ or a 1'", for each n e N. 

Remark If in the proof of Theorem 2.4.7 we replace the set S by the set of rational 
numbers T := {r e Q: 0 ~ r, r2 < 2}, the argument then gives the conclusion that y := 
sup T satisfies y2 = 2. Since we have seen in Theorem 2.1.4 that y cannot be a rational 
number, it follows that the set T that consists of rational numbers does not have a supremum 
belonging to the set Q. Thus the ordered field Q of rational numbers does not possess the 
Completeness Property. 

Density of Rational Numbers in 1R ----------------

We now know that there exists at least one irrational real number, namely ~- Actually 
there are "more" irrational numbers than rational numbers in the sense that the set of 
rational numbers is countable (as shown in Section 1.3), while the set of irrational numbers 
is uncountable (see Section 2.5). However, we next show that in spite of this apparent 
disparity, the set of rational numbers is "dense" in 1R in the sense that given any two real 
numbers there is a rational number between them (in fact, there are infinitely many such 
rational numbers). 

2.4.8 The Density Theorem H x and y are any real numbers with x < y, then there 
exists a rational number r e Q such that x < r < y. 

Proof. It is no loss of generality (why?) to assume that x > 0. Since y- x > 0, it 
follows from Corollary 2.4.5 that there exists n e N such that 1 In < y - x. Therefore, 
we have nx + 1 < ny. H we apply Corollary 2.4.6 to nx > 0, we obtain meN with 
m - 1 < nx < m. Therefore, m ~ nx + 1 < ny, whence nx < m < ny. Thus, the rational 
number r : = mIn satisfies x < r < y. Q.E.D. 

To round out the discussion of the interlacing of rational and irrational numbers, we 
have the same "betweenness property" for the set of irrational numbers. 

2.4.9 Corollary H x and y are real numbers with x < y, then there exists an irrational 
number z such that x < z < y. 



2.4 APPLICATIONS OF THE SUPREMUM PROPERTY 43 

Proof. If we apply the Density Theorem 2.4.8 to the real numbers xI -/2 and y 1-/2, we 
obtain a rational number r ¢ 0 (why?) such that 

X y 
-/2 < r < -/2. 

Then z := r-/2 is irrational (why?) and satisfies x < z < y. Q.E.D. 

Exercises for Section 2.4 

1. Show that sup{l- 1/n: n eN}= 1. 

2. If S := {1/n- 1/m: n, meN}, find inf Sand supS. 

3. Let S ~ R be nonempty. Prove that if a number u in R has the properties: (i) for every n e N 
the number u - 1 In is not an upper bound of S, and (ii) for every number n e N the number 
u + 1/n is an upper bound of S, then u =supS. (This is the converse of Exercise 2.3.8.) 

4. Let S be a nonempty bounded set in 1R. 
(a) Let a > 0, and let aS:= {as: s e S}. Prove that 

inf(aS) =a inf S, sup(aS) =a supS. 

(b) Let b < 0 and let bS = {bs: s e S}. Prove that 

inf(bS) = b supS, sup(bS) = b inf S. 

5. Let X be a nonempty set and let I: X ~ 1R have bounded range in 1R. If a e R, show that 
Example 2.4.1(a) implies that 

sup{a + l(x): x e X} =a+ sup{l(x): x e X} 

Show that we also have 

inf{a + l(x): x e X} =a+ inf{l(x): x e X} 

6. Let A and B be bounded nonempty subsets of R, and let A+ B :={a+ b: a e A, be B}. 
Prove that sup(A + B) = sup A + sup B and inf(A + B) = inf A + inf B. 

7. Let X be a nonempty set, and let I and g be defined on X and have bounded ranges in R. Show 
that 

sup{l(x) + g(x): x e X} =::: sup{l(x) : x e X}+ sup{g(x) : x e X} 

and that 

inf{l(x) : x e X} + inf{g(x) : x e X} =::: inf{/(x) + g(x) : x e X}. 

Give examples to show that each of these inequalities can be either equalities or strict inequalities. 

8. Let X = Y := {x e R: 0 < x < 1}. Define h: X x Y ~ R by h(x, y) := 2x + y. 
(a) For each x e X, find l(x) := sup{h(x, y): y e Y}; then find inf{/(x): x e X}. 
(b) For each y e Y, find g(y) := inf{h(x, y): x eX}; then find sup{g(y): y e Y}. Compare 

with the result found in part (a). 

9. Perform the computations in (a) and (b) of the preceding exercise for the function h: X x Y ~ R 
defined by 

h(x, y) := ~~ ifx :< y, 
if X~ J. 

10. Let X andY be nonempty sets and let h : X x Y ~ R have bounded range in R. Let f : X ~ R 
and g : Y ~ R be defined by 

f(x) := sup{h(x, y) : y e Y}, g(y) := inf{h(x, y): x eX}. 
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Prove that 

sup{g(y) : y e f} !5 inf{/(x) : x e X} 

We sometimes express this by writing 

supinf h(x, y) !5 infsuph(x, y). 
y z z y 

Note that Exercises 8 and 9 show that the inequality may be either an equality or a strict 
inequality. 

11. Let X and Y be nonempty sets and let h : X x Y ~ R have bounded range in 1R. Let F: X ~ R 
and G : Y ~ 1R be defined by 

F(x) := sup{h(x, y): y e f}, G(y) := sup{h(x, y): x eX}. 

Establish the Principle of the Iterated Suprema: 

sup{h(x, y): x eX, y e f} = sup{F(x): x eX}= sup{G(y): y e Y} 

We sometimes express this in symbols by 

suph(x, y) = supsuph(x, y) = supsuph(x, y). 
z,y z y y z 

12. Given any x e 1R, show that there exists a unique n e Z such that n - 1 !5 x < n. 

13. H y > 0, show that there exists n eN such that 1/2" < y. 

14. Modify the argument in Theorem 2.4.7 to show that there exists a positive real number y such 
that y2 = 3. 

15. Modify the argument in Theorem 2.4.7 to show that if a> 0, then there exists a positive real 
number z such that i- = a. 

16. Modify the argument in Theorem 2.4. 7 to show that there exists a positive real number u such 
that u3 = 2. 

17. Complete the proof of the Density Theorem 2.4.8 by removing the assumption that x > 0. 

18. H u > 0 is any real number and x < y, show that there exists a rational number r such that 
x < ru < y. (Hence the set {ru: r e Q} is dense in R.) 

Section 2.5 Intervals 

The Order Relation on :R determines a natural collection of subsets called "intervals". The 
notations and terminology for these special sets will be familiar from earlier courses. H 
a, b e :R satisfy a < b, then the open intenal determined by a and b is the set 

(a, b) := {x e :R : a < x < b}. 

The points a and b are called the endpoints of the interval; however, the endpoints are not 
included in an open interval. If both endpoints are adjoined to this open interval, then we 
obtain the closed intenal determined by a and b; namely, the set 

[a, b] := {x e R : a ~ x ~ b}. 

The two half-open (or half-closed) intervals determined by a and b are [a, b), which 
includes the endpoint a, and (a, b], which includes the endpoint b. 

Each of these four intervals is bounded and has length defined by b - a. If a = b, the 
corresponding open interval is the empty set (a, a)= llJ, whereas the corresponding closed 
interval is the singleton set [a, a] = {a}. 
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There are five types of unbounded intervals for which the symbols oo (or +oo) and -oo 
are used as notational convenience in place of the endpoints. The infinite open intervals 
are the sets of the form 

(a, oo) := {x e 1R: x >a} and ( -oo, b) := {x e R : x < b}. 

The first set has no upper bounds and the second one has no lower bounds. Adjoining 
endpoints gives us the infinite closed intervals: 

[a, oo) := {x e 1R: a ~ x} and (-oo,b] := {x e R: x ~ b}. 

It is often convenient to think of the entire set 1R as an infinite interval; in this case, we write 
( -oo, oo) := R. No point is an endpoint of ( -oo, oo). 

Warning It must be emphasized that oo and -oo are not elements of 1R, but only conve
nient symbols. 

Ch~cte~tionofiDtervals ---------------------------------------------------------------------

An obvious property of intervals is that if two points x, y with x < y belong to an interval I, 
then any point lying between them ~so belongs to I. That is, if x < t < y, then the point t 
belongs to the same interval as x and y. In other words, if x and y belong to an interval I, 
then the interval [x, y] is contained in I. We now show that a subset of R possessing this 
property must be an interval. 

2.5.1 Ch~cterization Theorem If S is a subset of R that contains at least two points 
and has the property 

(I) if x, y e S and x < y, then [x, y] c S, 

then S is an interval. 

Proof. There are four cases to consider: (i) Sis bounded, (ii) Sis bounded above but 
not below, (iii) Sis bounded below but not above, and (iv) Sis neither bounded above nor 
below. 

Case (i): Let a := inf S and b :=supS. Then S c [a, b] and we will show that 
(a, b) c S. 

If a < z < b, then z is not a lower bound of S, so there exists x e S with x < z. Also, 
z is not an upper bound of S, so there exists yeS with z < y. Therefore z e [x, y], so 
property (1) implies that z e S. Since z is an arbitrary element of (a, b), we conclude that 
(a, b) c S. 

Now if a e Sand be S, then S =[a, b]. (Why?) If a¢ Sand b ¢ S, then S =(a, b). 
The other possibilities lead to either S = (a, b] or S = [a, b). 

Case (ii): Let b := supS. Then S c ( -oo, b] and we will show that ( -oo, b) c S. For, 
ifz < b,thenthereexistx, y e Ssuchthatz e [x, y] c S.(Why?)Therefore(-oo, b) c S. 
If be S, then S = ( -oo, b], and if b ¢ S, then S = ( -oo, b). 

Cases (iii) and (iv) are left as exercises. Q.E.D. 

Nested IDtervals ------------------------

We say that a sequence of intervals 1,., n eN, is nested if the following chain of inclusions 
holds (see Figure 2.5.1): 

II -:;) 12 ';) . • • -:;) I -:;) I I -:;) . . . - - - ,. - n+ -
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2.5.3 Theorem HI" := [a
11

, b
11

], n eN, isanestedsequenceofclosed, bounded intervals 
such that the lengths b" - a11 of I" satisfy 

inf{b11 -a" : n e N} = 0, 

then the number~ contained in I, for all n e N is unique. 

Proof. H 'I := inf{b
11 

: n eN}, then an argument similar to the proof of2.5.2 can be used 
to show that a

11 
~ 'I for all n, and hence that~ ~ 'I· In fact, it is an exercise (see Exercise 

10) to show that x e I" for all n e N if and only if~ ~ x < 'I· H we have inf{b
11 
-a, : n e 

N} = 0, then for any e > 0, there exists an me N such that 0 ~ TJ- ~ ~ bm- am <e. 
Since this holds for all e > 0, it follows from Theorem 2.1.9 that 'I - ~ = 0. Therefore, we 
conclude that~ ='I is the only point that belongs to I" for every n eN. Q.E.D. 

The UncountabUity of R 

The concept of a countable set was discussed in Section 1.3 and the countability of the set 
Q of rational numbers was established there. We will now use the Nested Interval Property 
to prove that the set R is an uncountable set. The proof was given by Georg Cantor in 
187 4 in the first of his papers on infinite sets. He later published a proof that used decimal 
representations of real numbers, and that proof will be given later in this section. 

2.5.4 Theorem The set R of real numbers is not countable. 

Proof. We will prove that the unit interval/ := [0, 1] is an uncountable set. This implies 
that the set R is an uncountable set, for if R were countable, then the subset I would also 
be countable. (See Theorem 1.3.9(a).) 

The proof is by contradiction. If we assume that I is countable, then we can enumerate 
the set as I = {x1, x2, • • ·, x,, · · ·}. We first select a closed subinterval / 1 of I such that 
x 1 ¢ / 1, then select a closed subinterval/2 of / 1 such that x2 ¢ /2 , and so on. In this way, 
we obtain nonempty closed intervals 

I ~12 ~···~1 ~-·· 1-- -n-

SUCh that I" c I and x, ¢ /
11 

for all n. The Nested Intervals Property 2.5.2 implies that 
there exists a point~ e I such that~ e I" for all n . . Therefore~ :f= x" for all n eN, so the 
enumeration of I is not a complete listing of the elements of I, as claimed. Hence, I is an 
uncountable set. · · Q.E.D. 

The fact that the set R of real numbers is uncountable can be combined with the fact 
that the set Q of rational numbers is countable to conclude that the set R\ Q of irrational 
numbers is uncountable. Indeed, since the union of two countable sets is countable (see 
1.3.7(c)), if R\Q is countable, then since R = Q U (R\Q), we conclude that R is also a 
countable set, which is a contradiction. Therefore, the set of irrational numbers R\ Q is an 
uncountable set. 

tstnary Representations --------------------

We will digress briefly to discuss informally the binary (and decimal) representations of real 
numbers. It will suffice to consider real numbers between 0 and 1, since the representations 
for other real numbers can then be obtained by adding a positive or negative number. 

tThe remainder of this section can be omitted on a first reading. 
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If x e [0, 1], we will use a repeated bisection procedure to associate a sequence (an) of 
Os and ls as follows. If x ::f: ! belongs to the left subinterval [0, !] we take a1 := 0, while 
if x belongs to the right subinterval [!, 1] we take a1 = 1. If x = ! , then we may take a1 
to be either 0 or 1. In any case, we have 

a1 a1 + 1 
-<x<--=--2- - 2 

We now bisect the interval [!a 1 , ! (a 1 + 1)]. If x is not the bisection point and belongs 
to the left subinterval we take a2 := 0, and if x belongs to the right subinterval we take 
a2 := 1. If x = ~ or x = l, we can take a2 to be either 0 or 1. In any case, we have 

a1 a2 a 1 a2 + 1 
2 + 22 ~ X ~ 2 + 22 • 

We continue this bisection procedure, assigning at the nth stage the value an := 0 if x is not 
the bisection point and lies in the left subinterval, and assigning the value an := 1 if x lies 
in the right subinterval. In this way we obtain a sequence (an) of Os or 1s that correspond 
to a nested sequence of intervals containing the point x. For each n, we have the inequality 

a 1 a2 an a 1 a2 an + 1 
(2) 2 + 22 + ... + 2n ~ ~ ~ 2 + 22 + ... + 2n . 

If x is the bisection point at the nth stage, then x = m 12n with m odd. In this case, we may 
choose either the left or the right subinterval; however, once this subinterval is chosen, then 
all subsequent subintervals in the bisection procedure are determined. [For instance, if we 
choose the left subinterval so that an = 0, then x is the right endpoint of all subsequent 
subintervals, and hence ale = 1 for all k ~ n + 1. On the other hand, if we choose the right 
subinterval so that an = 1, then x is the left endpoint of all subsequent subintervals, and 
hence ale = 0 for all k ~ n + 1. For example, if x = l, then the two possible sequences for 
x are I, 0, 1, 1, 1, · · · and 1, 1, 0, 0, 0, · · · . ] 

To summarize: If x e [0, 1], then there exists a sequence (an) ofOs and Is such that 
inequality (2) holds for all n e N. In this case we write 

(3) 

and call (3) a binary representation of x. This representation is unique except when 
x = m 12n for m odd, in which case x has the two representations 

X = (.a1a2 • • • an_11000 · · ·)2 = (.a1a2 • • • an_10111 • · ·)2, 

one ending in Os and the other ending in 1 s. 
Conversely, each sequence of Os and ls is the binary representation of a unique real 

number in [0, 1]. The inequality corresponding to (2) determines a closed interval with 
length 1 /2n and the sequence of these intervals is nested. Therefore, Theorem 2.5.3 implies 
that there exists a unique real number x satisfying (2) for every n e N. Consequently, x has 
the binary representation (.a1a2 ···an·· ·)2• 

Remark The concept of binary representation is extremely important in this era of digital 
computers. A number is entered in a digital computer on "bits", and each bit can be put in 
one of two states-either it will pass current or it will not. These two states correspond to 
the values 1 and 0, respectively. Thus, the binary rep~sentation of .a number can be stored 
in a digital computer on a string of bits. Of co~, in actual practice, since only finitely 
many bits can be stored, the binary representations must be truncated. If n binary digits 
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are used for a number x e [0, 1], then the accuracy is at most 112n. For example, to assure 
four-decimal accuracy, it is necessary to use at least 15 binary digits (or 15 bits). 

Decimal Representations 

Decimal representations of real numbers are similar to binary representations, except that 
we subdivide intervals into ten equal subintervals instead of two. 

Thus, givenx e [0, 1], if we subdivide [0, 1] into ten equal subintervals, thenx belongs 
to a subinterval [b 1110, (b1 + 1)110] for some integer b1 in {0, 1, · · ·, 9}. Proceeding as in 
the binary case, we obtain a sequence (bn) of integers with 0 ~ bn ~ 9 for all n eN such 
that x satisfies 

(4) 

In this case we say that x has a decimal representation given by 

X = .b1 b2 • • • bn · · ·. 

If x ~ 1 and if BeN is such that B ~ x < B + 1, then x = B.b1b2 • • ·bn ···where the 
decimal representation of x - B e [0, 1] is as above. Negative numbers are treated similarly. 

The fact that each decimal determines a unique real number follows from Theorem 
2.5.3, since each decimal specifies a nested sequence of intervals with lengths 1110". 

The decimal representation of x e [0, 1] is unique except when x is a subdivision 
point at some stage, which can be seen to occur when x = m I 1 0" for some m, n e N, 1 ~ 
m ~ 10". (We may also assume that m is not divisible by 10.) When x is a subdivision 
point at the nth stage, one choice for b n corresponds to selecting the left subinterval, which 
causes all subsequent digits to be 9, and the other choice corresponds to selecting the 
right subinterval, which causes all subsequent digits to be 0. [For example, if x = ! then 
x = .4999 · · · = .5000 ···,and if y = 381100 then y = .37999 · · · = .38000 · · · .] 

PeriodicDecim~ -------------------------------------------------

A decimal B .b 1 b2 • • • b n · · · is said to be periodic (or to be repeating), if there exist k, n e N 
such that bn = bn+m for all n ~ k. In this case, the block of digits bkbk+l · · · bk+m-l is 
repeated once the kth digit is reached. The smallest number m with this property is called 
the period of the decimal. For example, 19188 = .2159090 · · · 90 · · · has period m = 2 
with repeating block 90 starting at k = 4. A terminating decimal is a periodic decimal 
where the repeated block is simply the digit 0. 

We will give an informal proof of the assertion: A positive real number is rational if 
and only if its decimal representation is periodic. 

For, suppose that x = pI q where p, q e N have no common integer factors. For 
convenience we will also suppose that 0 < p < q. We note that the process of "long 
division" of q into p gives the decimal representation of pI q. Each step in the division 
process produces a remainder that is an integer from 0 to q - 1. Therefore, after at most q 
steps, some remainder will occur a second time and, at that point, the digits in the quotient 
will begin to repeat themselves in cycles. Hence, the decimal representation of such a 
rational number is periodic. 

Conversely, if a decimal is periodic, then it represents a rational number. The idea of the 
proof is best illustrated by an example. Suppose that x = 7.31414 · · ·14 ···.We multiply 
by a power of 10 to move the decimal point to the first repeating block; here obtaining 
lOx= 73.1414 · · ·. We now multiply by a power of 10 to move one block to the left 
of the decimal point; here getting 1000x = 7314.1414 ···.We now subtract to obtain an 
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integer; here getting 1 OOOx - 1 Ox = 7314 - 73 = 7241, whence x = 7241/990, a rational 
number. 

Cantor's Second Proof ---------------------

We will now give Cantor's second proof of the uncountability of R. This is the elegant 
"diagonal" argument based on decimal representations of real numbers. 

2.5.5 Theorem The unit interval [0, 1] := {x e R: 0 < x ~ 1} is not countable. 

Proof. The proof is by contradiction. We will use the fact that every real number x e [0, 1] 
has a decimal representation x = O.b1b2b3 ···,where b; = 0, 1 · · ·, 9. Suppose that there 
is an enumeration x 1, x2, x3 ···of all numbers in [0, 1], which we display as: 

xt = O.bubt2b13 ... bt,. ... , 

x2 = O.b2t b22b23 ... b211 ••• ' 
x3 = O.b3t b32b33 ... b3,. ... , 

We now define a real number y := O.y1y2y3 • • • Y,. · · · by setting y1 := 2 if b11 ~ 5 and 
y1 := 7 if b11 :::; 4; in general, we let 

{ 
2 if b ,.,. ~ 5' 

Y,. := 7 if b,.,. :::; 4. 

Then y e [0, 1]. Note that the number y is not equal to any of the numbers with two 
decimal representations, since Y,. =F 0, 9 for all n eN. Further, since y and x,. differ in 
the nth decimal place, then y =F x,. for any n e N. Therefore, y is not included in the 
enumeration of [0, 1 ], contradicting the hypothesis. Q.E.D. 

Exercises for Section 2.5 

1. If I := [a. b] and I' := [a'. b'] are closed intervals in R, show that I s; I' if and only if a' ~ a 
andb ~ b'. 

2. If S s; R is nonempty, show that S is bounded if and only if there exists a closed bounded 
interval I such that S s; I. 

3. If S s; R is a nonempty bounded set, and Is:= [inf S, supS], show that S s; Is. Moreover, if J 
is any closed bounded interval containing S, show that Is s; J. 

4. In the proof of Case (ii) of Theorem 2.5.1, explain why x, y exist in S. 

5. Write out the details of the proof of case (iv) in Theorem 2.5.1. 

6. If / 1 2 /2 2 · · · 2 1,. 2 · · · is a nested sequence of intervals and if 1,. = [a,., b,.], show that 
a

1 
~ a2 ~ ••• ~ a,. ~ ... and b1 ?! b2 ?! ... ?! b,. ?! .... 

7. Let I,. := [0, 1/n] for n eN. Prove that (1,.~ 1 1,. = {0}. 

8. Let J,. := (0, 1/n) for n EN. Prove that n::. J,. = 0. 

9. Let K,. := (n, oo) for n eN. Prove that n::. K,. = 0. 
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10. With the notation in the proofs of Theorems 2.5.2 and 2.5.3, show that we have '1 E n~lfn. 

Also show that[~, '11 = nn~.fn. 

11. Show that the intervals obtained from the inequalities in (2) form a nested sequence. 

12. Give the two binary representations of j and i6 • 

13. (a) Give the first four digits in the binary representation of i· 
(b) Give the complete binary representation of i. 

14. Show that if ale, blc e {0, 1, · · · , 9} and if 

a1 a2 an b1 b2 bm 
10 + 1ol + ... + 10" = 10 + 1ol + ... + 10'" ~ O, 

then n = m and ale = blc for k = 1, · · · , n. 

15. Find the decimal representation of - ~. 

16. Express ~ and ~9 as periodic decimals. 

17. What rationals are represented by the periodic decimals 1.25137 · · · 137 · · · and 

35.14653 ... 653 .. ·? 



CHAPTER3 

SEQUENCESANDSERffiS 

Now that the foundations of the real number system 1R have been laid, we are prepared 
to pursue questions of a more analytic nature, and we will begin with a study of the 
convergence of sequences. Some of the early results may be familiar to the reader from 
calculus, but the presentation here is intended to be rigorous and will lead to certain more 
profound theorems than are usually discussed in earlier courses. 

We will first introduce the meaning of the convergence of a sequence of real numbers 
and establish some basic, but useful, results about convergent sequences. We then present 
some deeper results concerning the convergence of sequences. These include the Monotone 
Convergence Theorem, the Bolzano-Weierstrass Theorem, and the Cauchy Criterion for 
convergence of sequences. It is important for the reader to learn both the theorems and how 
the theorems apply to special sequences. 

Because of the linear limitations inherent in a book it is necessary to decide where 
to locate the subject of infinite series. It would be reasonable to follow this chapter with 
a full discussion of infinite series, but this would delay the important topics of continuity, 
differentiation, and integration. Consequently, we have decided to compromise. A brief 
introduction to infinite series is given in Section 3.7 at the end of this chapter, and a more 
extensive treatment is given later in Chapter 9. Thus readers who want a fuller discussion 
of series at this point can move to Chapter 9 after completing this chapter. 

Augustin-Louis Cauchy 
Augustin-Louis Cauchy (1789-1857) was born in Paris just after the start 
of the French Revolution. His father was a lawyer in the Paris police de
partment, and the family was forced to flee during the Reign of Terror. As 
a result, Cauchy's early years were difficult and he developed strong anti
revolutionary and pro-royalist feelings. After returning to Paris, Cauchy's 
father became secretary to the newly-formed Senate, which included the 
mathematicians Laplace and Lagrange. They were impressed by young 
Cauchy's mathematical talent and helped him begin his career. 

He entered the Ecole Polytechnique in 1805 and soon established a reputation as an excep
tional mathematician. In 1815, the year royalty was restored, he was appointed to the faculty 
of the Ecole Polytechnique, but his strong political views and his uncompromising standards in 
mathematics often resulted in bad relations with his colleagues. After the July revolution of 1830, 
Cauchy refused to sign the new loyalty oath and left France for eight years in self-imposed exile. 
In 1838, he accepted a minor teaching post in Paris, and in 1848 Napoleon m reinstated him to 
his former position at the Ecole Polytechnique, where he remained until his death. 

Cauchy was amazingly versatile and prolific, making substantial contributions to many areas, 
including real and complex analysis, number theory, differential equations, mathematical physics 
and probability. He published eight books and 789 papers, and his collected works 61126 volumes. 
He was one of the most important mathematicians in the first half of the nineteenth century. 
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Section 3.1 Sequences and Their Limits · 

A sequence in a set S is a function whose domain is the set N of natural numbers, and 
whose range is contained in the set S. In this chapter, we will be concerned with sequences 
in R and will discuss what we mean by the convergence of these sequences. 

3.1.1 Definition A sequence of real numbers (or a sequence in R) is a function defined 
on the set N = { 1, 2, · · ·} of natural numbers whose range is contained in the set R of real 
numbers. 

In other words, a sequence in R assigns to each natural number n = 1, 2, · · · a uniquely 
determined real number. If X : N --+ R is a sequence, we will usually denote the value of X 
at n by the symbol x,. rather than using the function notation X(n). The values x,. are also 
called the terms or the elements of the sequence. We will denote this sequence by the 
notations 

X, (x,. : n eN). 

Of course, we will often use other letters, such as Y = (yk), Z = (z;), and so on, to denote 
sequences. 

We purposely use parentheses to emphasize that the ordering induced by the natural 
order of N is a matter of importance. Thus, we distinguish notationally between the se
quence (x,. : n e N), whose infinitely many terms have an ordering, and the set of values 
{x,. : n e N} in the range of the sequence which are not ordered. For example, the se
quence X := (( -1)" : n eN) has infinitely many terms that alternate between -1 and 1, 
whereas the set of values { ( -1 )" : n e N} is equal to the set { -1, 1}, which has only two 
elements. 

Sequences are often defined by giving a formula for the nth term x,.. Frequently, it is 
convenient to list the terms of a sequence in order, stopping when the rule of formation 
seems evident. For example, we may define the sequence of reciprocals of the even numbers 
by writing 

X := G· ~· ~· ~· .. } 
though a more satisfactory method is to specify the formula for the general term and write 

X:= (2~ : n eN) 

or more simply X = ( 1 /2n ). 
Another way of defining a sequence is to specify the value of x 1 and give a formula 

for x,.+1 (n ~ 1) in terms of x,.. More generally, we may specify x 1 and give a formula 
for obtaining x,.+1 from x 1, x2, • • ·, x,.. Sequences defined in this mann~r are said to be 
inductively (or recursively) defined. 

3.1.2 Examples (a) If be 1R, the sequence B := (b, b, b, ···),all of whose tenns equal 
b, is called the constant sequence b. Thus the constant sequence 1 is the sequence 
(1, 1, 1, ···),and the constant sequence 0 is the sequence (0, 0, 0, · · ·). 
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(b) If b e R, then B := (b") is the sequence B = (b, b2 , b3, ••• , b", ···).In particular, if 
b = ! , then we obtain the sequence 

(~ : n e N) = (! ! ! · · · ~ · · ·) · 2" 2 ' 4 ' 8 ' ' 2" ' 

(c) The sequence of (2n : n eN) of even natural numbers can be defined inductively by 

or by the definition 

Yt := 2, Yn+t := Yt + Y,.· 

(d) The celebrated Fibonacci sequence F :=(/,.)is given by the inductive definition 

ft := 1, /2 := 1, fn+l := fn-1 + f,. (n ~ 2). 

Thus each term past the second is the sum of its two immediate predecessors. The first ten 
terms ofF are seen to be (1, 1, 2, 3, 5, 8, 13, 21, 34, 55,···). 0 

The Limit of a Sequence . 
There are a number of different limit concepts in real analysis. The notion of limit of a 
sequence is the most basic, and it will be the focus of this chapter. 

3.1.3 Definition A sequence X= (x,.) in R is said to converge to x e R, or xis said to 
be a limit of (x,.), if for every E > 0 there exists a natural number K(E) such that for all 
n ~ K (E), the terms x,. satisfy lx,. -xI < E. 

If a sequence has a limit, we say that the sequence is convergent; if it has no limit, we 
say that the sequence is divergent. 

Note The notation K(E) is used to emphasize that the choice of K depends on the value 
of E. However, it is often convenient to write K instead of K(E). In most cases, a "small" 
value of E will usually require a "large" value of K to guarantee that the distance lx,. - xI 
between x,. and xis less thanE for all n ~ K = K(E). 

When a sequence has limit x, we will use the notation 

limX =x or 

We will sometimes use the symbolism x,. ~ x, which indicates the intuitive idea that the 
values x,. "approach" the number x as n ~ oo. 

3.1.4 Uniqueness of Limits A sequence in R can have at most one limit. 

Proof. Suppose that x' and x" are both limits of (x,.). For each E > 0 there exist K' such 
that lx,. - x'l < E/2 for all n ~ K', and there exists K" such that lx,. - x"l < E/2 for all 
n ~ K". We let K be the larger of K' and K". Then for n ~ K we apply the Triangle 
Inequality to get 

lx'- x"l = lx'- x,. + x,.- x"l 

~ lx'- x,.l + lx,.- x"l.< E/2 + E/2 =E. 

Since E > 0 is an arbitrary positive number, we conclude that x' - x" = 0. Q.E.D. 
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For x e 1R and e > 0, recall that thee-neighborhood of xis the set 

Ve(x) := {u e 1R: lu- xl < e}. 

(See Section 2.2.) Since u e Ve(x) is equivalent to lu - xl < e, the definition of conver
gence of a sequence can be formulated in terms of neighborhoods. We give several different 
ways of saying that a sequence xn converges toxin the following theorem. 

3.1.5 Theorem Let X= (xn) beasequenceofrealnumbers,andletx e 1R. Thefollowing 
statements are equivalent. 

(a) X converges tox. 

(b) For evezy e > 0, there exists a natural number K such that for all n > K, the terms xn 
satisfy lxn- xl <e. 
(c) For evezy e > 0, there exists a natural number K such that for all n ~ K, the tenns xn 
satisfy x - e < xn < x + e. 

(d) For evezy e -neighborhood Ve (x) of x, there exists a natural number K such that for 
all n ~ K' the terms X n belong to v£ (x). 

Proof. The equivalence of (a) and (b) is just the definition. The equivalence of (b), (c), 
and (d) follows from the following implications: 

lu- xl < e {::::::} -e < u- x < e <===> x- e < u < x + e <===> u e Ve(x). 

Q.E.D. 

With the language of neighborhoods, one can describe the convergence of the sequence 
X = (xn) to the number x by saying: for each £-neighborhood Ve (x) of x, all but a finite 
number of terms of X belong to Ve(x). The finite number of terms that may not belong to 
the £-neighborhood are the terms x 1, x2, • • ·, x K _ 1• 

Remark The definition of the limit of a sequence of real numbers is used to verify that a 
proposed value x is indeed the limit. It does not provide a means for initially determining 
what that value of x might be. Later results will contribute to this end, but quite often it is 
necessary in practice to arrive at a conjectured value of the limit by direct calculation of a 
number of terms of the sequence. Computers can be helpful in this respect, but since they 
can calculate only a finite number of terms of a sequence, such computations do not in any 
way constitute a proof of the value of the limit. 

The following examples illustrate how the definition is applied to prove that a sequence 
has a particular limit. In each case, a positive e is given and we are required to find a K, 
depending one, as required by the definition. 

3.1.6 Examples (a) lim(1/n) = 0. 
If e > 0 is given, then 1/e > 0. By the Archimedean Property 2.4.5, there is a nat

ural number K = K(e) such that 1/ K <e. Then, if n > K, we have 1/n!:: 1/ K <e. 
Consequently, if n ~ K, then 

~;- -01 =;<e. 
Therefore, we can assert that the sequence ( 1 In) converges to 0. 
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(b) lim(1/(n2 + 1)) = 0. 
Let E > 0 be given. To find K, we first note that if n e N, then 

1 1 1 
~-<-<-
n2 + 1 n 2 - n · 

Now choose K such that II K < E, as in (a) above. Then n > K implies that lin < E, and 
therefore 

ln2 ~1-0I=n2 ~1 <~<£. 
Hence, we have shown that the limit of the sequence is zero. 

(c) lim (
3

n + 
2

) = 3. 
n+l 

Given E > 0, we want to obtain the inequality 

( 1) 13n + 2 - 31 < E 
n+l 

when n is sufficiently large. We first simplify the expression on the left: 

1
3n + 2 _ 31 = 13n + 2 - 3n - 31 = I-=!_ I = _1 < ! . 
n+l n+l n+l n+1 n 

Now if the inequality 1 In < E is satisfied, then the inequality ( 1) holds. Thus if 1 I K < E, 

then for any n ~ K, we also have 11 n < E and hence ( 1) holds. Therefore the limit of the 
sequence is 3. 

(d) If 0 < b < 1, then lim(b") = 0. 

We will use elementary properties of the natural logarithm function. If E > 0 is given, 
we see that 

b11 < E ~ n lob< lne <==> n > lnEI In b. 

(The last inequality is reversed because In b < 0.) Thus if we choose K to be a number such 
that K > In E I In b, then we will have 0 < b" < E for all n > K. Thus we have lim(b") = 0. 

For example, if b = .8, and if E = .01 is given, then we would need K > In .011 In .8 ~ 
20.6377. Thus K = 21 would be an appropriate choice forE= .01. 0 

Remark The K (E) Game In the notion of convergence of a sequence, one way to keep 
in mind the connection between the E and the K is to think of it as a game called the K (E) 
Game. In this game, Player A asserts that a certain number x is the limit of a sequence (x,.). 
Player B challenges this assertion by giving Player A a specific value for E > 0. Player A 
must respond to the challenge by coming up with a value of K such that lx,. - xI < E for all 
n > K. If Player A can always find a value of K that works, then he wins, and the sequence 
is convergent. However, if Player B can give a specific value of E > 0 for which Player A 
cannot respond adequately, then Player B wins, and we conclude that the sequence does 
not converge to x. 

In order to show that a sequence X= (x,.) does not converge to the number x, it 
is enough to produce one number Eo> 0 such that no matter what natural number K is 
chosen, one can find a particular n K satisfying n K > K such that lx,. - xI ~ E0• (This 

K 
will be discussed in more detail in Section 3.4.) 
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3.1.7 Example The sequence (0, 2, 0, 2, · · ·, 0, 2, · · ·) does not converge to the 
numberO. 

If Player A asserts that 0 is the limit of the sequence, he will lose the K (E) Game 
when Player B gives him a value of E < 2. To be definite, let Player B give Player A 
the value e0 = I. Then no matter what value Player A chooses for K, his response will 
not be adequate, for Player B will respond by selecting an even number n > K. Then the 
corresponding value is xn = 2 so that lxn - 01 = 2 > 1 = e0• Thus the number 0 is not the 
limit of the sequence. 0 

Tails of Sequences 

It is important to realize that the convergence (or divergence) of a sequence X= (xn) 
depends only on the "ultimate behavior" of the terms. By this we mean that if, for any 
natural number m, we drop the first m terms of the sequence, then the resulting sequence 
X m converges if and only if the original sequence converges, and in this case, the limits are 
the same. We will state this formally after we introduce the idea of a "tail" of a sequence. 

3.1.8 Definition If X = (x 1, x2 , • • • , xn, · · ·) is a sequence of real numbers and if m is a 
given natural number, then th~·m-tail of X is the sequence 

xm := (xm+n : n EN) = (xm+l' xm+2' .. ·) 

For example, the 3-tail of the sequence X = (2, 4, 6, 8, 10, · · ·, 2n, · · ·), is the se
quence x3 = (8, 10, 12, ... ' 2n + 6, .. ·). 

3.1.9 Theorem Let X = (xn : n e N) be a sequence of real numbers and let m e N. Then 
them-tail Xm = (xm+n : n eN) of X converges if and only if X converges. In this case, 
limXm =lim X. 

Proof. We note that for any p E N, the pth term of X m is the (p + m )th term of X. 
Similarly, if q > m, then the qth term of X is the (q- m)th term of Xm. 

Assume X converges to x. Then given any E > 0, if the terms of X for n =::: K(e) 
satisfy lxn- xl < E, then the terms of xm fork:::: K(E)- m satisfy lxA:- xl <E. Thus we 
can take Km(E) = K(E)- m, so that xm also converges to X. 

Conversely, if the terms of xm fork:::: Km(e) satisfy lxA:- xl < E, then the terms of 
X for n =::: K(e) + m satisfy lxn- xl <E. Thus we can take K(e) = Km(E) + m. 

Therefore, X converges to x if and only if X m converges to x. Q.E.D. 

We shall sometimes say that a sequence X ultimately has a certain property if some 
tail of X has this property. For example, we say that the sequence (3, 4, 5, 5, 5, · · ·, 5, · · ·) 
is ''ultimately constant". On the other hand, the sequence (3, 5, 3, 5, · · ·, 3, 5, · · ·) is not 
ultimately constant. The notion of convergence can be stated using this terminology: A se
quence X converges to x if and only if the terms of X are ultimately in every £-neighborhood 
of x. Other instances of this ''ultimate terminology" will be noted below. 

FunherE~ples ------------------------------------------------------------------

In establishing that a number x is the limit of a sequence (xn), we often try to simplify 
the difference lxn - xI before considering an E > 0 and finding a K (E) as required by the 
definition of limit. This was done in some of the earlier examples. The next result is a more 
formal statement of this idea, and the examples that follow make use of this approach. 
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3.1.10 Theorem Let (x,.) be a sequence of real numbers and let x e R. If (a,.) is a 
sequence of positive real numbers with lim(a,.) = 0 and if for some constant C > 0 and 

some m e N we have 

lx -xi<Ca 
II - II 

for all n ~ m, 

then it follows that lim(x,.) = x. 

Proof. H £ > 0 is given, then since lim(a,.) = 0, we know there exists K = K(e/C) such 
that n :::: K implies 

a,. = Ia,. -01 < efC. 

Therefore it follows that if both n :::: K and n :::: m, then 

lx,. - xl ~ Ca,. < C(e/C) =e. 

Since e > 0 is arbitrary, we conclude that x = lim(x,.). 

3.1.11 Examples (a) H a > 0, then lim ( 
1 

) = 0. 
1 +na 

Q.E.D. 

Since a > 0, then 0 < na < 1 + na, and therefore 0 < 1/(1 + na) < 1/(na). Thus 
we have 

II : na -
0

1 ~ G) ~ for all n eN. 

Since lim(1/n) = 0, we may invoke Theorem 3.1.10 with C = 1/a and m = 1 to infer that 
lim(1/(1 + na)) = 0. 

(b) ffO < b < 1, then lim(b11
) = 0. 

This limit was obtained earlier in Example 3.1.6(d). We will give a second proof that 
illustrates the use of Bernoulli's Inequality (see Example 2.1.13(c)). 

Since 0 < b < 1, we can write b = 1/(1 +a), where a := (1/b)- 1 so that a > 0. 
By Bernoulli's Inequality, we have (1 + a)11 

:::: 1 + na. Hence 

1 1 1 
0 < b11 = < < -. 

( 1 + a )11 
- 1 + na na 

Thus from Theorem 3.1.10 we conclude that lim(b11
) = 0. 

In particular, if b = .8, so that a = .25, and if we are given£ = .01, then the preceding . 
inequality gives us K(e) = 4/(.01) = 400. Comparing with Example 3.1.6(d), where we 
obtained K = 25, we see this method of estimation does not give us the "best" value of K. 
However, for the purpose of establishing the limit, the size of K is immaterial. 

(c) H c > 0, then lim(cll11
) = 1. 

The case c = 1 is trivial, since then (cll11
) is the constant sequence (1, 1, ···),which 

evidently converges to 1. 
H c > 1, then c1111 = 1 + d,. for some d,. > 0. Hence by Bernoulli's Inequality 

2.1.13(c), 

c = ( 1 + d )11 > 1 + nd 
II - II 

for n eN. 

Therefore we have c- 1 > nd,., so that d,. ~ (c- 1)/n. Consequently we have 

1 lc1111
- II= d,. ~ (c- 1)- for n eN. 

n 

We now invoke Theorem 3.1.10 to infer that lim(c1111
) = 1 when c > 1. 
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Now suppose that 0 < c < 1; then c11" = 1/(1 + hn) for some hn > 0. Hence Ber
noulli's Inequality implies that 

1 1 1 
c= <---<-

(1 + hn)" 1 + nhn nhn' 

from which it follows that 0 < hn < 1 Inc for n e N. Therefore we have 

h 1 
0 < 1 - clfn = n < h < -

1 + hn n nc 

so that 

iclfn -II< G); for n eN. 

We now apply Theorem 3.1.10 to infer that lim(c1'"> = 1 when 0 < c < 1. 
(d) lim(n l/n) = 1 

Since n 1
'" > 1 for n > 1, we can write n 1

'" = 1 + kn for some kn > 0 when n > 1. 
Hence n = (1 + kn)" for n > 1. By the Binomial Theorem, if n > 1 we have 

n = 1 + nkn + ~n(n - 1)k; + · · · ~ 1 + ~n(n - 1)k;, 

whence it follows that 

n- I ~ ~n(n- 1)k;. 

Hence k; ~ 2/ n for n > 1. If e > 0 is given, it follows from the Archimedean Property 
that there exists a natural number Ns such that 2/ Ns < e2

• It follows that if n ~ sup{2, Ns} 
then 2/n < e2

, whence 

0 < nl/n- 1 = kn ~ (2/n) 112 <E. 

Since e > 0 is arbitrary, we deduce that lim(n 1'"> = I. D 

Exercises for Section 3.1 

1. The sequence (x
11

) is defin~ by the following formulas f<?r the nth term. Write the first five terms 
in each case: 
(a) x

11 
:= 1 + (-1)11

, 

1 
(c) xll := n(n + 1)' 

(b) X
11 

:= ( -1)11 fn, 
1 

(d) x := nl + 2. 

2. The first few terms of a sequence (x
11

) are given below. Assuming that the "natural pattern" 
indicated by these terms persists, give a formula for the nth term X

11
• 

(a) S, 1, 9, 11, · · ·, (b) 1/2, -1/4, 1/8, -1/16, · · ·, 
(c) 1/2, 2/3, 3/4, 4/S, · · ·, (d) 1, 4, 9, 16, · · ·. 

3. List the first five terms of the following inductively defined sequences. 
(a) x 1 := 1, xn+l = 3x,. + 1, 

•. 1 
(b) Y1 := 2, Yn+l = 2(Y,. + 2/yll), 
(c) z1 := 1, ~ := 2, zn+l := (zn+l + Z11 )/(zn+l - z,.), 
(d) '• = 3, sl := s, 'n+2 := s,. + 'n+l" 

4. For any b e R, prove that lim(b/n) = 0. 
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5. Use the definition of the limit of a sequence to establish the following limits. 

(a) lim (--{!--) = 0, (b) lim (~) = 2, 
n +1 n+1 

(c) lim(3n + 1) = ~ (d) lim( n2 -1) = ~-
2n + 5 2' 2n2 + 3 2 

6. Show that 

(a) lim (v'nl+ 7) = 0, (b) lim(~)=2 n +2 ' 

(c) lim( .Iii) =0 
n+ 1 ' 

(d) lim e-1)" n) = 0. 
n2 + 1 

7. Let x,. := 1/ ln(n + 1) for n eN. 
(a) Use the definition of limit to show that lim(x,.) = 0. 
(b) Find a specific value of K (e) as required in the definition of limit for each of (i) e = 1 /2, 

and (ii) e = 1/10. 

8. Prove that lim(x,.) = 0 if and only if lim(lx,. I) = 0. Give an example to show that the conver
gence of (lx,.l) need not imply the convergence of (x,.). 

9. Show that if x,. 2::: 0 for all n :. Nand lim(x,.) = 0, then lim (F.)= 0. 

10. Prove that if lim(x,.) = x and if x > 0, then there exists a natural number M such that x,. > 0 
for all n 2::: M. 

11. Show that lim(~- -
1
-) = 0. 

n n + 1 

12. Show that lim(l/3") = 0. 

13. Let be R satisfy 0 < b < 1. Show that lim(nb") = 0. [Hint: Use the Binomial Theorem as in 
Example 3.l.ll(d).] 

14. Show that lim ((2n) 1
'") = 1. 

15. Show that lim(n2 /n!) = 0. 

16. Show that lim(2" /n!) = 0. [Hint: if n 2::: 3, then 0 < 2,. /n! ~ 2 (jr-2
.] 

17. If lim(x,.) = x > 0, show that there exists a natural number K such that if n ~ K, then ! x < 
x,. < 2x. 

Section 3.2 Limit Theorems 

In this section we will obtain some results that enable us to evaluate the limits of certain 
sequences of real numbers. These results will expand our collection of convergent sequences 
rather extensively. We begin by establishing an important property of convergent sequences 
that will be needed in this and later sections. 

3.2.1 Definition A sequence X= (x") of real numbers is said to be bounded if there 
exists a real number M > 0 such that lxnl !:: M for all n eN. 

Thus, the sequence (x") is bounded if and only if the set {x" : n e N} of its values is a 
bounded subset of 1R. 

3.2.2 Theorem A convergent sequence of real numbers is bounded. 
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Proof. Suppose that lim(xn) = x and let e := 1. Then there exists a natural number 
K = K(1) such that lxn - xl < 1 for all n > K. H we apply the Triangle Inequality with 
n ~ K we obtain 

ffwe set 

M :=sup {lx11, lx2 1, · · ·, lxK_11, 1 + lxl}, 

then it follows that lxnl < M for all n eN. Q.E.D. 

We will now examine how the limit process interacts with the operations of addition, 
subtraction, multiplication, and division of sequences. H X= (xn) and Y = (yn) are se
quences of real numbers, then we define their sum to be the sequence X + Y := (xn + y n ), 
their difference to be the sequence X- Y := (xn- Yn), and their product to be these
quence X· Y := (XnYn>· He e 1R, we define the multiple of X bye to be the sequence 
eX := (exn>· Finally, if Z = (zn) is a sequence of real numbers with zn =F 0 for all n e N, 
then we define the quotient of X and Z to be the sequence XIZ := (xnlzn>· 

For example, if X and Y are the sequences 

then we have 

X := (2, 4, 6, · · · 2n, · · ·), Y := ( ~· ~· ~· · · ·, ~· · ·), 

X+ y = (~ ~ 19 . . . 2n
2 
+ 1 .. ·) 

1' 2' 3' ' n ' ' 

X_ y = (~ ~ 17 ... 2n
2

- 1 .. ·) 
1' 2' 3' ' n ' ' 

X · Y = (2, 2, 2, · · · , 2, · · ·), 

3X = (6, 12, 18, · · ·, 6n, · · ·), 
XIY = (2, 8, 18, · · ·, 2n2

, • • ·). 

We note that if Z is the sequence 

z := (0, 2, 0, ... ' 1 + (-1)", .. ·), 

then we can define X + Z, X - Z and X · Z, but X I Z is not defined since some o~ the 
terms of Z are zero. 

We now show that sequences obtained by applying these operations to convergent 
sequences give rise to new sequences whose limits can be predicted. 

3.2.3 Theorem (a) Let X= (xn) and Y = (yn) be sequences of real numbers that 
converge to x andy, respectively, and let e e R. Then the sequences X + Y, X - Y, X · Y, 
and eX converge to x + y, x - y, xy, and ex, respectively. 
(b) H X = (xn) converges to x and Z = (zn) is a sequence of nonzero real numbers that 
converges to z and if z :f= 0, then the quotient sequence X I Z converges to xI z. 

Proof. (a) To show that lim(xn + Yn) = x + y, we need to estimate the magnitude of 
l(xn + Yn)- (x + y)l. To do this we use the Triangle Inequality 2.2.3 to obtain 

l(xn + Yn) - (x + y)l = l(xn -X)+ (Yn - Y)l 

~ lxn - xl + IYn - Yl· 

-------
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By hypothesis, if e > 0 there exists a natural number K 1 such that if n > K 1, then lxn - xI < 
ef2; also there exists a natural number K2 such that ifn ~ K2, then IYn- yl < ef2. Hence 
if K(e) := sup{Kl' K2}, it follows that if n > K(e) then 

l(xn + Yn)- (x + Y)l ~ lxn - xl + IYn - Yl 

< !e + !e =e. 

Since e > 0 is arbitrary, we infer that X+ Y = (xn + Yn) converges to x + y. 
Precisely the same argument can be used to show that X- Y = (xn- Yn) converges 

tox- y. 
To show that X· Y = (xnyn) converges to xy, we make the estimate 

IXnYn - xyl = I(XnYn - xny) + (XnY - xy)l 
~ lxn(Yn- y)l + l(xn - x)yl 

= 1xn11Yn - Yl + lxn - xllyl. 

According to Theorem 3.2.2 there exists a real number M1 > 0 such that lxn I ~ M1 for all 
n e N and we set M := sup{ M1, IY I}. Hence we have the estimate 

lxnyn - xyl ~ Mlyn - Yl + Mlxn - xl. 

From the convergence of X and Y we conclude that if e > 0 is given, then there exist 
natural numbers K 1 and K2 such that if n ~ K 1 then lxn - xI < e /2M, and if n ~ K2 then 
IYn- yl < ef2M. Now let K(e) = sup{Kl' K2}; then, if n ~ K(e) we infer that 

lxnyn - xyl ~ Mlyn - Yl + Mlxn - xl 
< M(e/2M) + M(e/2M) =e. 

Since e > 0 is arbitrary, this proves that the sequence X· Y = (xnyn) converges to xy. 
The fact that eX= (exn) converges to ex can be proved in the same way; it can also 

be deduced by taking Y to be the constant sequence (e, e, e, ···).We leave the details to 
the reader. 

(b) We next show that if Z = (zn) is a sequence of nonzero numbers that converges 
to a nonzero limit z, then the sequence (I I zn) of reciprocals converges to I I z. First let 
a := ! lzl so that a > 0. Since lim(zn) = z, there exists a natural number K 1 such that if 
n ~ K 1 then lzn - zl < a. It follows from Corollary 2.2.4(a) of the Triangle Inequality that 
-a~ -lzn- zl ~ lznl-lzl for n ~ K1, whence it follows that !lzl = lzl-a~ lznl for 
n ~ K 1• Therefore 1 /lzn I ~ 2/ lzl for n ~ K 1 so we have the estimate 

1

2_- ~~ = ~z-znl =_I lz-znl 
zn z znz lznzl 

2 
< - 2 1z-z I forall n > K 1• 
- lzl n 

Now, if e > 0 is given, there exists a natural number K2 such that if n ~ K2 then lzn- zl 
< ! e I zl2

• Therefore, it follows that if K (e) = sup{ K 1, K 2}, then 

1
2_- ~~ < e for all n > K(e). 
zn z 

Since E > 0 is arbitrary, it follows that 
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The proof of (b) is now completed by taking Y to be the sequence ( 1 I zn) and using the 
fact that X· Y = (xnfzn) converges to x(1/z) = xfz. Q.E.D. 

Some of the results of Theorem 3.2.3 can be extended, by Mathematical Induction, to a 
finite number of convergent sequences. For example, if A = (an), B = (bn), · · ·, Z = (zn) 
are convergent sequences of real numbers, then their sum A+ B + · · · + Z =(an+ bn + 
· · · + zn) is a convergent sequence and 

(1) lim(an + bn + · · · + zn) = lim(an) + lim(bn) + · · · + lim(zn). 

Also their product A· B · · · Z := (anbn · · · zn) is a convergent sequence and 

(2) 

Hence, if keN and if A= (an) is a convergent sequence, then 

(3) lim( a!) = (lim( an) )A: • 

We leave the proofs of these assertions to the reader. 

3.2.4 Theorem If X= (xn) is a convergent sequence of real numbers and ifxn ::: 0 for 
all n EN, then x = liin(xn) ::: 0. 

Proof. Suppose the conclusion is not true and that x < 0; then e :=-xis positive. Since 
X converges to x, there is a natural number K such that 

X- E < Xn <X+ E for all n ::: K. 

In particular, we have x K < x + e = x + (-x) = 0. But this contradicts the hypothesis 
that xn ::: 0 for all n e N. Therefore, this contradiction implies that x ::: 0. Q.E.D. 

We now give a useful result that is formally stronger than Theorem 3.2.4. 

3.2.5 Theorem If X = (xn) andY = (yn) are convergent sequences of real numbers and 
if xn ~ Yn for all n E N, then lim(xn) ~ lim(yn). 

Proof. Let zn := Yn- xn so that Z := (zn) = Y- X and zn ::: 0 for all n eN. It follows 
from Theorems 3.2.4 and 3.2.3 that 

0 ~ lim Z = lim(yn) - lim(xn), 

Q.E.D. 

The next result asserts that if all the terms of a convergent sequence satisfy an inequality 
of the form a ~ xn ~ b, then the limit of the sequence satisfies the same inequality. Thus 
if the sequence is convergent, one may "pass to the limit" in an inequality of this type. 

3.2.6 Theorem If X= (xn) is a convergent sequence and if a~ xn =:: b for all n eN, 
then a =:; lim(xn) ~ b. 

Proof. Let Y be the constant sequence (b, b, b, ···).Theorem 3.2.5 implies that lim X < 
limY = b. Similarly one shows that a ~ lim X. Q.E.D. 

The next result asserts that if a sequence Y is squeezed between two sequences that 
converge to the same limit, then it must also converge to this limit. 

T - -
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3.2.7 Squeeze Theorem Suppose that X= (xn), Y = (yn), and Z = (zn) are sequences 
of real numbers such that 

for all n eN, 

and that lim(xn) = lim(zn). Then Y = (yn) is convergent and 

lim(xn) = lim(yn) = lim(zn). 

Proof. Letw := lim(xn) = lim(zn).He > Oisgiven,thenitfollowsfromtheconvergence 
of X and Z to w that there exists a natural number K such that if n :::: K then 

lxn- wl < e 

Since the hypothesis implies that 

it follows (why?) that 

and 

for all n eN, 

-e < Yn- w < e 

for all n :::: K. Since e > 0 is arbitrary, this implies that lim(y n) = w. Q.E.D. 

Remark Since any tail of a convergent sequence has the same limit, the hypotheses of 
Theorems 3.2.4, 3.2.5, 3.2.6, and 3.2. 7 can be weakened io apply to the tail of a sequence. 
For example, in Theorem 3.2.4, if X = (xn) is "ultimately positive" in the sense that there 
exists m e N such that x n :::: 0 for all n :::: m, then the same conclusion that x :::: 0 will hold. 
Similar modifications are valid for the other theorems, as the reader should verify. 

3.2.8 Examples (a) The sequence (n) is divergent. 
It follows from Theorem 3.2.2 that if the sequence X := (n) is convergent, then there 

exists a real number M > 0 such that n = lnl < M for all n eN. But this violates the 
Archimedean Property 2.4.3. 

(b) The sequence ( ( -1 )") is divergent. 
This sequence X = ( ( -1 )") is bounded (take M := 1 ), so we cannot invoke Theorem 

3.2.2. However, assume that a := lim X exists. Let e := 1 so that there exists a natural 
number K 1 such that 

I ( -1) - a I < 1 for all n :::: K 1• 

If n is an odd natural number with n > K1, this gives 1- 1- al < 1, so that -2 <a < 0. 
(Why?) On the other hand, if n is an even natural number with n :::: K 1, this inequality 
gives 11 - a I < 1 so that 0 < a < 2. Since a cannot satisfy both of these inequalities, 
the hypothesis that X is convergent leads to a contradiction. Therefore the sequence X is 
divergent. 

(c) lim (2n: 1
) = 2. 

If we let X:= (2) and Y := (1/n), then ((2n + 1)/n) =X+ Y. Hence it follows 
from Theorem 3.2.3(a) that lim(X + Y) = lim X + limY = 2 + 0 = 2. 

(d) lim (2n + 1) = 2. 
n+S 

-------
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Since the sequences (2n + 1) and (n + 5) are not convergent (why?), it is not possible 
to use Theorem 3.2.3(b) directly. However, if we write 

2n+l 2+1/n 
= ' n+5 1+5/n 

we can obtain the given sequence as one to which Theorem 3.2.3(b) applies when we 
take X:= (2 + 1/n) and Z := (1 + 5/n). (Check that all hypotheses are satisfied.) Since 
lim X= 2 and limZ = 1 '# 0, we deduce that lim{(2n + 1)/(n + 5)) = 2/1 = 2. 

(e) lim ( 2

2
n ) = 0. 

n + 1 
Theorem 3.2.3(b) does not apply directly. (Why?) We note that 

2n 2 

n2 + 1 = n + 1/n' 

but Theorem 3.2.3(b) does not apply here either, because (n + 1/n) is not a convergent 
sequence. (Why not?) However, if we write 

2n 2/n 

n2 + 1 = 1 + 1/n2 ' 

then we can apply Theorem 3.2.3(b), since lim(2/n) = 0 and lim(1 + 1/n2) = 1 :f= 0. 
Therefore lim(2n/(n2 + 1)) = 0/1 = 0. 

(f) lim ei:n) = 0. 

We cannot apply Theorem 3.2.3(b) directly, since the sequence (n) is not convergent 
[neither is the sequence (sinn)]. It does not appear that a simple algebraic manipulation 
will enable us to reduce the sequence into one to which Theorem 3.2.3 will apply. However, 
if we note that -1 ~ sin n ~ 1, then it follows that 

1 sinn 1 
-- < -- <- for all n eN. 

n n n 

Hence we can apply the Squeeze Theorem 3.2.7 to infer that lim(n-1 sinn) = 0. (We note 
that Theorem 3 .1.1 0 could also be applied to this sequence.) 

(g) Let X= (xn) be a sequence of real numbers that converges to x e R. Let p be a 
polynomial; for example, let 

p(t) := aktk + ak-1tk-1 + ... + a1t + ao, 

where keN and ai e R for j = 0, 1, · · ·, k. It follows from Theorem 3.2.3 that these
quence (p(xn)) converges to p(x). We leave the details to the reader as an exercise. 

(h) Let X= (xn) be a sequence of real numbers that converges to x e R. Let r be a 
rational function (that is, r(t) := p(t)/q(t), where p and q are polynomials). Suppose 
that q(xn) '# 0 for all n eN and that q(x) '# 0. Then the sequence (r(xn)) converges to 
r(x) = p(x)/q(x). We leave the details to the reader as an exercise. D 

J 

We conclude this section with several results that will be useful in the work that follows. 

3.2.9 Theorem Let the sequence X= (xn) converge to x. Then the sequence (lxnD of 
absolute values converges to lxl. That is, ifx = lim(xn), then lxl = lim(lxnD· 

-----------
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Proof. It follows from the Triangle Inequality (see Corollary 2.2.4(a)) that 

llx,l-lxll ~ lx, -xl forall n eN. 

The convergence of (lx, I) to lx I is then an immediate consequence of the convergence of 
(x,) to X. Q.E.D. 

3.2.10 Theorem Let X = (x,) be a sequence of real numbers that converges to x and 
suppose that x, 2:: 0. Then the sequence (/X:.) of positive square roots converges and 

lim (/X:.) = Jx. 

Proof. It follows from Theorem 3.2.4 that x = lim(x,) 2:: 0 so the assertion makes sense. 
We now consider the two cases: (i) x = 0 and (ii) x > 0. 

Case (i) If x = 0, let e > 0 be given. Since x, -+ 0 there exists a natural number K 
such that if n 2:: K then 

0 < X = X - 0 < e2
• 

- " " 
Therefore [see Example 2.1.13(a)], 0 ~ /X:.< e for n 2:: K. Since e > 0 is arbitrary, this 
implies that /X:. -+ 0. . 

Case (ii) If x > 0, then ../X >. 0 arid we note that 

/X:._ ./X= (/X:.- ./X)(/X:. +./X) = Xn- X 

" rx:. + Jx rx:. + Jx 
Since /X:. + Jx 2:: Jx > 0, it follows that 

The convergence of ../X, -+ ../X follows from the fact that x, -+ x. Q.E.D. 

For certain types of sequences, the following result provides a quick and easy "ratio 
test" for convergence. Related results can be found in the exercises. 

3.2.11 Theorem Let (x,) be a sequence of positive real numbers such that L := 
lim(x,+1/x,) exists. If L < 1, then (x,) converges and lim(x,) = 0. 

Proof. By 3.2.4 it follows that L 2:: 0. Let r be a number such that L < r < 1, and let 
e := r - L > 0. There exists a number K e N such that if n 2:: K then 

lx::t -Ll <e. 

lt~ollows from this (why?) that if n 2:: K, then 

X 
n+l < L + E = L + (r - L) = r. 
x, 

Therefore, if n 2:: K, we obtain 

0 2 n-K+l < x,+1 < x,r < x,_1r < · · · < xxr . 

If we set C :=xK/rx, we see that 0 <x,+1 < Cr"+1 for all n ~ K. Since 0 < r < 
1, it follows from 3.1.11(b) that lim(r") = 0 and therefore from Theorem 3.1.10 that 
lim(x,) = 0. Q.ED. 
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As an illustration of the utility of the preceding theorem, consider the sequence (x,.) 

given by x,. := n/2". We have 

x,.+l = n + 1 . 2" = ! (t + .!.) , 
x 2"+1 n 2 n ,. 

sothatlim(x,.+1/x,.) =~-Since~ < l,itfollowsfromTheorem3.2.11 thatlim(n/2") = 0. 

Exercises for Section 3.2 

1. For x,. given by the following formulas, establish either the convergence or the divergence of 

the sequence X= (x,.). 
n ·- (-1)" n 

(a) X := --, (b) X .- , 
11 n+1 " n+1 

n2 2n2 + 3 
(c) x,. := n + 1 ' (d) x,. := n2 + 1 . 

2. Give an example of two divergent sequences X and Y such that: 
(a) their sum X+ Y converges, (b) their product XY converges. 

3. Show that if X and Y are sequences such that X and X + Y are convergent, then Y is convergent. 

4. Show that if X and Y are sequences such that X converges to x :f: 0 and X Y converges, then Y 
converges. 

S. Show that the following sequences are not convergent. 
(a) (2"), (b) (( -l)"n2

). 

6. Find the limits of the following sequences: 

(a) lim ( (2 + l/n)2
). 

(c) lim(~~~). 

(b) lim ( ~-~); ). 

(d) lim (n + 1)· 
n,Jn 

7. If (b,.) is a bounded sequence and lim(a,.) = 0, show that lim(a,.b,.) = 0. Explain why Theorem 

3.2.3 cannot be'Wed. 

8. Explain why the result in equation (3) before Theorem 3.2.4 cannot be used to evaluate the limit 

of the sequence ( (1 + 1/n)"). 

9. Let Y,. := Jii'+T- .jn for n eN. Show that (y,.) and (Jny,.) converge. Find their limits. 

10. Determine the following limits. 
(a) lim((3.jn) 112n), (b) lim((n + 1)111n(n+l)). 

(
an+l + bn+l) 

11. If 0 < a < b, determine lim a" + b" · 

12. If a > 0, b > 0, show that lim (v'<n + a)(n +b) - n) = (a + b)/2. 

13. Use the Squeeze Theorem 3.2.7 to determine the limits of the following. 

(a) {nl/n2), (b) {<n!}l/n2). 

14. Show that if z,. := (a" + b") 1
'" where 0 < a < b, then lim(z,.) =b. 

15. Apply Theorem 3.2;11 to the following sequences, where a, b satisfy"O <a < 1. b > 1. 
(a) (a"), (b) (b"/2"), ' 

(c) (n/b"), (d) (23
" /3211

). 
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16. (a) Give an example of a convergent sequence (x,.) of positive numbers with lim(x,.+1/x,.) = 1. 
(b) Give an example of a divergent sequence with this property. (Thus, this property cannot be 

used as a test for convergence.) 

17. Let X= (x,.) be a sequence of positive real numbers such that lim(x,.+1/x,.) = L > 1. Show 
that X is not a bounded sequence and hence is not convergent. 

18. Discuss the convergence of the following sequences, where a, b satisfy 0 < a < 1, b > I. 
(a) (n2a"), / ~ (b) (b" jn2), - · 

(c) (b" /n!), (d) (n!/n"). 
. ( 

19. Let (x,.) be a sequence of positive real numbers such that lim(x~fn) = L < 1. Show that there 
exists a number r with 0 < r < 1 such that 0 < x,. < r" for all sufficiently large n eN. Use 
this to show that lim(x,.) = 0. 

20. (a) Give an example of a convergent sequence (x,.) of positive numbers with lim(x~'"> = 1. 
(b) Give an example of a divergent sequence (x,.) of positive numbers with lim(x~fn) = 1. 

(Thus, this property cannot be used as a test for convergence.) 

21. Suppose that (x,.) is a convergent sequence and (y,.) is such that for any £ > 0 there exists M 
such that lx,.- Y,.l < e for all n ::: M. Does it follow that (y,.) is convergent? 

22. Show that if (x,.) and (y,.) are convergent sequences, then the sequences (u,.) and (v,.) defined 
by u,. := max{x,., Y,.} and v,. := min{x,., Y,.} are also convergent. (See Exercise 2.2.16.) · 

23. Show that if (x,.), (y,.), (z,.) are convergent sequences, then the sequence (w,.) defined by 
w,. := mid{x,.. y,.. z,.} is also convergent. (See Exercise 2.2.17.) 

Section 3.3 Monotone Sequences 

Until now, we have obtained several methods of showing that a sequence X = (x,.) of real 
numbers is convergent: 

(i) We can use Definition 3.1.3 or Theorem 3.1.5 directly. This is often (but not 
always) difficult to do. 

(ii) We can dominate lx,. - xl by a multiple of the tenns in a sequence (a,.) known 
to converge to 0, and employ Theorem 3.1.10. 

(iii) We can identify X as a sequence obtained from other sequences that are known 
to be convergent by taking tails, algebraic combinations, absolute values, or square roots, 
and employ Theorems 3.1.9, 3.2.3, 3.2.9, or 3.2.10. 

(iv) We can "squeeze" X between two sequences that converge to the same limit and 
use Theorem 3.2.7. 

( v) We can use the "ratio test" of Theorem 3.2.11. 

Except for (iii), all of these methods require that we already know (or at least suspect) the 
value of the limit, and we then verify that our suspicion is correct. 

There are many instances, however, in which there is no obvious candidate for the limit 
of a sequence, even though a preliminary analysis may suggest that convergence is likely. In 
this and the next two sections, we shall establish results that can be used to show a sequence 
is convergent even though the value of the limit is not known. The method we introduce in 
this section is more restricted in scope than the methods we give in the next two, but it is 
much easier to employ. It applies to sequences that 8re monotone in the following sense. 



3.3 MONaroNE SEQUENCES 69 

3.3.1 Definition Let X = (x
11

) be a sequence of real numbers. We say that X is increasing 
if it satisfies the inequalities 

x 1 < x2 < · .. < X < X I < .... 
- - - 11- 11+ -

We say that X is decreasing if it satisfies the inequalities 

x
1 

> x
2 

> ... > X > X I > .... 
- - - 11- 11+ -

We say that X is monotone if it is either increasing or decreasing. 

The following sequences are increasing: 

(1, 2, 3, 4, ... , n, .. ·), 
( 2 3 II ) a, a , a , ... , a , ... 

The following sequences are decreasing: 

(1, 2, 2, 3, 3, 3, 0 0 
·), 

if a > 1. 

(1, 1/2, 1/3, · · ·, 1/n, .. ·), (1, 1/2, 1/22
, ••• , 1/211

-
1

, •• ·), 

( b' b2
' b3

' 0 0 ° ' b11
' 

0 0 0

) if 0 < b < 1. 

The following sequences are not monotone: 

( • · n+l ) +1,-1,+1,···,(-1) ,···' (-1, +2, -3, ... , (-1)11 n .. ·) 

The following sequences are not monotone, but they are "ultimately" monotone: 

(7, 6, 2, 1, 2, 3, 4, 0 0 
·), ( -2, 0, 1, 1/2, 1/3, 1/4, 0 0 

·). 

3.3.2 Monotone Convergence Theorem A monotone sequence of real numbers is con
vergent if and only if it is bounded. Further: 

(a) If X= (x
11

) is a bounded increasing sequence, then 

lim(x,.) = sup{x
11 

: n e N}. 

(b) If Y = (y 
11

) is a bounded decreasing sequence, then 

lim(y,.) = inf{y,. : n e N}. 

Proof. It was seen in Theorem 3.2.2 that a convergent sequence must be bounded. 
Conversely, let X be a bounded monotone sequence. Then X is either increasing or 

decreasing. 
(a) We first treat the case where X= (x

11
) is a bounded, increasing sequence. Since 

X is bounded, there exists a real number M such that x
11 

::: M for all n e N. According to 
the Completeness Property 2.3.6, the supremumx• = sup{x,. : n eN} exists in R; we will 
show that x• = lim(x

11
). 

If e > 0 is given, then x• - e is not an upper bound of the set {x
11 

: n e N}, and hence 
there exists a member of set Xx such that x•- £ < Xx· The fact that X is an increasing 
sequence implies that x K < X11 whenever n ~ K, so that 

x• - £ < x K :=: x,. ::; x• < x• + £ forall n ~ K. 

Therefore we have 

for all n > K. 

Since e > 0 is arbitrary, we conclude that (x,.) converges to x•. 



t 

70 CHAPTER 3 SEQUENCES AND SERIES 

(b) If Y = (yn) is a bounded decreasing sequence, then it is clear that X:= -Y = 
(-y n) is a bounded increasing sequence. It was shown in part (a) that lim X = sup{-y n : 

n eN}. Now lim X= -limY and also, by Exercise 2.4.4(b), we have 

sup{-yn : n EN}=- inf{yn: n EN}. 

Therefore limY= -lim X= inf{yn : n EN}. Q.E.D. 

The Monotone Convergence Theorem establishes the existence of the limit of a 
bounded monotone sequence. It also gives us a way of calculating the limit of the se
quence provided we can evaluate the supremum in case (a), or the infimum in case (b). 
Sometimes it is difficult to evaluate this supremum (or infimum), but once we know that it 
exists, it is often possible to evaluate the limit by other methods. 

3.3.3 Examples (a) lim(11 .Jii) = 0. 
It is possible to handle this sequence by using Theorem 3.2.10; however, we shall 

use the Monotone Convergence Theorem. Clearly 0 is a lower bound for the set {11~: 
n e N}, and it is not difficult to show that 0 is the infimum of the set { 1 I~: n e N}; hence 
0 = lim(11~). 

On the other hand, once we know that X := ( 1 I~) is bounded and decreasing, we 
know that it converges to some real number x. Since X = ( 1 I .Jii) converges to x, it follows 
from Theorem 3.2.3 that X · X = ( 1 In) converges to x 2. Therefore x 2 = 0, whence x = 0. 

(b) Let xn := 1 + 112 + 113 + · · · + 11n for n EN. 
Since xn+l = xn + 11(n + 1) > xn, we see that (xn) is an increasing sequence. By the 

Monotone Convergence Theorem 3.3.2, the question of whether the sequence is convergent 
or not is reduced to the question of whether the sequence is bounded or not. Attempts to use 
direct numerical calculations to arrive at a conjecture concerning the possible boundedness 
of the sequence (xn) lead to inconclusive frustration. A computer run will reveal the 
approximate values xn ~ 11.4 for n = 50, 000, and xn ~ 12.1 for n = 100,000. Such 
numerical facts may lead the casual observer to conclude that the sequence is bounded. 
However, the sequence is in fact divergent, which is established by noting that 

X 11 = 1 + ~ + (~ + ~) + • • • + ( 
1 

+ • • • + ..!..) 2 2 3 4 2n-l + 1 2n 

> l+~+U+D+···+Gn +···+;n) 
1 1 1 

= 1+2+2+···+2 
n 

= 1+2. 

Since (xn) is unbounded, Theorem 3.2.2 implies that it is divergent. 
The terms xn increase extremely slowly. For example, it can be shown that to achieve 

xn > 50 would entail approximately 5.2 x Io21 additions, and a normal computer perform
ing 400 million additions a second would require more than 400,000 years to perform 
the calculation (there are 31,536,000 seconds in a year). Even a supercomputer that can 
perform more than a trillion additions a second, would take more than 164 years to reach 
that modest goal. 0 

Sequences that are defined inductively must be treated differently. H such a sequence 
is known to converge, then the value of the limit can sometimes be determined by using the 
inductive relation. 
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For example, suppose that convergence has been established for the sequence (xn) 
defined by 

1 
xn+t = 2 + -, n eN. 

xn 

If we let x = lim(xn), then we also have x = lim(xn+l) since the 1-tail (xn+l) converges 
to the same limit. Further, we see that xn > 2, so that x =F 0 and xn =I= 0 for all n eN. 
Therefore, we may apply the limit theorems for sequences to obtain 

X= lim(xn+l) = 2 + liml ) = 2 + .!.. 
(xn x 

Thus, the limit x is a solution of the quadratic equation x2 - 2x - 1 = 0, and since x must 
be positive, we find that the limit of the sequence is x = 1 + ../2. 

Of course, the issue of convergence must not be ignored or casually assumed. For ex
ample, if we assumed the sequence (yn) defined by y1 := 1, Yn+l := 2yn + 1 is convergent 
with limit y, then we would obtain y = 2 y + 1, so that y = -1. Of course, this is absurd. 

In the following examples, we employ this method of evaluating limits, but only after 
carefully establishing convergence using the Monotone Convergence Theorem. Ac;lditional 
examples of this type will be given in Section 3.5. • 

3.3.4 Examples (a) Let Y = (yn) be defined inductively by y1 := 1, Yn+l := ~(2yn + 
3) for n ~ 1. We shall show that limY= 3/2. 

Direct calculation shows that y2 = 5/4. Hence we have y1 < y2 < 2. We show, by 
Induction, that y n < 2 for all n e N. Indeed, this is true for n = 1, 2. If y k < 2 holds for 
some keN, then 

Yk+l = ~(2yk + 3) < ~(4 + 3) = ~ < 2, 

so that yk+I < 2. Therefore Yn < 2 for all n eN. 
We now show, by Induction, that y n < y n+ 1 for all n e N. The truth of this assertion has 

been verified for n = 1. Now suppose that yk < yk+l for some k; then 2yk + 3 < 2yk+l + 3, 
whence it follows that 

yk+l = ~(2yk + 3) < ~(2yk+l + 3) = yk+2" 

Thus yk < yk+l implie~ that yk+l < yk+2. TherefQre Yn < Yn+l for all n eN. 
We have shown that the sequence Y = (y n> is increasing and bounded above by 2. 

It follows from the Monotone Convergence Theorem that Y converges to a limit that is 
at most 2. In this case it is not so easy to evaluate lim(y n) by calculating sup{y n: n e N}. 
However, there is another way to evaluate its limit. Since Yn+l = ~(2yn + 3) for all n eN, 
the nth term in the 1-tail Y1 of Y has a simple algebraic relation to the nth term of Y. Since, 
by Theorem 3.1.9, we have y := lim Y1 = limY, it therefore follows from Theorem 3.2.3 
(why?) that 

y = ~(2y + 3), 

from which it follows that y = 3/2. 

(b) Let Z = (zn) be the sequence of real numbers defined by z1 := 1, zn+l := J2i:. for 
1 e N. We will show that lim(zn) = 2. 

Note that z1 = 1 and ~ = ../2; hence 1 ~ z1 < ~ < 2. We claim that the sequence 
~ is increasing and bounded above by 2. To show this we will show, by Induction, that 
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1 ~ Z
11 

< Z
11
+1 < 2 for all n eN. This fact has been verified for n = 1. Suppose that it 

true for n = k; then 2 ~ 2zA: < 2zA:+I < 4, whence it follows (why?) that 

1 < h ~ zA:+I = Fz; < zA:+l = J2zA:+I < .J4 = 2. 

[In this last step we have used Example 2.1.13(a).] Hence the validity of the inequality I 
z" < zlc+l < 2 implies the validity of I ~ zlc+l < zlc+l < 2. Therefore 1 ~ Z11 < Z11+1 < 
for all n eN. 

Since Z = (z
11

) is a bounded increasing sequence, it follows from the Monoto 
Convergence Theorem that it converges to a number z := sup{z

11
}. It may be shown direc1 

that sup{z
11

} = 2, so that z = 2. Alternatively we may use the method employed in part(~ 
The relation Z

11
+ 1 = ,ffi;. gives a relation between the nth term of the 1-tail Z 1 of Z and t 

nth term of Z. By Theorem 3.1.9, we have limZ1 = z = limZ. Moreover, by Theoret 
3.2.3 and 3.2.10, it follows that the limit z must satisfy the relation 

Z= -Jfi. 
Hence z must satisfy the equation z 2 = 2z which has the roots z = 0, 2. Since the terms 
z = (z

11
) all satisfy 1 ~ z

11 
~ 2, it follows from Theorem 3.2.6 that we must have I ~ z ~ 

Therefore z = 2. 

The Calculation of Square Roots 

We now give an application of the Monotone Convergence Theorem to the calculation 
square roots of positive numbers. 

3.3.5 Example Let a > 0; we will construct a sequence (s
11

) of real numbers that co 
verges to Ja. 

Let s1 > 0 be arbitrary and define s
11
+1 := !<s

11 
+ ajs

11
) for n eN. We now show th 

the sequence (s
11

) converges to Ja. (This process for calculating square roots was kno~ 
in Mesopotamia before 1500 B.C.) 

We first show that s; ~a for n ~ 2. Since s
11 

satisfies the quadratic equation s; 
2s

11
+1s11 

+a = 0, this equation has a real root. Hence the discriminant 4s;+l - 4a must 1 
nonnegative; that is, s;+l ~a for n > I. 

To see that (s
11

) is ul~ing, we note that for n ~ 2 we have 

s - s = s -! (s + ~) =!. (s;- a) > 0 
II 11+1 II 2 II S 2 S - • 

II II 

Hence, s
11
+1 ~ s11 

for all n ~ 2. The Monotone Convergence Theorem implies that s :: 
lim(s

11
) exists. Moreover, from Theorem 3.2.3, the limits must satisfy the relation 

s = i (s + ~), 
whence it follows (why?) that s = afs or s2 =a. Thus s = Ja. 

For the purposes of calculation, it is often important to have an estimate of how rapid1 
the sequence (s

11
) converges to Ja. As above, we have Ja ~ s

11 
for all n > 2, whence 

follows that ajs
11 
~ Ja ~ S

11
• Thus we have 

0 < S
11 
-../a~ S

11 
- afs, = (s;- a)fs, for n > 2. 

Using this inequality we can calculate Jato any desired degree of accuracy. 
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Euler's Number ------------------------

We conclude this section by introducing a sequence that converges to one of the most 
important "transcendental" numbers in mathematics, second in importance only to 1r. 

3.3.6 Example Let e,. := (1 + 1/n)" for n eN. We will now show that the sequence 
E = (e,.) is bounded and increasing; hence it is convergent. The limit of this sequence is 
the famous Euler number e, whose approximate value is 2. 718 281 828 459 045 · · ·, which 
is taken as the base of the "natural" logarithm. 

H we apply the Binomial Theorem, we have 

e = 1+- =1+-·-+ ·-+ ·-( 
1 )" n 1 n(n - 1) 1 n(n - 1)(n - 2) 1 

,. n 1 n 2! n2 3! n3 

n(n - 1) · · · 2 · 1 1 
+···+ ·-. 

n! n" 
H we divide the powers of n into the terms in the numerators of the binomial coefficients, 
we get 

e = 1 + 1 + ~ (1 - .!.) + ~ (1 - .!.) (1 - ~) 
" 2! n 3! n n 

+ ... + :, ( 1 -D ( 1 -D ... ( 1 - n n 1) . 
Similarly we have 

e = 1 + 1 + ~ (1 - -
1 

) + ~ (1 - -
1 

) (1 --2 
) n+l 2! n + 1 3! n + 1 n + I 

+ ... + _.!._ (1 - -
1 

) (1 - -
2 

) ... (1 - ~) 
n! n+1 n+1 n+l 

+ (n: 1)! ( 1 -n ~ 1) ( 1 - n! 1) · · · ( 1 -n: 1) · 
Note that the expression fore,. contains n + 1 terms, while that for e,.+1 contains n + 2 
terms. Moreover, each term appearing in e,. is less than or equal to the corresponding term 
in e,.+1, and e,.+1 has one more positive term. Therefore we have 2 ~ e1 < e2 < · · · < e,. < 
e,.+1 < · · ·, so that the terms of E are increasing. 

To show that the terms of E are bounded above, we note that if p = 1, 2, · · ·, n, then 
(1 - pfn) < 1. Moreover 2p-l ~ p! [see 1.2.4(e)] so that 1/ p! ~ 1j2P-1

• Therefore, if 
n > 1, then we have 

1 1 1 
2 < e < 1 + 1 + - + - + · · · + -. ,. 2 22 2"-1 

Since it can be verified that [see 1.2.4(f)] 

1 1 1 1 
-+-+···+-=1--<1 
2 22 2"-1 2"-1 ' 

we deduce that 2 < e,. < 3 for all n e N. The Monotone Convergence Theorem implies 
that the sequence E converges to a real number that is between 2 and 3. We define the 
1umber e to be the limit of this sequence. 

By refining our estimates we can find closer rational approximations to e, but we cannot 
:valuate it exactly, since e is an irrational number. However, it is possible to calculate e to 
as many decimal places as desired. The reader should use a calculator (or a computer) to 
~valuate e,. for "large" values of n. D 
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Leonhard Euler 
Leonhard Euler (1707-1783) was born near Basel, Switzerland. His clergy
man father hoped that his son would follow him into the ministry, but when 
Euler entered the University of Basel at age 14, his mathematical talent was 
noted by Johann Bernoulli, who became his mentor. In 1727, Euler went 
to Russia to join Johann's son, Daniel, at the new St. Petersburg Academy. 
There he met and married Katharina Gsell, the daughter of a Swiss artist. 
During their long marriage they had 13 children, but only five survived 
childhood. 

In 1741, Euler accepted an offer from Frederick the Great to join the Berlin Academy, where 
he stayed for 25 years. During this period he wrote landmark books on calculus and a steady stream 
of papers. In response to a request for instruction in science from the Princess of Anhalt-Dessau, 
he wrote a multi-volume work on science that became famous under the title Leners to a German 
Princess. 

In 1766, he returned to Russia at the invitation of Catherine the Great. His eyesight had 
deteriorated over the years, and soon after his return to Russia he became totally blind. Incredibly, 
his blindness made little impact on his mathematical output, for he wrote several books and over 
400 papers while blind. He remained busy and active until the day of his death. 

Euler's productivity was remarkable: he wrote textbooks on physics, algebra, calculus, real 
and complex analysis, analytic and differential geometry, and the calculus of variations. He also 
wrote hundreds of original papers, many of which won prizes. A current edition of his collected 
works consists of 74 volumes. 

Exercises for Section 3.3 

1. Let x 1 := 8 and x +I := ~x + 2 for n eN. Show that (x ) is bounded and monotone. Find the n - n n 
limit. 

2. Let x 1 > 1 and xn+l := 2- lfxn for n eN. Show that (xn) is bounded and monotone. Find the 
limit. 

3. Let x 1 :::, 2 and xn+l := 1 + Jxn- 1 for n eN. Show that (xn) is decreasing and bounded 
below by 2. Find the limit. 

4. Let x 1 := 1 and xn+l := J2 + xn for n eN. Show that (xn) converges and find the limit. 

5. Let y1 := ,JP, where. p > 0, and Yn+l := Jp + Yn for n eN. Show that (yn) converges and 
find the limit. [Hint: One upper bound is 1 + 2-JP.] 

6. Let a > 0 and let z1 > 0. Define zn+l := Ja + zn for n eN. Show that (zn) converges and find 
the limit. 

7. Let x 1 :=a > 0 and xn+l := xn + 1/xn for n eN. Determine if (xn) converges or diverges. 

8. Let (an) be an increasing sequence, (bn) a decreasing sequence, and assume that an ~ bn for 
all n e N. Show that lim(an) ~ lim(bn)' and thereby deduce the Nested Intervals Property 2.5.2 
from the Monotone Convergence Theorem 3.3.2. 

9. Let A be an infinite subset of 1R. that is bounded above and let u := sup A. Show there exists an 
increasing sequence (xn) with xn e A for all n eN such that u = lim(xn>· 

10. Let (xn) be a bounded sequence, and for each n eN let sn := sup{xk : k ~ n} and tn := inf{xk : 
k::: n}. Prove that (sn) and (tn) are monotone and convergent. Also prove that if lim(sn) = 
lim(tn), then (xn) is convergent. [One calls lim(sn) the Umlt superior of (xn), and lim(tn) the 
Umit inferior of (x n ). ] 
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11. Establish the convergence or the divergence of the sequence (y n ), where 

1 1 1 
Yn := n + 1 + n + 2 + ... + 2n for n eN. 

12. Letxn := 1/12 + 1/22 + · · · + l/n2 foreachn eN. Prove that (xn) is increasing and bounded, 
and hence converges. [Hint: Note that if k 2: 2, then 1/ k2 ~ 1/ k(k- 1) = 1/(k- 1)- 1/ k.] 

13. Establish the convergence and find the limits of the following sequences. 
(a) ( (1 + 1/n)n+l ), (b) ( (1 + 1/n)ln), 

(c) ( ( 1 + n : 
1

) "). (d) ( (1 - 1/n)"). 

14. Use the method in Example 3.3.5 to calculate -/2, correct to within 4 decimals. 

15. Use the method in Example 3.3.5 to calculate ../5, correct to within 5 decimals. 

16. Calculate the number en in Example 3.3.6 for n = 2, 4, 8, 16. 

17. Use a calculator to compute en for n =50, n = 100, and n = 1,000. 

Section 3.4 ... Subsequences and the Bolzano-Weierstrass Theorem 

In this section we will introduce the notion of a subsequence of a sequence of real numbers. 
Informally, a subsequence of a sequence is a selection of terms from the given sequence 
such that the selected terms form a new sequence. Usually the selection is made for a definite 
purpose. For example, subsequences are often useful in establishing the convergence or the 
divergence of the sequence. We will also prove the important existence theorem known as 
the Bolzano-Weierstrass Theorem, which will be used to establish a number of significant 
results. 

3.4.1 Definition Let X= (xn) be a sequence of real numbers and let n 1 < n2 < · · · < 
nlc < · · ·be a stri~,8~ igcreas_!n' ~quence of natural numbers. Then the sequence X' = (x"t) 
given by 

(xn ' xn ' ... ' xn ' .. ·) 
I 2 lc 

is called a subsequence of X. 

For example, if X := ( t, 4, l, ···),then the selection of even indexed terms produces 
the subsequence 

X' = (! ! ! . . . _!_ .. ·) 
2'4'6' '2/c' ' 

where n 1 = 2, n2 = 4, · · ·, nlc = 2k, · · ·. Other subsequences of X= (1/n) are the fol
lowing: 

G· ~· ~· .. ·, 2k ~I' .. } (;,. ~~· ~~·. ··, (~)!'. ·} 

The following sequences are not subsequences of X = ( 1 In): 

G. I. ~. ~. ~. ~ ... } G. o. ~. o. ~. o ... } 
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A tail of a sequence (see 3.1.8) is a special type of subsequence. In fact, the m-ta 
corresponds to the sequence of indices 

n 1 = m + 1, n2 = m + 2, · · ·, n/c = m + k, · · ·. 

But, clearly, not every subsequence of a given sequence need be a tail of the sequence. 
Subsequences of convergent sequences also converge to the same limit, as we no~ 

show. 

3.4.2 Theorem If a sequence X = (x,.) of real numbers converges to a real number J 

then any subsequence X' = (x,. ) of X also converges to x. 
A: 

Proof. Let e > 0 be given and let K(e) be such that if n ~ K(e), then lx,.- xl < l 

Since n 1 < n2 < · · · < n" < · · · is an increasing sequence of natural numbers, it is easil 
proved (by Induction) that n" > k. Hence, if k ~ K(e), we also haven" ~ k ~ K(e) s 
that lx,. - xl <e. Therefore the subsequence (x,. ) also converges to x. Q.E.I 

A: A: 

3.4.3 Example (a) lim(b") = 0 ifO <'b < 1. 
We have already seen, in Example 3.1.11(b), that if 0 < b < 1 and if x,. := b", the 

it follows from Bernoulli's Inequality that lim(x,.) = 0. Alternatively, we see that sine 
0 < b < 1, then x,.+1 = bn+l < b" = x,. so that the sequence (x,.) is decreasing. It i 
also clear that 0 ~ x,. ~ 1, so it follows from the Monotone Convergence Theorem 3.3. 
that the sequence is convergent. Let x := limx,.. Since (x211 ) is a subsequence of (x,. 
it follows from Theorem 3.4.2 that x = lim(x211 ). Moreover, it follows from the relatio 
x211 = b 211 = (b")2 = x; and Theorem 3.2.3 that 

x = lim(x211 ) = {lim(x,.))
2 = x2. 

Therefore we must either have x = 0 or x = 1. Since the sequence (x,.) is decreasing an 
bounded above by b < 1, we deduce that x = 0. 
(b) lim(c1111

) = I for c > 1. 
This limit has been obtained in Example 3 .1.11 (c) for c > 0, using a rather ingeniou 

argument. We give here an alternative approach for the case c > 1. Note that if z,. := c1111 

then z,. > 1 and z,.+1 < z,. for all n eN. (Why?) Thus by the Monotone Convergenc~ 
Theorem, the limit z := lim(z,.) exists. By Theorem 3.4.2, it follows that z = lim(~). IJ 
addition, it follows from the relation · 

~ = cl/211 = (clln)l/2 = z!12 

and Theorem 3.2.1 0 that 

z = lim(Zm) = {lim(z,.)) 1/2 = z112. 

Therefore we have r = z whence it follows that either z = 0 or z = 1. Since z,. > 1 for a1 
n eN, we deduce that z = 1. 

We leave it as an exercise to the reader to consider the case 0 < c < 1. [ 

The following result is based on a careful negation of the definition oflim(x,.) = x. l 
leads to a convenient way to establish the divergence of a sequence. 

3.4.4 Theorem Let X= (x,.) be a sequence of real numbers. Tben the following 811 

equivalent: 

(i) The sequence X = (x,.) does not converge to x e R.. 
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(H) There exists an Eo > 0 such that for any keN, there exists nk eN such that nk ::: k 
and lx,.A: - xI ::: E0• 

(ill) There exists an Eo > 0 and a subsequence X' = (x,.A:) of X such that lx,.A: - xI ::: Eo 

for all keN. 

Proof. (i) => (ii) If (x,.) does not converge to x, then for some Eo > 0 it is impossible to 
find a natural number k such that for all n ::: k the terms x,. satisfy lx,. - xl < E0• That is, 
for each keN it is not true that for all n ::: k the inequality lx,. - xl < Eo holds. In other 
words, for each keN there exists a natural number nk > k such that lx,. - xl ::: E0• 

(ii) => (iii) Let Eo be as in (ii) and let n 1 e N be such that n 1 ::: 1 ~d lx,. - xI ::: E0• 
I 

Now let n2 e N be such that n2 > n 1 and lx,.
2 

- xI ::: E0 ; let n3 e N be such that n3 > n2 

and lx,. - xl ::: E0• Continue in this way to obtain a subsequence X'= (x ) of X such 
3 nA: 

that lx,. - ..tl ::: Eo for all k e N. 
A: 

(iii)=> (i) Suppose X= (x,.) has a subsequence X' = (x,. ) satisfying the condition 
lc 

in (iii). Then X cannot converge to x; for if it did, then, by Theorem 3.4.2, the subsequence 
X' would also converge to x. But this is impossible, since none of the terms of X' belongs 
to the E0-neighborhood of x. Q.E.D. 

Since all subsequences of a convergent sequence must converge to the same limit, 
we have part (i) in the following result. Part (ii) follows from the fact that a convergent 
sequence is bounded. 

3.4.5 Divergence Criteria H a sequence X= (x,.) of real numbers has either of the 
following properties, then X is divergent. 
(i) X has two convergent subsequences X'= (x,. ) and X"= (x, ) whose limits are not 

A: A: 
equal. 

(ii) X is unbounded. 

3.4.6 Examples (a) The sequence X := (( -111
)) is divergent. 

The subsequence X' := ( ( -1 )211 ) = ( 1, 1, · · ·) converges to 1, and the subsequence 
X":= ((-1)211 - 1) = (-1, -1, ···)converges to -1. Therefore, we conclude from Theo
rem 3.4.5(i) that X is divergent. 

(b) The sequence ( 1, ! , 3, ! , · · ·) is divergent. 
This is the sequence Y = (y,.), where y,. = n if n is odd, and y,. = 1 In if n is even. 

It can easily be seen that Y is not bounded. Hence, by Theorem 3.4.5(ii), the sequence is 
divergent. 

(c) The sequenceS:= (sinn) is divergent. 
This sequence is not so easy to handle. In discussing it we must, of course, make use 

of elementary properties of the sine function. We recall that sin(1r /6) = ! = sin(51r /6) 
and that sinx > ! for x in the interval I1 := (1r /6, S1r /6). Since the length of I1 is S1r /6-
1r /6 = 21r /3 > 2, there are at least two natural numbers lying inside I 1; we let n 1 be the 
first such number. Similarly, for each k eN, sinx > ! for x in the interval 

lie := (1r /6 + 21r(k- 1), 511' /6 + 21r(k- 1) ). 

Since the length of I k is greater than 2, there are at least two natural numbers lying inside 
- lk; we let nk be the first one. The subsequenceS':= (sinnk) of S obtained in this way has 
the property that all of its values lie in the interval [! , 1]. 
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Similarly, if k eN and Jlc is the interval 

Jlc := (7n/6+27r(k -1), 117r/6+21r(k -1)), 

then it is seen that sin x < -! for all x e Jlc and the length of Jlc is greater than 2. Let m lc 
be the first natural number lying in Jlc. Then the subsequenceS" := (sinmlc) of S has the 
property that all of its values lie in the interval [ -1, - i]. 

Given any real number c, it is readily seen that at least one of the subsequences S' 
and S" lies entirely outside of the i -neighborhood of c. Therefore c cannot be a limit of S. 
Since c e 1R is arbitrary, we deduce that S is divergent. D 

TbeE~renceof~onoroneSubRquenc~ --------------------------------------------------------

While not every sequence is a monotone sequence, we will now show that every sequence 
has a monotone subsequence. 

3.4. 7 Monotone Subsequence Theorem If X = (x,.) is a sequence of real numbers, then 
there is a subsequence of X that is monotone. 

Proof. For the puq)ose of this proof, we will say that the mth term xm is a "peak" if 
xm 2:: x,. for all n such that n 2:: m. (That is, xm is never exceeded by any term that follows 
it in the sequence.) Note that, in a decreasing sequence, every term is a peak, while in an 
increasing sequence, no term is a peak. 

We will consider two cases, depending on whether X has infinitely many, or finitely 
many, peaks. 

Case 1: X has infinitely many peaks. In this case, we list the peaks by increasing 
subscripts: xm , xm , · · · , xm , · · ·. Since each term is a peak, we have 

I 2 k 

Therefore, the subsequence (xm ) of peaks is a decreasing subsequence of X. 
k 

Case 2: X has a finite number (possibly zero) of peaks. Let these peaks be listed by 
increasing subscripts: xm 'xm ' ... 'xm . Lets. := mr + 1 be the first index beyond the last 
peak. Since x s is not a ~ak, tf.ere exist~ s2 > s 1 such that x s < x s • Since x s is not a peak, 
there exists s3

1 
> s2 such that xs < xs . Continuing in this

1 
way, ~e obtain

2 
an increasing 

2 3 
subsequence (x s ) of X. Q.E.D. 

k 

It is not difficult to see that a given sequence may have one subsequence that is 
increasing, and another subsequence that is decreasing. 

The Bolzano-Weierstrass Theorem -----------------

We will now use the Monotone Subsequence Theorem to prove the Bolzano-Weierstrass 
Theorem, which states that every bounded sequence has a convergent subsequence. Because 
of the importance of this theorem we will also give a second proof of it based on the Nested 
Interval Property. 

3.4.8 The Bolzano-Weierstrass Theorem A bounded sequence of real numbers has a 
convergent subsequence. 

First Proof. It follows from the Monotone Subsequence Theorem that if X= (x,.) is 
a bounded sequence, then it has a subsequence X'= (x,. ) that is monotone. Since this 

" 
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subsequence is also bounded, it follows from the Monotone Convergence Theorem 3.3.2 
that the subsequence is convergent. Q.E.D. 

Second Proof. Since the set of values {x,. : n e N} is bounded, this set is contained in an 
interval I 1 := [a, b]. We take n 1 := 1. 

We now bisect I 1 into two equal subintervals I{ and I;', and divide the set of indices 
{n eN: n > 1} into two parts: 

A1 := {n eN: n > nl' x,. e I;J, B1 = {n eN: n > nl' x,. e I;'}. 

If A1 is infinite, we take I2 := I{ and let n2 be the smallest natural number in A1• (See 
1.2.1.) If A1 is a finite set, then B1 must be infinite, and we take I2 := I;' and let n2 be the 
smallest natural number in B 1• 

We now bisect I2 into two equal subintervals I~ and I~', and divide the set {n eN: 
n > n2} into two parts: 

A2 = {n e N : n > n2 , x,. e I~}, B2 := {n e N : n > n2 , x,. e I~'} 

If A 2 is infinite, we take I3 :=I~ and let n3 be the smallest natural number in A 2• If A 2 is a 
finite set, then B2 must be infinite, and we take I3 := I~' and let n3 be the smallest natural 
number in B2• 

We continue in this way to obtain a sequence of nested intervals I 1 :> I2 :> · · · :> I/c :> 
· · · and a subsequence (x,. ) of X such that x,. e I/c fork e N. Since the length of I/c is 

k k 

equal to (b- a)/2/c-l, it follows from Theorem 2.5.3 that there is a (unique) common point 
~ e I/c for all k eN. Moreover, since x,. and~ both belong to I/c, we have 

k 

lx,. -~1 ~ (b-a)/2/c-l, 
lc 

whence it follows that the subsequence (x,. ) of X converges to ~. 
lc 

Q.E.D. 

Theorem 3.4.8 is sometimes called the Bolzano-Weierstrass Theorem for sequences, 
because there is another version of it that deals with bounded sets in 1R (see Exercise 11.2.6). 

It is readily seen that a bounded sequence can have various subsequences that converge 
to different limits or even diverge. For example, the sequence ( ( -1 )11

) has subsequences 
that converge to -1, other subsequences that converge to + 1, and it has subsequences that 
diverge. 

Let X be a sequence of real numbers and let X' be a subsequence of X. Then X' is a 
sequence in its own right, and so it has subsequences. We note that if X" is a subsequence 
of X', then it is also a subsequence of X. 

3.4.9 Theorem Let X = (x,.) be a bounded sequence of real numbers and let x e 1R have 
the property that eve.ry convergent subsequence of X converges to x. Then the sequence X 
converges to x. 

Proof. Suppose M > 0 is a bound for the sequence X so that lx,.l ~ M for all n eN. 
If X does not converge to x, then Theorem 3.4.4 implies that there exist Eo > 0 and a 
subsequence X'= (x,. ) of X such that 

lc • 

(1) lx,.lc - xl :::=: Eo for all k e N. 

Since X' is a subsequence of X, the number M is also a bound for X'. Hence the Bolzano
Weierstrass Theorem implies that X' has a convergent subsequence X". Since X" is also a 
subsequence of X, it converges to x by hypothesis. Thus, its tenns ultimately belong to the 
E0-neighborhood of x, contradicting (1). Q.E.D. 
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: \ Exercises for Section 3.4 
-:1. K1 . - -e..-........ "" s--· 
. Bivc: ~ ~81Jlple of an unbounded sequence that has a convergent subsequence. 

2. Use the method of Example 3.4.3(b) to show that ifO < c < 1, then lim(c1fn) = 1. 

3. Let (/
11

) be the Fibonacci sequence of Example 3.1.2(d), and let X
11 

:= /
11
+1//11

• Given that 
lim(x

11
) = L exists, determine the value of L. -.... 

4. Show that the following sequences are divergent. 
(a) {1- (-1)11 + 1/n), (b) (sinnn-/4). 

5. Let X= (x
11

) and Y = (y
11

) be given sequences, and let the "shufHed" sequence Z = (z
11

) be 
defined by z1 := x 1, ~ := y1, • • ·, z2n-l := X

11
, ~ := y

11
, ···.Show that Z is convergent if and 

only if both X and Y are convergent and lim X = lim Y. 

6. Let X
11 

:= n 11n for n eN. 
(a) Show that xn+l < X

11 
if and only if (1 + 1/n)" < n, and infer that the inequality is valid 

for n ~ 3. (See Example 3.3.6.) Conclude that (x
11

) is ultimately decreasing and that 
x := lim(x

11
) exists. 

(b) Use the fact that the subsequence (x2n) also converges to x to conclude that x = 1. 

7. Establish the convergence and find the limits of the following sequences: 

(a) ( (1 + 1/n2
)"

2
), (b) ( (1 + 1/2n)11

), 

(c) (o + 1/n2)2n
2
), (d) (0 + 2/n)"). 

8. Determine the limits of the following. 
(a) ( (3n) l/2n), (b) ( (1 + 1/2n)3n). 

9. Suppose that every subsequence of X = (x n) has a subsequence that converges to 0. Show that 
lim X= 0. 

10. Let (x
11

) be a bounded sequence and for each n eN let S
11 

:= sup(xk: k ~ n} and S := inf(s
11

}. 

Show that there exists a subsequence of (x n) that converges to S. 

11. Suppose that x 
11 
~ 0 for all n e N and that lim ( ( -1 )" x n) exists. Show that (x,.) converges. 

12. Show that if (x ) is unbounded, then there exists a subsequence (x ) such that lim( 1 1 x ) = 0. 
n nlc nlc 

13. If X
11 

:= ( -1)11 jn, find the subsequence of (x,.) that is constructed in the second proof of the 
Bolzano-Weierstrass Theorem 3.4.8, when we take / 1 := [-1, 1]. 

14. Let (x
11

) be a bounded sequence and lets := sup(x,.: n eN}. Show that if s ~ (x,.: n eN}, then 
there is a subsequence of (x,.) that converges to s. 

15. Let (/
11

) be a nested sequence of closed bounded intervals. For each n eN, let x,. e /,..Use the 
Bolzano-Weierstrass Theorem to give a proof of the Nested Intervals Property 2.5.2. 

16. Give an example to show that Theorem 3.4.9 fails if the hypothesis that X is a bounded sequence 
is dropped. 

Section 3.5 The Cauchy Criterion 

The Monotone Convergence Theorem is extraordinarily useful and important, but it has the 
significant drawback that it applies only to sequences that are monotone. It is important for 
us to have a condition implying the convergence of a sequence that does not require us to 
know the value of the limit in advance, and is not restricted to monotone sequences. The 
Cauchy Criterion, which will be established in this section, is such a condition. 



3.5 THE CAUCHY CRITERION 81 

3.5.1 Definition A sequence X= (xn) of real numbers is said to be a Cauchy sequence 
if for every e > 0 there exists a natural number H (e) such that for all natural numbers 
n, m ~ H(e), the terms xn, xm satisfy lxn- xml <e. 

The significance of the concept of Cauchy sequence lies in the main theorem of this 
section, which asserts that a sequence of real numbers is convergent if and only if it is a 
Cauchy sequence. This will give us a method of proving a sequence converges without 
knowing the limit of the sequence. 

However, we will first highlight the definition of Cauchy sequence in the following 
examples. 

3.5.2 Examples (a) The sequence (11n) is a Cauchy sequence. 
If e > 0 is given, we choose a natural number H = H(e) such that H > 21e. Then 

if m, n ~ H, we have I In ~ 1 I H < e 12 and similarly 1 I m < e 12. Therefore, it follows 
that if m, n ~ H, then 

I ~- 2_1 < ~ + 2_ <~+~=e. 
n m -n m 2 2 

Since e ::> · 0 is arbitrary, we conclude that ( 1 In) is a <;,uchy sequence. 

(b) The sequence ( 1 + ( -1 )n) is not a Cauchy sequence. 
The negation of the definition of Cauchy sequence is: There exists e0 > 0 such that for 

every H there exist at least one n > H and at least one m > H such that lxn - xm I ~ e0• 

For the terms xn := I + (-It, we observe that if n is even, then xn = 2 and xn+t = 0. If 
we take e0 = 2, then for any H we can choose an even number n > H and let m := n + 1 
to get 

lxn- xn+tl = 2 =Eo· 

We conclude that (xn) is not a Cauchy sequence. 0 

Remark We emphasize that to prove a sequence (xn) is a Cauchy sequence, we may 
not assume a relationship between m and n, since the required inequality lxn- xml < e 
must hold for all n, m ~ H(e). But to prove a sequence is not a Cauchy sequence, we may 
specify a relation between n and m as long as arbitrarily large values of n and m can be 
chosen so that lxn - xm I ~ Eo· 

Our goal is to show that the Cauchy sequences are precisely the convergent sequences. 
We first prove that a convergent sequence is a Cauchy sequence. 

3.5.3 Lemma If X= (xn) is a convergent sequence of real numbers, then X is a Cauchy 
sequence. 

Proof. If x := lim X, then given e > 0 there is a natural number K (e 12) such that if 
n ~ K(el2) then lxn- xl < e12. Thus, if H(e) := K(el2) and if n, m > H(e), then we 
have 

lxn- xml = l(xn- x) + (x- xm)l 

!S lxn -xl + lxm -xl < el2+ el2 =e. 

Since e > 0 is arbitrary, it follows that (xn) is a Cauchy sequence. Q.E.D. 
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In order to establish that a Cauchy sequence is convergent, we will need the following 
result. (See Theorem 3.2.2.) 

3.5.4 Lemma A Cauchy sequence of real numbers is bounded. 

Proof. Let X:= (xn) be a Cauchy sequence and let e := 1. If H := H(1) and n ~ H, 
then lxn - x HI < 1. Hence, by the Triangle Inequality, we have lxn I ~ lx HI + 1 for all 
n ~H. If we set 

M : = sup { lx 11, lx21, · · · , lx H _11, lx HI + 1} , 
then it follows that lxn I < M for all n e N. 

We now present the important Cauchy Convergence Criterion. 

Q.E.D. 

3.5.5 Cauchy Convergence Criterion A sequence of real numbers is convergent if and 
only if it is a Cauchy sequence. 

Proof. We have seen, in Lemma 3.5.3, that a convergent sequence is a Cauchy sequence. 
Conversely, let X= (xn) be a Cauchy sequence; we will show that X is convergent to 

some real number. First we observe from Lemma 3.5.4 that the sequence X is bounded. 
Therefore, by the Bolzano-Weierstrass Theorem 3.4.8, there is a subsequence X' = (xn ) 

k 
of X that converges to some real number x•. We shall complete the proof by showing that 
X converges to x*. 

Since X= (xn) is a Cauchy sequence, given e > 0 there is a natural number H(e/2) 
such that if n, m ~ H(e/2) then 

(1) 

Since the subsequence X' = (xn ) converges to x•, there is a natural number K ~ H (e /2) 
lc 

belonging to the set { n 1 , n 2 , • • ·} such that 

lxK- x*l < E/2. 

Since K ~ H(e/2), it follows from (1) with m = K that 

lxn- xKI < E/2 

Therefore, if n ~ H(e/2), we have 

for n ~ H(e/2). 

lxn- x*l = l(xn- xK) + (xK- x*)l 
~ lxn -xKI + lxK -x*l 
< £/2+£/2 =E. 

Since e > 0 is arbitrary, we infer that lim(xn) = x•. Therefore the sequence X is convergent. 
Q.E.D. 

We will now give some examples of applications of the Cauchy Criterion. 

3.5.6 Examples (a) Let X= (xn) be defined by 

x 1 := 1, and for n > 2. 
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.n be shown by Induction that I ~ x,. ~ 2 for all n e N. (Do so.) Some calculation shows 
lat the sequence X is not monotone. However, since the terms are formed by averaging, it 
, ·~adily seen that 

I 
lx,. - x,.+tl = 2"-t for n eN. 

Prove this by Induction.) Thus, if m > n, we may employ the Triangle Inequality to obtain 

lx,. - xm I ~ lx,. - x,.+tl + lx,.+l - x,.+21 + ... + lxm-1 - xm I 
I I I 

= 2"-1 + 2" + ... + 2m-2 

__ I_ ( 1 + ! + ... + I ) < _I_ 
- 2"-1 2 2m-n-1 2"-2 · 

Therefore, given e > 0, if n is chosen so large that 1 /2" < e I 4 and if m :::: n, then it follows 
tl,'lt lx,.- xml <e. Therefore, X is a Cauchy sequence in R. By the Cauchy Criterion 3.5.5 
... ~ infer that the sequence X converges to a number x. 

To evaluate the limit x, we might first "pass to the limit" in the rule of definition 
. = 4 (x,._1 + x,._2) to conclude that x must satisfy the relation x = 4 (x + x ), which is 

true, but not informative. Hence we must try something else. . 
Since X converges to x, so does the subsequence X' with odd indices. By Induction, 

u1e reader can establish that [see I.2.4(f)] 

I I I 
X =I+-+-+···+--2n+l 2 23 22n-1 

=I+~ (1- 2_) 3 4" . 

't follows from this (how?) that x = lim X = lim X' = I + j = ~. 
\b) Let Y = (y,.) be the sequence of real numbers given by 

I I I I I ( -1)"+1 

y ·- - y2 := -1! - 2!' ... ' y := - - - + ... + 
1 .- 1!' " 1! 2! n! 

Clearly, Y is not a monotone sequence. However, if m > n, then 

( -1)"+2 ( -1)"+3 ( -1)m+1 
Ym- Y,. = (n + 1).! + (n + 2)! + ... + m! 

Since 2'-1 ~ r! [see 1.2.4(e)], it follows that if m > n, then (why?) 

1 1 1 
IYm- Y,.l ~ (n + 1)! + (n + 2)! + ... + m! 

1 1 1 1 
~ 2" + 2"+1 + ... + 2m-1 < 2"-1. 

Therefore, it follows that (y,.) is a Cauchy sequence. Hence it converges to a limit y. At the 
present moment we cannot evaluate y directly; however, passing to the limit (with respect 
to m) in the above inequality, we obtain 

IY,.- Yl ~ 1/2"-1
• 

Hence we can calculate y to any desired accuracy by calculating the terms y,. for sufficiently 
large n. The reader should do this and show that y is approximately equal to 0.632120559. 
(The exact value of y is 1 - 1/e.) 
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(c) The sequence ( f + i + · · · + !; ) diverges. 

Let H := (hn) be the sequence defined by 

1 1 1 
h := - + - + · · · + - for n e N, 

n 1 2 n 

which was considered in 3.3.3(b ). H m > n, then 

1 1 
h - h = -- + ... + -. 

m n n+1 m 

Since each of these m- n terms exceeds 1/m, then hm - hn > (m- n)/m = 1 - nfm. In 
particular, if m = 2n we have h2n - hn > ! . This shows that H is not a Cauchy sequence 
(why?); therefore H is not a convergent sequence. (In terms that will be introduced in 
Section 3.7, we have just proved that the "harmonic series" E::1 1/n is divergent.) D 

3.5.7 Deflnltion We say that a sequence X= (x,.) of real numbers is contractive if there 
exists a constant C, 0 < C < 1, such that 

lx,.+2 - x,.+11 ~ Clx,.+1 - xn I 
for all n e .N. The number C is called the constant of the contractive sequence. 

--~ . 
3.5.8 Theorem ~very contractive sequence is a Cauchy sequence, and therefore is con-

, vergent. ) 
~---

Proof. If we successively apply the defining condition for a contractive sequence, we can 
work our way back to the beginning of the sequence as follows: 

1xn+2 - Xn+ll ~ Clxn+1 - Xn I ~ C2
1Xn - Xn-11 

~ C31xn_1 - xn_21 ~ · · · ~ en lx2 - x11. 

Form > n, we estimate lxm- xnl by first applying the Triangle Inequality and then using 
the formula for the sum of a geometric progression (see 1.2.4(t)). This gives 

lxm - Xn I ~ lxm - Xm-11 + lxm-1 - Xm-21 + · · · + 1xn+1 - x,.l 
~ (cm-2 + cm-3 + .. 0 + c"-1) lx2- x11 

(
1- cm-n) 

= cll-1 1- c lx2- xt~ 

n-1 ( 1 ) I ~ C 1- C lx2- x1 . 

Since 0 < C < l, we know lim(Cn) = 0 [see 3.1.11(b)]. Therefore, we infer that (xn) is a 
Cauchy sequence. It now follows from the Cauchy Convergence Criterion 3.5.5. that (x,.) 
is a convergent sequence. Q.E.D. 

In the process of calculating the limit of a contractive sequence, it is often very 
important to have an estimate of the error at the nth stage. In the next result we give two 
such estimates: the first one involves the first two terms in the sequence and n; the second 
one involves the difference xn - xn_1• 

3.5.9 Corollary If X := (x,.) is a contractive sequence with constant C, 0 < C < 1, and 
if x• := lim X, then 
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(I) 

(H) 

Proof. From the preceding proof, if m > n, then lxm - xn I ~ (cn-1 /(1 - C))lx2 - x11. 
If we let m --. oo in this inequality, we obtain (i). 

To prove (ii), recall that if m > n, then 

lxm- xnl ~ lxm- Xm-11 + · · · + 1xn+1- xnl· 

Since it is readily established, using Induction, that 

we infer that 

lxn+k- Xn+k-11 < Cklxn- Xn-11' 

lxm - xnl ~ (cm-n + · · · + C2 + C)lxn - xn_11 
c 

< lx -x I - 1 _ C n n-1 

We now let m --. oo in this inequality to obtain assertion (ii). Q.E.D. 

3.5.10 Example We are told that the cubic equation x 3 -1x + 2 = 0 has a solution 
between 0 and 1 and we wish to approximate this solution. This can be accomplished by 
means of an iteration procedure as follows. We first rewrite the equation as x = (x3 + 2) /7 
and use this to define a sequence. We assign to x 1 an arbitrary value between 0 and 1, and 
then define 

xn+t := ~(x~ + 2) for n eN. 

Because 0 < x 1 < 1, it follows that 0 < xn < 1 for all n eN. (Why?) Moreover, we have 

lxn+l -xn+11 = ~~(x~+ 1 +2)- ~(x~ +2)1 = ~~x~+ 1 -x~l 

= ~lx;+l + Xn+1xn + x;llxn+1- xnl ~ ~1xn+1- xnl· 

Therefore, (xn) is a contractive sequence and hence there exists r such that lim(xn) = r. If we 
pass to the limit on both sides of the equality xn+1 = (x~ + 2)/7, we obtain r = (r3 + 2)/7 
and hence r3 

- 1r + 2 = 0. Thus r is a solution of the equation. 
We can approximate r by choosing x 1 and calculating x2, x3, • • • successively. For 

example, if we take x 1 = 0.5, we obtain (to nine decimal places): 

x2 = 0.303 571 429, 

x4 = 0.289188016, 

x6 = 0.289168571, 

x 3 = 0.289 710 830, 

xs = 0.289 169 244, 
etc. 

To estimate the accuracy, we note that lx2 - x 11 < 0.2. Thus, after n steps it follows from 
Corollary 3.5.9(i) that we are sure that lx*- xnl ~ 3n-11 (7n-l · 20). Thus, when n = 6, 
we are sure that 

lx* - x6 1 ~ 3s /(Tt · 20) = 243/48 020 < 0.0051. 

Actually the approximation is substantially better than this. In fact, since lx6 - Xs I < 
0.000 0005, it follows from 3.5.9(ii) that lx* - x61 ~ ~ lx6 - Xs I < 0.000 0004. Hence the 
first five decimal places of x6 are correct. D 
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Exercises for Section 3.5 

1. Give an example of a bounded sequence that is not a Cauchy sequence. i, - ! ' 

2. Show directly from the d'finjtio~ that the following are Cauchy sequences. 

(a) { n + 1 ) , (b) { 1 + _!_ + ... + _!_) . 
n 2! n! 

3. Show directly from the definition that the following are not Cauchy sequences. 

4. 

s. 
6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

(a) (<-t>"). (b) {n + (-:)"). (c) (lnn). 

Show directly from the definition that if (x
11

) and (y
11

) are Cauchy sequences, then (x
11 

+ y
11

) and 
(X

11
Y

11
) are Cauchy sequences. 

If X
11 

:= Jn, show that (x
11

) satisfies lim lxn+l - X
11 
I = 0, but that it is not a Cauchy sequence. 

Let p be a given natural number. Give an example of a sequence (x
11

) that is not a Cauchy 
sequence, but that satisfies lim lxn+p - X

11 
I = 0. 

Let (xn) be a Cauchy sequence such that xn is an integer for every n eN. Show that (xn) is 
ultimately constant. 

Show directly that a bounded, monotone increasing sequence is a Cauchy sequence. 

HO < r < 1 and lxn+l - xnl < r" for all n eN, show that (xn) is a Cauchy sequence. 

If x 1 < x2 are arbitrary real numbers and X
11 

:= !<xn_2 + xn_ 1) for n > 2, show that (xn) is 
convergent. What is its limit? 

If y1 < y2 are arbitrary real numbers and Yn := iYn-l + jyn_2 for n > 2, show that (yn) is 
convergent. What is its limit? 

If x 1 > 0 and xn+l := (2 + xn)- 1 for n ~ 1, show that (x
11

) is a contractive sequence. Find the 
limit. 

If x 1 := 2 and xn+l := 2 + 1/xn for n ~ 1, show that (xn) is a contractive sequence. What is its 
limit? 

The polynomial equation x 3 - Sx + 1 = 0 has a root r with 0 < r < 1. Use an appropriate 
contractive sequence to calculate r within 1 o-4

• 

Section 3.6 Properly Divergent Sequences 

For certain purposes it is convenient to define what is meant for a sequence (x
11

) of real 
numbers to "tend to ±oo". 

3.6.1 Definition Let (x
11

) be a sequence of real numbers. 

(i) We say that (x
11

) tends to +oo, and write lim(x
11

) = +oo, if for every a e 1R there 
exists a natural number K (a) such that if n ~ K (a), then x

11 
> a. 

(H) We say that (x
11

) tends to -oo, and write lim(x
11

) = -oo, if for every fJ e 1R there 
exists a natural number K (fJ) such that if n ~ K (fJ), then X

11 
< fJ. 

We say that (x,.) is properly divergent in case we have either lim(x,.) = +oo or 
lim(x

11
) = -00. 
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The reader should realize that we are using the symbols +oo and -oo purely as a con
venient notation in the above expressions. Results that have been proved in earlier sections 
for conventional limits lim(xn) = L (for L e lR) may not remain true when lim(xn) = ±oo. 

3.6.2 Examples (a) lim(n) = +oo. 
In fact, if a e lR is given, let K (a) be any natural number such that K (a) > a. 

(b) lim(n2
) = +oo. 

If K(a) is a natural number such that K(a) >a, and if n > K(a) then we have 
n2 ~ n >a. 

(c) If c > 1, then lim(c") = +oo. 

Let c = 1 + b, where b > 0. If a e lR is given, let K(a) be a natural number such that 
K(a) > afb. If n ~ K(a) it follows from Bernoulli's Inequality that 

c" = (1 +b)"~ 1 + nb > 1 +a> a. 

Therefore lim(c") = +oo. 0 

Monotone sequences are particularly simple in regard to their convergence. We have 
seerrin the Monotone Convergence Theorem 3.3.2 that a monotone sequence is convergent 
if and only if it is bounded. The next result is a reformulation of that result. 

3.6.3 Theorem A monotone sequence of real numbers is properly divergent if and only 
if it is unbounded. 

(a) If(xn) is an unbounded increasing sequence, then lim(xn) = +oo. 
(b) If(xn) is an unbounded decreasing sequence, then lim(xn) = -oo. 

Proof. (a) Suppose that (xn) is an increasing sequence. We know that if (xn) is bounded, 
then it is convergent. If (xn) is unbounded, then for any a e lR there exists n(a) eN such 
that a < xn<a>· But since (xn) is increasing, we have a < xn for all n ~ n(a). Since a is 
arbitrary, it follows that lim(xn) = +oo. 

Part (b) is proved in a similar fashion. Q.E.D. 

The following "comparison theorem" is frequently used in showing that a sequence is 
properly divergent. [In fact, we implicitly used it in Example 3.6.2(c).] 

3.6.4 Theorem Let (xn) and (yn) be two sequences of real numbers and suppose that 

(1) for all n eN. 

(a) If lim(xn) = +oo, then lim(yn) = +oo. 
(b) If lim(yn) = -oo, then lim(xn) = -00. 

Proof. (a) H lim(xn) = +oo, and if a e lR is given, then there exists a natural number 
K(a) such that if n ~ K(a), then a < xn. In view of (1), it follows that a < Yn for all 
n ~ K(a). Since a is arbitrary, it follows that lim(yn) = +oo. 

The proof of (b) is similar. Q.E.D. 

Remarks (a) Theorem 3.6.4 remains true if condition (1) is ultimately true; that is, if 
there exists m e N such that xn ~ y n for all n > m. 
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(b) If condition (1) of Theorem 3.6.4 holds and if lim(y
11

) = +oo, it does not follow 
that lim(x

11
) = +oo. Similarly, if (1) holds and if lim(x

11
) = -oo, it does not follow that 

lim(y 11 ) = -oo. In using Theorem 3.6.4 to show that a sequence tends to +oo [respectively, 
-oo] we need to show that the terms of the sequence are ultimately greater [respectively, 
less] than or equal to the corresponding terms of a sequence that is known to tend to +oo 
[respectively, -oo ]. 

Since it is sometimes difficult to establish an inequality such as (1), the following "limit 
comparison theorem" is often more convenient to use than Theorem 3.6.4. 

3.6.5 Theorem Let (x
11

) and (y
11

) be two sequences of positive real numbers and suppose 
that for some L e 1R, L > 0, we have 

(2) 

Then lim(x
11

) = +oo if and only if lim(y
11

) = +oo. 

Proof. If (2) holds, there exists K eN such that 

forall n ~ K. 

Hence we have (! L) y 
11 

< x 
11 

< ( i L) y 
11 

for all n ~ K. The conclusion now follows from 
a slight modification of Theorem 3.6.4. We leave the details to the reader. Q.E.D. 

The reader can show that the conclusion need not hold if either L = 0 or L = +oo. 
However, there are some partial results that can be established in these cases, as will be 
seen in the exercises. 

Exercises for Section 3.6 

1. Show that if (x,.) is an unbounded sequence, then there exists a properly divergent subsequence. 

2. Give examples of properly divergent sequences (x,.) and (y,.) withY,. :F 0 for all n e N such 
that: 
(a) (x,.fy,.) is convergent, (b) (x,.fy,.) is properly divergent. 

3. Show that if x,. > 0 for all n eN, then lim(x,.) = 0 if and only iflim(l/x,.) = +oo. 

4. Establish the proper divergence of the following sequences. 
(a) ( Jn"), (b) ( Jn+T), 
(c) ( v'il-1), (d) (n/ Jn+T). 

5. Is the sequence (n sin n) properly divergent? 

6. Let (x,.) be properly divergent and let (y,.) be such that lim(x,.y,.) belongs toR. Show that (y,.) 
converges to 0. 

7. Let (x,.) and (y,.) be sequences of positive numbers such that lim(x,./y,.) = 0. 
(a) Show that if lim(x,.) = +oo, then lim(y,.) = +oo. 
(b) Show that if (y,.) is bounded, then lim(x,.) = 0. 

8. Investigate the convergence or the divergence of the following sequences: 

(a) ( v'n2 + 2 ), (b) (~/ (n2 + 1)), 

(c) ( J n2 + 1/ ~), (d) (sin .Jii). 

9. Let (x,.) and (y,.) be sequences of positive numbers such that lim(x,./y,.) = +oo, 

(a) Show that if lim(y,.) = +oo, then lim(x,.) = +oo. 
(b) Show that if (x,.) is bounded, then lim(y,.) = 0. 

10. Show that if lim(a,./n) = L, where L > 0, then lim(a,.) = +oo. 
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Section 3. 7 Introduction to Infinite Series 

We will now give a brief introduction to infinite series of real numbers. This is a topic 
that will be discussed in more detail in Chapter 9, but because of its importance, we will 
establish a few results here. These results will be seen to be immediate consequences of 
theorems we have met in this chapter. 

In elementary texts, an infinite series is sometimes "defined" to be "an expression of 
the form" 

(1) 

However, this "definition" lacks clarity, since there is a priori no particular value that we 
can attach to this array of symbols, which calls for an infinite number of additions to be 
performed. 

3.7.1 Definition If X := (xn) is a sequence in IR, then the infinite series (or simply the 
series) generated by X is the sequenceS:= (sk) defined by 

s1 := x1 

s2 :=s1 +x2 (=x1 +x2) 

The numbers xn are called the terms of the series and the numbers sk are called the partial 
sums of this series. If lim S exists, we say that this series is convergent and call this limit 
the sum or the value of this series. If this limit does not exist, we say that the series S is 
divergent. 

It is convenient to use symbols such as 

(2) or or 

to denote both the infinite series S generated by the sequence X= (xn) and also to denote 
the value lim S, in case this limit exists. Thus the symbols in (2) may be regarded merely as 
a way of exhibiting an infinite series whose convergence or divergence is to be investigated. 
In practice, this double use of these notations does not lead to any confusion, provided it is 
understood that the convergence (or divergence) of the series must be established. 

Just as a sequence may be indexed such that its first element is not x 1, but is x0, or Xs 
or x99 , we will denote the series having these numbers as their first element by the symbols 

or or 

It should be noted that when the first term in the series is x N, then the first partial sum is 
denoted by s N. 

Warning The reader should guard against confusing the words "sequence" and "series". 
In nonmathematicallanguage, these words are interchangeable; however, in mathematics, 

------
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these words are not synonyms. Indeed, a series is a sequence S = (sk) obtained from a 
given sequence X= (x,.) according to the special procedure given in Definition 3.7.1. 

3.7.2 Examples (a) ConsiderthesequenceX := (r"):O wherer e IR, which generates 
the geometric series: 

(3) 
00 

L r" = 1 + r + r
2 + · · · + r11 + · · · . 

n=O 

We will show that if lrl < 1, then this series converges to 1/(1 - r). (See also Example 
1.2.4(t).) Indeed, if s,. := 1 + r + r 2 + ... + r" for n ~ 0, and if we multiply s,. by rand 
subtract the result from s,., we obtain (after some simplification): 

Therefore, we have 

from which ·it follows that 

s,.(1 - r) = 1 - r"+1
• 

1 rn+l 
s ---=---, 

11 1-r 1-r 

I
s - _1_1 < lrln+l . 

11 1 - r - 11 - rl 

Since lrl"+1 ~ 0 when lrl < 1, it follows that the geometric series (3) converges to 
1/(1 - r) when lrl < 1. 
(b) Consider the series generated by ( ( -1)"):0; that is, the series: 

00 

(4) L<-1>" = <+1> + <-1> + <+1> + <-1> + .... 
n=O 

It is easily seen (by Mathematical Induction) that s,. = 1 if n ~ 0 is even and s,. = 0 
if n is odd; therefore, the sequence of partial sums is (1, 0, 1, 0, · · · ). Since this sequence is 
not convergent, the series ( 4) is divergent. 

(c) Consider the series 

00 1 1 1 1 
L n(n + 1) = 1 · 2 + 2 · 3 + 3 · 4 + · · · · 
n=l 

(5) 

By a stroke of insight, we note that 

1 1 1 
k(k + 1) = k- k + 1· 

Hence, on adding these terms from k = 1 to k = n and noting the telescoping that takes 
place, we obtain 

1 1 
s,. = ~- n + 1' 

whence it follows that s,. ~ 1. Therefore the series (5) converges to 1. D 

We now present a very useful and simple necessary condition for the convergence of 
a series. It is far from being sufficient, however. 
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3.7.3 The nth Term Test Hthe series Ex,. converges, then lim(x,.) = 0. 

Proof. By Definition 3.7.1, the convergence of Ex,. requires that lim(sA:) exists. Since 
x,. = s,. - s,._1, then lim(x,.) = lim(s,.) - lim(s,._1) = 0. Q.E.D. 

Since the following Cauchy Criterion is precisely a reformulation of Theorem 3.5.5, 
we will omit its proof. 

3.7.4 Cauchy Criterion for Series The series Ex,. converges if and only if for evezy 
e > 0 there exists M(e) eN such that ifm > n ~ M(e), then 

(6) Ism- s,.l = lx,.+l + x,.+2 + ... + xml < £. 

The next result, although limited in scope, is of great importance and utility. 

3.7.5 Theorem Let (x,.) be a sequence of nonnegative real numbers. Then the series 
Ex,. converges if and only if the sequence S = (sA:) of partial sums is bounded. In this 
case, 

00 

Ex,.= lim(sA:) = sup{sA:: keN}. 
n=l 

Proof. Since x,. > 0, the sequence S of partial sums is monotone increasing: 

sl ~ s2 ~ ... ~ sk ~ .... 

By the Monotone Convergence Theorem 3.3.2, the sequenceS= (sA:) converges if and 
only if it is bounded, in which case its limit equals sup{sA:}. Q.E.D. 

3.7.6 Examples (a) The geometric series (3) diverges if lrl ~ 1. 
This follows from the fact that the terms r" do not approach 0 when I r I ~ 1. 

(b) The harmonic series f: .!. diverges. 
n=l n 

Since the terms 1/n -4 0, we cannot use the nth Term Test 3.7.3 to establish this 
divergence. However, it was seen in Examples 3.3.3(b) and 3.5.6(c) that the sequence (s,.) 
of partial sums is not bounded. Therefore, it follows from Theorem 3.7.5 that the harmonic 
series is divergent. 

00 1 
(c) The 2-series E 2 is convergent. 

n==1 n 
Since the partial sums are monotone, it suffices (why?) to show that some subsequence 

of (sA:) is bounded. If k1 := 21 
- 1 = 1, then sA: = 1. If k2 := 22 - 1 = 3, then 

I 

1 (1 1) 2 1 
s~ = l + 22 + 32 < 1 + 22 = 1 + 2' 

and if k3 := 23 - 1 = 7, then we have 

(
1 1 1 1) 4 1 1 

sk3 = s~ + 42 + 52 + 62 + 72 < s~ + 42 < 1 + 2 + 22. 

By Mathematical Induction, we find that if k1 := 2i - 1, then 

0 < sk. < 1 + ! + (!)2 + ... + (!)J-1 . 
J 
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Since the term on the right is a partial sum of a geometric series with r = 4, it is dominated 
by 1/(1 - 4> = 2, and Theorem 3.7.5 implies that the 2-series converges. 

00 1 
(d) The p-series L -p converges when p > 1. 

n=1 n 
Since the argument is very similar to the special case considered in part ( c }, we will 

leave some of the details to the reader. As before, if k 1 := 21 
- 1 = 1, then s" = 1. If 

I 

k2 := 22 - 1 = 3, then since 2P < 3P, we have 

1 (1 1) 2 1 
Sk2 = tp + 2P + 3P < 1 + 2P = 1 + 2p-1. 

Further, if k3 : = 23 - 1, then (how?) it is seen that 

4 1 1 
sk < s~r_ + -P < 1 + --1 + --1 . 

3 ~ 4 2P- 4P-

finally, we let r := 1/2P-1; since p > 1, we have 0 < r < 1. Using Mathematical Induc
tion, we show that if ki := 2i - 1, then 

2 '-1 1 
O<sk. < 1+r+r +···+rJ < - .... 

1 1- r 

Therefore, Theorem 3.7.5 implies that the p-series converges when p > 1. 
00 1 

(e) The p-series L -p diverges when 0 < p ~ 1. 

that 

n=1 n 
We will use the elementary inequality nP ~ n when n eN and 0 < p ~ 1. It follows 

1 1 
-<
n - nP 

for n eN. 

Since the partial sums of the harmonic series are not bounded, this inequality shows that the 
partial sums of the p-series· are not bounded when 0 < p < 1. Hence the p-series diverges 
for these values of p. 

(f) The alternating harmonic series, given by 

oo (-1)n+1 1 1 1 (-1)n+1 L =---+--···+ +··· n 1 2 3 n 
(7) 

n=l 

is convergent. 
The reader should compare this series with the harmonic series in (b), which is 

divergent. Thus, the subtraction of some of the tenns in (7) is essential if this series is to 
converge. Since we have 

s = (! - !) + (! - !) + ... + ( 1 - _!_) 
2n 1 2 3 4 2n-1 2n , 

it is clear that the "even" subsequence (s2n) is increasing. Similarly, the "odd" subsequence 
(s2n+ 1) is decreasing since 

8
2R+I = i- G-D- G-D-· · ·- (~ -2n ~ ~) · 

Since 0 < s2n < s2n + 1 I (2n + 1) = s2n+ 1 ~ 1, both of these subsequences are bounded 
below by 0 and above by 1. Therefore they are both convergent and to the same value. Thus 
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the sequence (s,.) of partial sums converges, proving that the alternating harmonic series 
(7) converges. (It is far from obvious that the limit of this series is equal to In 2.) 0 

Comp~nTab ----------------------------------------------
Our first test shows that if the terms of a nonnegative series are dominated by the corre
sponding terms of a convergent series, then the first series is convergent. 

3.7.7 Comparison Test Let X := (x,.) andY := (y,.) be real sequences and suppose that 
for some K e N we have 

(8) 0 ~ x,. ~ Y,. for n ::! K. 

(a) Then the convergence of LY,. implies the convergence of Ex,.. 
(b) The divergence of Ex,. imples the divergence of LY,.· 
Proof. (a) Suppose that LY,. converges and, given£ > 0, let M(e) eN be such that if 
nt > n ~ M(e),then 

Yn+l + · · · + Ym < £. 

If nt > sup{ K, M (e)}, then it follows that 

0 ~ x,.+t + · · · + xm ~ Yn+t + ... + Ym < £, 

from which the convergence of Ex,. follows. 

(b) This statement is the contrapositive of (a). Q.E.D. 

Since it is sometimes difficult to establish the inequalities (8), the next result is fre
quently very useful. 

3.7.8 Limit Comparison Tat Suppose that X:= (x,.) andY:= (y,.) are strictly positive 
sequences and suppose that the following limit exists in R: 

(9) r :=lim G:). 
(a) H r ¢ 0 then Ex,. is convergent if and only if E y,. is convergent. 

(b) Ifr = 0 and if LY,. is convergent, then Ex,. is convergent. 

Proof. (a) It follows from (9) and Exercise 3 .1.17 that there exists K e N such that 
!r ~ x,.IY,. ~ 2r for n ~ K, whence 

(!r) Y,. ~ x,. < (2r)y,. for n ~ K. 

If we apply the Comparison Test 3.7.7 twice, we obtain the assertion in (a). 

(b) If r = 0, then there exists K e N such that 

0 < x,. ~ Y,. for n ~ K, 

so that Theorem 3.7.7(a) applies. Q.E.D. 

Remark The Comparison Tests 3.7.7 and 3.7.8 depend on having a stock of series that 
one knows to be convergent (or divergent). The reader will find that die p-series is often 
useful for this purpose. 
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00 1 
3.7.9 Examples (a) The series L 2 converges. 

n=l n + n 
It is clear that the inequality 

1 1 
0< <- for neN 

n2 + n n2 

is valid. Since the series L 1/n2 is convergent (by Example 3.7.6(c)), we can apply the 
Comparison Test 3. 7. 7 to obtain the convergence of the given series. 

(b)Th -~ 1. e senes L.., 2 1s convergent. 
n=l n - n + 1 

If the inequality 

1 1 
(10) n2 - n + 1 ~ n2 

were true, we could argue as in (a). However, (10) is false for all n eN. The reader can 
probably show that the inequality 

1 2 
0< <-

n2- n + 1 - n2 

is valid for all n eN, and this inequality will work just as well. However, it might take 
some experimentation to think of such an inequality and then establish it. 

Instead, if we take x,. := 1/(n2
- n + 1) andY,. := 1/n2

, then we have 

x n2 1 
....!!.- - ~ 1 
Y,. - n2 - n + 1 - 1 - (1/n) + (1/n2) • 

Therefore, the convergence of the given series follows from the Limit Comparison Test 
3.7.8(a). 

(c) The series f ~ is divergent. 
n=t n + 1 

This series closely resembles the series L 1 I Jn which is a p-series with p = ! ; by 
Example 3.7.6(e), it is divergent. If we let x,. := 1/ .Jii+T andY,. := 1/ Jn, then we have 

x,. - ..;n - 1 ~ 1 
Y,. - .Jii+T - Jl + 1/n · 

Therefore the Limit Comparison Test 3.7.8(a) applies. 

dTh 
.~1. 

( ) e senes L.., - 1s convergent. 
n=l n! 

It would be possible to establish this convergence by showing (by Induction) that 
n 2 < n ! for n ~ 4, whence it follows that 

1 1 
0 < - < - for n ~ 4. 

n! n2 

Alternatively, if we let x := 1/n! andY,. := 1/n2
, then (when n ~ 4) we have 

x n2 n 1 
0 < ....!!. = - = < -- --+ 0. 

- Y,. n! 1 · 2 · · · (n - 1) n - 2 

Therefore the Limit Comparison Test 3.7.8(b) applies. (Note that this test was a bit trou
blesome to apply since we do not presently know the convergence of any series for which 
the limit of x,.IY,. is really easy to determine.) 0 
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Exercises for Section 3. 7 

1. Let E a,. be a given series and let E b,. be the series in which the terms are the same and in 
the same order as in E a,. except that the terms for which a,. = 0 have been omitted. Show that 
E a,. converges to A if and only if E b,. converges to A. 

2. Show that the convergence of a series is not affected by changing a finite number of its terms. 
(Of course, the value of the sum may be changed.) 

3. By using partial fractions, show that 
oc 1 

(a) ~ (n + l)(n + 2) = 1
' 

oc 1 1 
(b) L =- > O,ifa > 0. 

n=O (a +n)(a +n + 1) a 

oc 1 1 
(c) ~ n(n + 1)(n +2) = 4· 

4. If Ex,. and LY,. are convergent, show that E<x,. + Y,.) is convergent. 

5. Can you give an example of a convergent series 'Ex,. and a divergent series LY,. such that 
E<x,. + Y,.) is convergent? Explain. 

oc 

6. (a) Show that the series L cos n is divergent. 
n=l 
oc 

(b) Show that the series L<cosn)/n2 is convergent. 

n=l oc (-1)" 
7. Use an argument similar to that in Example 3.7.6(f) to show that the series ~ Jn is 

convergent. 

8. If La,. with a,. > 0 is convergent, then is E a; always convergent? Either prove it or give a 
counterexample. 

9. If E a,. with a,. > 0 is convergent, then is E .fi:. always convergent? Either prove it or give a 
counterexample. 

10. If E a,. with a,. > 0 is convergent, then is E Ja,.a,.+ 1 always convergent? Either prove it or 
give a counterexample. 

11. If Ea,. with a,.> 0 is convergent, and if b,. := (a 1 + · · · +a,.)fn for n eN, then show that 
E b,. is always divergent. 

oc 

12. Let L a(n) be such that (a(n)) is a decreasing sequence of strictly positive numbers. If s(n) 
II= I 

denotes the nth partial sum, show (by grouping the terms in s(2") in two different ways) that 

! (a(l) + 2a(2) + · · · + 2"a(2")) :S s(2") :S (a(1) + 2a(2) + · · · + 2"-1a(2"- 1
)) + a(2"). 

oc oc 

Use these inequalities to show that La(n) converges if and only if 2:2"a(2") converges. 
n=l n=l 

This result is often called the Cauchy Condensation Test; it is very powerful. 
oc 

13. Use the Cauchy Condensation Test to discuss the p-series LOfnP) for p > 0. 
n=l 

14. Use the Cauchy Condensation Test to establish the divergence of the series: 
1 1 

(a) L n Inn' (b) L n(lnn)(lnlnn)' 
1 

(c) L n(lnn)(lnlnn)(lnlnlnn)" 

15. Show that if c > 1, then the following series are convergent: 
1 1 

(a) L n(lnn)c' (b) L n(lnn)(lnlnn)c · 



CHAPTER4 

LIMITS 

"Mathematical analysis" is generally understood to refer to that area of mathematics in 
which systematic use is made of various limiting concepts. In the preceding chapter we 
studied one of these basic limiting concepts: the limit of a sequence of real numbers. In this 
chapter we will encounter the notion of the limit of a function. 

The rudimentary notion of a limiting process emerged in the 1680s as Isaac Newton 
( 1642-1727) and Gottfried Leibniz ( 1646-1716) struggled with the creation of the Cal
culus. Though each person's work was initially unknown to the other and their creative 
insights ~ere quite different, both realized the need to formulate a notion of function and the 
idea of quantities being "close to" one another. Newton used the word "fluent" to denote a 
relationship between variables, and in his major work Principia in 1687 he discussed limits 
"to which they approach nearer than by any given difference, but never go beyond, nor in 
effect attain to, till the quantities are diminished in infinitum". Leibniz introduced the term 
"function" to indicate a quantity that depended on a variable, and he invented "infinites
imally small" numbers as a way of handling the concept of a limit. The term "function" 
soon became standard terminology, and Leibniz also introduced the term "calculus" for 
this new method of calculation. 

In 1748, Leonhard Euler ( 1707-1783) published his two-volume treatise lntroductio in 
Analysin Infinitorum, in which he discussed power series, the exponential and logarithmic 
functions, the trigonometric functions, and many related topics. This was followed by Insti
tutiones Calculi Differentia/is in 1755 and the three-volume Jnstitutiones Calculi Integra/is 
in 1768-70. These works remained the standard textbooks on calculus for many years. But 
the concept of limit was very intuitive and its looseness led to a number of problems. Verbal 
descriptions of the limit concept were proposed by other mathematicians of the era, but 
none was adequate to provide the basis for rigorous proofs. 

In 1821, Augustin-Louis Cauchy (1789-1857) published his lectures on analysis in his 
Cours d'Analyse, which set the standard for mathematical exposition for many years. He 
was concerned with rigor and in many ways raised the level of precision in mathematical 
discourse. He formulated definitions and presented arguments with greater care than his 
predecessors, but the concept of limit still remained elusive. In an early chapter he gave the 
following definition: 

If the successive values attributed to the same variable approach indefinitely a 
fixed value, such that they finally differ from it by as little as one wishes, this latter 
is called the limit of all the others. 

The final steps in formulating a precise definition of limit were taken by Karl Weier
strass ( 1815-1897). He insisted on precise language and rigorous proofs, and his definition 
of limit is the one we use today. 

96 



- -- ··--

4.1 LIMITS OF FUNCfiONS 97 

Gottfried Leibniz 
Gottfried Wilhelm Leibniz ( 1646-1716) was born in Leipzig, Gennany. He 
was six years old when his father, a professor of philosophy, died and left his 
son the key to his library and a life of books and learning. Leibniz entered the 
University of Leipzig at age 15, graduated at age 17, and received a Doctor 
of Law degree from the University of Altdorf four years later. He wrote 
on legal matters, but was more interested in philosophy. He also developed 
original theories about language and the nature of the universe. In 1672, he 
went to Paris as a diplomat for four years. While there he began to study 
mathematics with the Dutch mathematician Christiaan Huygens. His travels to London to visit the 
Royal Academy further stimulated his interest in mathematics. His background in philosophy led 
him to very original, though not always rigorous, results. 

Unaware of Newtons's unpublished work, Leibniz published papers in the 1680s that pre
sented a method of finding areas that is known today as the Fundamental Theorem of Calculus. He 
coined the tenn "calculus" and invented the dyfdx and elongated S notations that are used today. 
Unfortunately, some followers of Newton accused Leibniz of plagiarism, resulting in a dispute 
that lasted until Leibniz's death. Their approaches to calculus were quite different and it is now 
evident that their discoveries were made independently. Leibniz is now renowned for his work in 
philosophy, but his mathematical fame rests on his creation of the calculus. 

Section 4.1 Limits of Functions 

In this section we will introduce the important notion of the limit of a function. The intuitive 
idea of the function f having a limit L at the point c is that the values f (x) are close to 
L when x is close to (but different from) c. But it is necessary to have a technical way of 
working with the idea of "close to" and this is accomplished in the e-d definition given 
below. 

In order for the idea of the limit of a function f at a point c to be meaningful, it is 
necessary that f be defined at points near c. It need not be defined at the point c, but it 
should be defined at enough points close to c to make the study interesting. This is the 
reason for the following definition. 

YJ 
4.1.1 Definition Let A c IR. A point c e IRis a cluster point of A if for every d > 0 
there exists at least one point x e A, x ~ c such that lx - c I < d. 

This definition is rephrased in the language of neighborhoods as follows: A point c is 
a cluster point of the set A if every d-neighborhood V&(c) = (c- d, c +d) of c contains at 
least one point of A distinct from c. 

Note The point c may or may not be a member of A, but even if it is in A, it is ignored 
when deciding whether it is a cluster point of A or not, since we explicitly require that there 
be points in V& (c) n A distinct from c in order for c to be a cluster point of A. 

For example, if A := {1, 2}, then the point 1 is not a cluster point of A, since choosing 
d : = 4 gives a neighborhood of 1 that contains no points of A distinct from 1. The same is 
true for the point 2, so we see that A has no cluster points. 

4.1.2 Theorem A number c e 1R is a cluster point of a subset A of 1R if and only if there 
exists a sequence (a,.) in A such thatlim(a,.) = c and a,. ~ c for all n eN. 
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Proof. If cis a cluster point of A, then for any n eN the (1/n)-neighborhood V11n(c) 

contains at least one point an in A distinct from c. Then an e A, an =F c, and I an - c I < 1 In 
implies lim(an) = c. 

Conversely, if there exists a sequence (an) in A \{c} with lim(an) = c, then for any 
8 > 0 there exists K such that if n > K, then an e V8(c). Therefore the 8-neighborhood 
V8 (c) of c contains the points an, for n ~ K, which belong to A and are distinct from c. 

Q.E.D. 

The next examples emphasize that a cluster point of a set may or may not belong to 
the set. 

4.1.3 Examples (a) FortheopenintervalA1 := (0, l),everypointoftheclosedinterval 
[0, 1] is a cluster point of A 1• Note that the points 0,1 are cluster points of A 1, but do not 
belong to A 1• All the points of A 1 are cluster points of A 1• 

(b) A finite set has no cluster points. 

(c) The infinite set N has no cluster points. 

(d) The set A4 := {1/n : n eN} has only the point 0 as a cluster point. None of the points 
in A4 is a cluster point of A4 • 

(e) If I := [0, 1], then the set As := I n Q consists of all the rationalQumbers in I. It 
follows from the Density Theorem 2.4.8 that every point in I is a cluster Point of As. D 

Having made this brief detour, we now return to the concept of the limit of a function 
at a cluster point of its domain. 

The Definition of the Limit --------------------

We now state the precise definition of the limit of a function f at a point c. It is important 
to note that in this definition, it is immaterial whether f is defined at c or not. In any case, 
we exclude c from consideration in the determination of the limit. 

4.1.4 Definition Let A c 1R, and let c be a cluster point of A. For a function f : A ~ 1R, 
a real number L is said to be a limit of f at c if, given any e > 0 there exists a 8 > 0 such 
that if x e A and 0 < lx - c I < 8, then If (x) - L I < e. 

Remarks (a) Since the value of 8 usually depends one, we will sometimes write 8(e) 
instead of 8 to· emphasize this dependence. 
(b) The inequality 0 < lx - c I is equivalent to saying x =F c. 

If L is a limit of f at c, then we also say that f converges to L at c. We often write 

L = lim f(x) or L = lim f. 
x-c x-c 

We also say that "f (x) approaches L as x approaches c". (But it should be noted that the 
points do not actually move anywhere.) The symbolism 

f(x)--+ L as X--+C 

is also used sometimes to express the fact that f has limit L at c. 
If the limit of f at c does not exist, we say that f diverges at c. 
Our first result is that the value L of the limit is uniquely determined. This uniqueness 

is not part of the definition of limit, but must be deduced. 
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4.1.5 Theorem Iff : A ~ lR and if c is a cluster point of A, then f can have only one 
limit ate. 

Proof. Suppose that numbers L and L' satisfy Definition 4.1.4. For any e > 0, there exists 
~(e/2) > Osuchthatifx e AandO < lx- cl < ~(e/2),thenlf(x)- Ll < ef2.Alsothere 
exists ~'(e/2) such that if x e A and 0 < lx- cl < ~'(e/2), then 1/(x)- L'l < ef2. Now 
let~:= inf{~(e/2), ~'(e/2)}. Then if x e A and 0 < lx- cl <~'the Triangle Inequality 
implies that 

IL- L'l ~ IL- /(x)l + 1/(x)- L'l < e/2 + e/2 =e. 

Since e > 0 is arbitrary, we conclude that L - L' = 0, so that L = L'. Q.E.D. 

The definition of limit can be very nicely described in terms of neighborhoods. (See 
Figure 4.1.1.) We observe that because 

V&(c) = (c- ~' c + &) = {x : lx - cl < ~}, 

the inequality 0 < lx- cl < ~ is equivalent to saying that x :f: c and x belongs to the~
neighborhood V& (c) of c. Similarly, the inequality If (x) - L I < e is equivalent to saying 

• that f(x) belongs to thee-neighborhood V,(L) of L. In this way, we obtain the following 
result. The reader should write out a detailed argument to establish the theorem. 

c " There exists V.S(c) 

Figure 4.1.1 The limit off at c is L. 

4.1.6 Theorem Let f: A ~ lR and let c be a cluster point of A. Then the following 
statements are equivalent. 

(i) lim f(x) = L. 
X-+C 

(H) Given any e-neighborhood V, (L) of L, there exists a ~-neighborhood V& (c) of c such 
that ifx :f: cis any point in V&(c) n A, then f(x) belongs V,(L). 

We now give some examples that illustrate how the definition of limit is applied. 

4.1.7 Examples (a) limb = b. 
X-+C 

To be more explicit, let f (x) := b for all x e R. We want to show that lim f (x) = b. 
X-+C 

If e > 0 is given, we let~ := 1. (In fact, any sbictly positive~ will serve the purpose.) 
Then ifO < lx- cl < 1, we have 1/(x)- bl = lb- bl = 0 <e. Since e > 0 is arbitrary, 
we conclude from Definition 4.1.4 that lim f (x) = b. 

X-+C 
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(b) limx =c. 
X-+C 

Letg(x) := x forallx e 1R. If e > 0, wechoose&(e) :=e. ThenifO < lx- cl <&(e), 
we have lg(x)- cl = lx- cl <e. Since e > 0 is arbitrary, we deduce that lim g =c. 

X-+C 

(c) lim x 2 = c2
• 

X-+C 

Let h(x) := x2 for all x e R. We want to make the difference 

lh(x)- c21 = lx2- c21 

less than a preassigned e > 0 by taking x sufficiently close to c. To do so, we note that 
x2 - c2 = (x + c)(x -c). Moreover, if lx - cl < 1, then 

lxl ~lei+ 1 so that lx +cl ~ lxl +lei~ 21cl + 1. 

Therefore,· it fx- cl < 1, we have 

(1) lx2 -c2 l=lx+cllx-cl~(21cl+1)lx-cl. ' 

Moreover this last term will be less thane provided we take lx- cl < e/(21cl + 1). Con
sequently, if we choose 

.S(e) := inf { 1, 2lc~ + 1 } ' 

then if 0 < lx - cl < &(e), it will follow first that lx- cl < 1 so that (1) is valid, and 
therefore, since lx- cl < e/(21cl + 1) that 

lx2 - c21 ~ (21cl + 1) lx- cl <e. 

Since we have a way of choosing &(e) > 0 for an arbitrary choice of e > 0, we infer that 
lim h(x) =lim x2 = c2

• 
x-+c x-c 

(d) I. I 1 .f o Im-=-1 C>. 
X-+C X c 
Let cp(x) := 1/x for x > 0 and let c > 0. To show that lim cp = 1/c we wish to make 

X-+C 

the difference 

less than a preassigned e > 0 by taking x sufficiently close to c > 0. We first note that 

1

.!.- .!.I= l_!_(c- x)l = _!_ lx- cl 
x c ex ex 

for x > 0. It is useful to get an upper bound for the term 1/(cx) that holds in some 
neighborhood of c. In particular, if lx- cl < 4c, then 4c < x < ~c (why?), so that 

1 2 
0 < - < - for lx- cl < -2

1 c. 
ex c2 

Therefore, for these values of x we have 

(2) lcp(x)- .!.I ~ ~ lx- cl< ~ 
c c2 

In order to make this last term less thane it suffices to take lx- cl < 4c2e. Consequently, 
if we choose 
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then if 0 < lx- cl < cS(e), it will follow first that lx- cl < !c so that (2) is valid, and 
therefore, since lx - c 1 < ( 4 c2) e, that 

Since we have a way of choosing c5 (e) > 0 for an arbitrary choice of e > 0, we infer that 
lim~= 1/c. 
x-.c 

(e) lim x3 - 4 - ~ 
x--.2 x 2 + 1 - 5 · 
Let 1/f(x) := (x 3 - 4)/(x2 + 1) for x e R. Then a little algebraic manipulation gives 

us 

I 
x _ ~~- l5x

3
- 4x

2
- 241 

1/1( ) 5 - 5(x2 + 1) 

l5x2 + 6x + 121 
= 5(x2 + 1) . lx - 21. 

To get a bound on the coefficient of lx- 21, we restrict x by the condition 1 < x < 3. 
For x in this interval, we have 5x2 + 6x + 12 ~ 5 · 32 + () · 3 + 12 = 75 and 5(x2 + 1) ~ 
5(1 + 1) = 10, so that · 

I 
41 75 15 

1/f(x)- 5 ~ 
10 

lx- 21 = 21x- 21. 

Now for given e > 0, we choose 

c5 (e) : = inf { 1 , 1
2
5 e } . 

Then ifO < lx- 21 < cS(e), we have 11/f(x)- (4/5)1 ~ (15/2)1x- 21 <e. Since e > 0 is 
arbitrary, the assertion is proved. 0 

Sequential Criterion for Limits -----------------

The following important formulation of limit of a function is in terms of limits of sequences. 
This characterization permits the theory of Chapter 3 to be applied to the study of limits of 
functions. 

4.1.8 Theorem (Sequential Criterion) Let 1: A~ Rand let c be a cluster point of A. 
Then the following are equivalent. 

(i) lim I= L. 
x-.c 

(H) For every sequence (x,.) in A that converges to c such that x,. :f: c for all n e N, the 
sequence (l(x,.)) converges to L. 

Proof. (i) => (ii). Assume I has limit L at c, and suppose (x,.) is a sequence in A with 
lim(x,.) = c and x,. :f: c for all n. We must prove that the sequence (l(x,.)) converges to 
L. Let e > 0 be given. Then by Definition 4.1.4, there exists c5 > 0 such that if x e A 

I 

satisfies 0 < lx- cl < c5, then l(x) satisfies ll(x)- Ll <e. We now apply the definition 
of convergent sequence for the given~ to obtain a natural number K ( ~) such that if n > K ( cS) 
then lx,.- cl < c5. But for each such x,. we have ll(x,.)- Ll <e. Thus if n > K(~), then 
ll(x,.)- Ll <e. Therefore, the sequence (l(x,.)) converges to L. 
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(ii) => (i). [The proof is a contrapositive argument.] If (i) is not true, then there exists 
an e0-neighborhood Vs (L) such that no matter what cS-neighborhood of c we pick, there 

0 
will be at least one number x& in An V&(c) with x& :f= c such that f(x&) ' Vs (L). Hence 

0 
for every n eN, the (1/n)-neighborhood of c contains a number x,. such that 

0 < lx,. - cl < 1/n and x,. e A, 

but such that 

for all n e N. 

We conclude that the sequence (x,.) in A \{c} converges to c, but the sequence (f(x,.)) does 
not converge to L. Therefore we have shown that if (i) is not true, then (ii) is not true. We 
conclude that (ii) implies (i). Q.E.D. 

We shall see in the next section that many of the basic limit properties of functions can 
be established by using corresponding properties for convergent sequences. For example, 
we know from our work with sequences that if (x,.) is any sequence that converges to a 
number c, then (x;) converges to c2

• Therefore, by the sequential criterion, we can conclude 
that the function h(x) := x 2 has limit lim h(x) = c2

• 
x~c 

Divergence Criteria -----------------------

It is often important to be able to show (i) that a certain number is not the limit of a function 
at a point, or (ii) that the function does not have a limit at a point. The following result 
is a consequence of (the proof of) Theorem 4.1.8. We leave the details of its proof as an 
important exercise. 

4.1.9 Divergence Criteria Let A £ IR, let I: A ~ IR and let c e IR be a cluster point 
of A. 
(a) If L e IR, then I does not have limit L at c if and only if there exists a sequence (x,.) 
in A with x,. :f= c for all n eN such that the sequence (x,.) converges to c but the sequence 
(l(x,.)) does not converge to L. 
(b) The function I does not have a limit at c if and only if there exists a sequence (x,.) 
in A with x,. -:/: c for all n eN such that the sequence (x,.) converges to c but the sequence 
(l(x,.)) does not converge in IR. 

We now give some applications of this result to show how it can be used. 

4.1.10 Example (a) lim(1/x) does not exist in IR. 
x~o 

As in Example 4.1.7(d), let q>(x) := 1/x for x > 0. However, here we consider c = 0. 
The argument given in Example 4.1.7(d) breaks down if c = 0 since we cannot obtain a 
bound such as that in (2) of that example. Indeed, if we take the sequence (x,.) with x,. := 
1/n for n e N, then lim(x,.) = 0, but (/)(x,.) = 1/(1/n) = n. As we know, the sequence 
((/)(x,.)) = (n) is not convergent in IR, since it is not bounded. Hence, by Theorem 4.1.9(b), 
lim ( 1 I x) does not exist in IR. 
x~o 

(b) lim sgn(x) does not exist. 
x~o 

Let the signum function sgn be defined by 

I 
+1 

sgn(x) := 0 
-1 

for x > 0, 
for x = 0, 
for x < 0. 
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Note that sgn(x) = xflxl for x =F 0. (See Figure 4.1.2.) We shall show that sgn does not 
have a limit at x = 0. We shall do this by showing that there is a sequence (x,.) such that 
lim(x,.) = 0, but such that (sgn(x,.)) does not converge. 

~~----------------

------------~ - 1 

Figure 4.1.2 The signum function. 

Indeed, let x,. := ( -1 )11 In for n e N so that lim(x,.) = 0. However, since 

sgn(x,.) = ( -1)11 for n e N, 

it follows from Example 3.4.6(a) that (sgn(x,.)) does not converge. Therefore lim sgn(x) 
.x-.0 

does not exist. 

(c) t lim sin(1/x) does not exist in IR . 
.x-.0 

Let g(x) := sin(1/x) for x =F 0. (See Figure 4.1.3.) We shall show that g does not 
have a limit at c = 0, by exhibiting two sequences (x,.) and (y,.) with x,. =F 0 andY,. =F 0 
for all n e N and such that lim(x,.) = 0 and lim(y,.) = 0, but such that lim (g(x,.)) =F 
lim (g(y )). In view of Theorem 4.1.9 this implies that lim g cannot exist. (Explain why.) 

II .x-.0 

Figure 4.1.3 The function g(x) = sin(l/x) (x :F 0). 

Indeed, we recall from calculus that sin t = 0 if t = nn for n e Z, and that sin t = 
+1 if t = !n + 2nn for n e Z. Now let x,. := 1/nn for n eN; then lim(x,.) = 0 and 
g(x,.) = sin n1r = 0 for all n e N, so that lim (g(x,.)) = 0. On the other hand, let Y,. := 

(!n + 2nn)-
1 
forn eN; thenlim(y,.) = Oandg(y,.) =sin (!n + 2nn) = 1 foralln eN, 

so that lim (g(y )) = 1. We conclude that lim sin(l/x) does not exist. 0 
II .x-.0 

tin order to have some interesting applications in this and later examples, we shall make use of well-known 
properties of trigonometric and exponential functions that will be established in Chapter 8. 
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Exercises for Section 4.1 

1. Determine a condition on lx - 11 that will assure that: 
(a) lx2

- 11 < 4, (b) lx2
- 11 < 1/10-3

, 

(c) lx2
- 11 < 1/n for a given n eN, (d) lx3 - 11 < 1/n for a given n eN. 

2. Determine a condition on lx - 41 that will assure that: 
(a) I.Ji- 21 < 4, (b) I.Ji- 21 < 10-2

• 

3. Let c be a cluster point of As; :Rand let f: A~ :R. Prove that lim f(x) = L if and only if 
x-c 

lim 1/(x) - Ll = 0. 
x-c 

4. Let f: :R ~:Rand let c e :R. Show that lim f(x) = L if and only if lim f(x +c)= L. 
x-c x-o 

5. Let I := (0, a) where a > 0, and let g(x) := x 2 for x e I. For any points x, c e I, show that 
lg(x)- c2 1 !: 2alx- cl. Use this inequality to prove that lim x 2 = c2 for any c e I. 

x-c 

6. Let I be an interval in :R, let f : I ~ :R, and let c e I. Suppose there exist constants K and L 
such that 1/(x)- Ll!: Klx- cl for x e I. Show that lim /(x) = L. 

x-c 

7. Show that lim x 3 = c3 for any c e :R. 
x-c 

8. Show that lim .JX = .jC for any c > 0. 
x-c 

9. Use either the e-~ definition of limit or the Sequential Criterion for limits, to establish the 
following limits. 

. 1 1 (a) hm -- =- , 
x-2 1- X 

x2 
(c) lim-= 0, 

x-o lxl 

10. Use the definition of limit to show that 

(a) lim(x2 + 4x) = 12, 
x-2 

11. Show that the following limits do not exist. 

(a) lim ~ (x > 0), 
x-ox 

(b) lim _x_ - ! 
x-1 1 +x- 2' 

1
. x 2 

- X + 1 1 ' L. r "' -
(d) 1m = -. ...- ... ~ 

x-1 X+ 1 2 r_ . ~ ,· o _ rr L ) " _, 

(b) lim X + 5 = 4. 
x--12x+3 

(b) lim ~ (x > 0), 
x-0 vX 

(c) lim(x+ sgn(x)), (d) lim sin(lfx2
). 

x-o x-o 

1 i Suppose the function f : R ~ :R has limit L at 0, and let a > 0. H g : :R ~ :R is defined by 
g(x) := f(ax) for x e :R, show that lim g(x) = L. 

x-o 

13. Let c e :Rand let f: :R ~ :R be such that lim(f<x>)
2 

= L. 
x-c 

(a) Show that if L = 0, then lim f (x) = 0. 
x-c 

(b) Show by example that if L ::f: 0, then f may not have a limit at c. 

14. Let f : :R ~ :R be defined by setting /(x) := x if xis rational, and /(x) = 0 if xis irrational. 
(a) Show that f has a limit at x = 0. 
(b) Use a sequential argument to show that if c ::f: 0, then f does not have a limit at c. 

15. Let f : :R ~ :R, let I be an open interval in :R, and let c e I. H / 1 is the restriction off to I, 
show that / 1 has a limit at c if and only iff has a limit at c, and that the limits are equal. 

16. Let f : :R ~ :R, let J be a closed interval in R, and let c e J. If / 2 is the restriction of I to J, 
show that if I has a limit at c then 12 has a limit at c. Show by example that it does not follow 
that if 12 has a limit at c, then I has a limit at c. 

----------
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Section 4.2 Limit Theorems 

We shall now obtain results that are useful in calculating limits of functions. These results 
are parallel to the limit theorems established in Section 3.2 for sequences. In fact, in most 
cases these results can be proved by using Theorem 4.1.8 and results from Section 3.2. 
Alternatively, the results in this section can be proved by using £-~ arguments that are very 
similar to the ones employed in Section 3.2. 

4.2.1 Definition Let A ~ R, let f: A ~ 1R, and let c e R be a cluster point of A. We say 
that f is bounded on a neighborhood of c if there exists a ~-neighborhood V8(c) of c and 
a constant M > 0 such that we have 1/(x)l :::= M for all x e An V8(c). 

4.2.2 Theorem If A ~ R and f: A ~ R has a limit at c e R, then f is bounded on some 
neighborhood of c. 

Proof. If L : = lim f, then for e = 1, there exists ~ > 0 such that if 0 < lx - c I < ~, then 
.t-+C 

1/(x)- Ll < 1; hence (by Corollary 2.2.4(a)), 

1/(x)l -ILl ::: 1/(x)- Ll < 1. 

Therefore, if x e An V6(c), x ¥= c, then 1/(x)l :::= ILl+ 1. If c ¢A, we take M = ILl+ 1, 
while if c e A we take M :=sup {1/(c)l, ILl+ 1}}. It follows that if x e An V6(c), then 
1/(x)l :::= M. This shows that f is bounded on the neighborhood V8 (c) of c. Q.E.D. 

The next definition is similar to the definition for sums, differences, products, and 
quotients of sequences given in Section 3.2. 

4.2.3 Definition Let A ~ R and let f and g be functions defined on A to R. We define 
the sum f + g, the difference f - g, and the product f g on A to R to be the functions 
given by 

(f + g)(x) := f(x) + g(x), (f- g)(x) := f(x)- g(x), 

(fg)(x) := f(x)g(x) 

for all x e A. Further, if b e R, we define the multiple b f to be the function given by 

(bf)(x) := bf(x) for all x eA. 

Finally, if h(x) ¥= 0 for x e A, we define the quotient !I h to be the function given by 

(f) (x) := f (x) 
h h (x) 

for all x eA. 

4.2.4 Theorem Let A c R, let f and g be functions on A toR, and let c e R be a cluster 
point of A. Further, let b e R. 

(a) If lim f =Land lim g = M, then: 
.r-+c x-+c 

lim(/+ g)= L + M, 
x-+c 

lim(/- g) = L- M, 
X-+C 

lim (/g) = LM, 
X-+C 

lim (b/) = bL. 
x-..c 



106 CHAPTER 4 LIMITS 

(b) If h: A ~ 1R, if h(x) :/: 0 for all x e A, and if lim h = H :1: 0, then 
X-+C 

lim ( 1 ) = !:__ 
X-+C h H 

Proof. One proof of this theorem is exactly similar to that of Theorem 3.2.3. Alternatively, 
it can be proved by making use of Theorems 3.2.3 and 4.1.8. For example, let (xn) be any 
sequence in A such that xn :/: c for n eN, and c = lim(xn>· It follows from Theorem 4.1.8 
that 

lim (l<xn)) = L, lim (g(xn)) = M. 

On the other hand, Definition 4.2.3 implies that 

(lg)(xn) = l(xn)g(xn) for n e N. 

Therefore an application of Theorem 3.2.3 yields 

lim ((lg)(xn)) =lim (l<xn)g(xn)) 

=[lim (l<xn>)] [lim (g(xn>)] = LM. 

Consequently, it follows from Theorem 4.1.8 that 

lim(lg) =lim ((lg)(xn)) = LM. 
x-+c 

The other parts of this theorem are proved in a similar manner. We leave the details to 
the reader. Q.E.D. 

Remarks (1) We note that, in part (b), the additional assumption that H = lim h :F 0 is 

made. If this assumption is not satisfied, then the limit 

I
. l(x) 
tm-

x-+c h(x) 

X-+C 

may or may not exist. But even if this limit does exist, we cannot use Theorem 4.2.4(b) to 
evaluate it. 

(2) Let A c 1R, and let 11, 12, • • • , In be functions on A to 1R; and let c be a cluster point of 
A. If 

for k = 1, · · · , n, 

then it follows from Theorem 4.2.4 by an Induction argument that 

L + L + · · · + L = lim(/1 + f 2 + · · · + .t: ), 1 2 n x-+c n 

and 

Lt · L2 · · · Ln = lim(lt · l2 ···In>· 

In particular, we deduce that if L = lim f and n eN, then 
X-+C 

Ln =lim (/(x))n. 
X-+C 
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4.2.5 Examples (a) Some of the limits that were established in Section 4.1 can be 
proved by using Theorem 4.2.4. For example, it follows from this result that since lim x = c, 

then lim x 2 = c2
, and that if c > 0, then 

x~c 

lim .!. = -
1

- = .!. . 
x~c X lim X C 

x~c 

(b) lim(x2 + 1)(x3 - 4) = 20. 
x~2 

It follows from Theorem 4.2.4 that 

lim(x2 + 1)(x3 - 4) = (lim(x2 + 1)) (lim (x3 
- 4}) 

x~2 x~2 x~2 

= 5 ·4 = 20. 

(c) lim (x3 - 4) - ~ 
x~2 x 2 + 1 - 5. 

H we apply Theorem 4.2.4(b ), we have 

3 _ 4 lim (x 3 - 4) 4 
li 

X x~2 . m - --
x~2 x2 + 1 - lim (x2 + 1) - 5 · 

x~2 

x~c 

Note that since the limit in the denominator [i.e., lim (x2 + 1) = 5] is not equal to 0, then 
x~2 

Theorem 4.2.4(b) is applicable. 
x 2 -4 4 

(d) lim= = -. 
x~2 3x- 6 3 
If we let f (x) := x2 - 4 and h (x) := 3x - 6 for x e IR, then we cannot use Theorem 

4.2.4(b) to evaluate lim (/ (x) I h (x)) because 
x~2 

H =lim h(x) = lim(3x- 6) 
x~2 x~2 

= 3 lim x - 6 = 3 · 2 - 6 = 0. 
x~2 

However, if x '# 2, then it follows that 

x
2

- 4 = (x + 2)(x- 2) = .!_(x + 2). 
3x - 6 3(x - 2) 3 

Therefore we have 

lim x
2 

- 4 lim 1 1 (lim 2) 4 --= -(x+2)=- x+ =-. 
x~2 3x - 6 x~2 3 3 x~2 3 

Note that the function g(x) = (x2
- 4)/(3x- 6) has a limit at x = 2 even though it is not 

defined there. 

(e) lim .!. does not exist in JR. 
x~ox 

Of course lim 1 = 1 and H := lim x = 0. However, since H = 0, we cannot use 
x~o x~o 

Theorem 4.2.4(b) to evaluate lim(1/x). In fact, as was seen in Example 4.1.10(a), the 
x~o 

function fJ(x) = 1/x does not have a limit at x = 0. This conclusion also follows from 
Theorem 4.2.2 since the function ({J(x) = 1/x is not bounded on a neighborhood of x = 0. 
(Why?) 
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(f) If pis a polynomial function, then lim p(x) = p(c). 
X-+C 

Let p be a polynomial function on IR so that p(x) = a,x" + a,_1x"-1 + · · · + a1x + 
a0 for all x e IR. It follows from Theorem 4.2.4 and the fact that lim xk = ck, that 

X-+C 

= lim (a,x") + lim (a,_1x"-1
) + · · · + lim (a1x) + lim a0 X-+C X-+C X-+C X-+C 

n + n-1 + = a,c a,_1c · · · + a1c + a0 

= p (c). 

Hence lim p(x) = p(c) for any polynomial function p. 
x-+c 

(g) If p and q are polynomial functions on IR and if q(c) '# 0, then 

limp (x) = p (c). 
x-+c q (x) q (c) 

Since q (x) is a polynomial function, it follows from a theorem in algebra that there are 
. at most a finite number of real numbers a 1, ···,am [the real zeroes of q(x)] such that 
q(ai) = 0 and such that if x ¢ {a1, ···,am}, then q(x) '# 0. Hence, if x ¢ {a1, ···,am}, 
we can define 

p(x) 
r(x) := --. 

q(x) 

If c is not a zero of q(x), then q(c) '# 0, and it follows from part (t) that lim q(x) = 
X-+C 

q(c) #= 0. Therefore we can apply Theorem 4.2.4(b) to conclude that 

. p(x) _!i~ p(x) p(c) 
bm-- = = --. 
x-+c q(x) lim q(x) q(c) 

X-+C 

The next result is a direct analogue of Theorem 3.2.6. 

4.2.6 Theorem Let A ~ IR, let f: A ~ IR and let c e IR be a cluster point of A. H 

a ::: f(x) ::: b 

and if lim f exists, then a ::: lim f ::: b. 
X-+C X-+C 

for all x e A, x '# c, 

D 

Proof. Indeed, if L =lim f, then it follows from Theorem 4.1.8 that if (x,) is any 
X-+C 

sequence of real numbers such that c '# x, e A for all n eN and if the sequence (x,) 
converges to c, then the sequence (f(x,)) converges to L. Since a ::: f(x,) ::: b for all 
n eN, it follows from Theorem 3.2.6 that a ::: L :::b. Q.E.D. 

We now state an analogue of the Squeeze Theorem 3.2.7. We leave its proof to the 
reader. 

4.2. 7 Squeeze Theorem Let A c IR, let f, g, h: A ~ 1R, and let c e IR be a cluster point 
ofA.H 

f(x) ::: g(x) ~ h(x) 

and if lim f = L =lim h, then lim g = L. 
x-+c x-+c x-+c 

for all x e A, x '# c, 
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4.2.8 Examples (a) lim x 312 = 0 (x > 0). 
x-+0 

Let l(x) := x 312 for x > 0. Since the inequality x < x 112 !:: 1 holds for 0 < x !:: 1 
(why?), it follows that x 2 !:: I (x) = x 3

'
2 !:: x for 0 < x !:: 1. Since 

limx2 = 0 and limx = 0, 
x-+0 x-+0 

it follows from the Squeeze Theorem 4.2. 7 that lim x 312 = 0. 
X-+0 

(b) lim sinx = 0. 
X-+0 
It will be proved later (see Theorem 8.4.8), that 

-x !:: sinx !:: x for all x ~ 0. 

Since lim(±x) = 0, it follows from the Squeeze Theorem that lim sinx = 0. 
X-+0 .%-+0 

(c) lim cosx = 1 . 
.%-+0 

It will be proved later (see Theorem 8.4.8) that 

(1) 1 - 4x2 !:: cosx :::S 1 for all x e R. 

Since lim (1- !x2
) = 1, it follows from the Squeeze Theorem that lim cosx = 1. 

x-+0 x-+0 

(d) lim (cosx- 1) = O. 
x-+0 X 

We cannot use Theorem 4.2.4(b) to evaluate this limit. (Why not?) However, it follows 
from the inequality ( 1) in part (c) that 

- ! X :::s (cos X - 1) I X !:: 0 for x > 0 

and that 

0!:: (cosx- 1)/x !:: -!x for x < 0. 

Now let l(x) := -x/2 for x ~ 0 and l(x) := 0 for x < 0, and let h(x) := 0 for x ~ 0 
and h(x) := -x/2 for x < 0. Then we have 

l(x) !:: (cosx - 1)/x !:: h(x) for x :f: 0. 

Since it is readily seen that lim I= 0 = lim h, it follows from the Squeeze Theorem that 
.%-+0 .%-+0 

lim(cosx- 1)/x = 0. 
x-+0 

(e) lim (sinx) = 1. 
x-+0 X 

Again we cannot use Theorem 4.2.4(b) to evaluate this limit. However, it will be 
proved later (see Theorem 8.4.8) that 

and that 

X < Sin X !:: X - 1 x 3 

Therefore it follows (why?) that 

1 - ix2 :::S (sinx)/x :::s 1 

for x ~0 

for x !:: 0. 

for all x :/: 0. 

But since lim (1 - 1x2
) = 1 - 1 · lim x 2 = 1, we infer from the Squeeze Theorem that 

x-+0 x-+0 
lim(sinx)/x = 1. 
x-+0 
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(t) lim (x sin(l/x)) = 0 . 
.r-+0 

Let f(x) = x sin(l/x) for x :1: 0. Since -1 ::: sinz < 1 for all z e R, we have the 
inequality 

-lxl < f(x) = x sin(l/x) ::: lxl 

for all x e IR, x =F 0. Since lim lx I = 0, it follows from the Squeeze Theorem that 
.r-+0 

lim f = 0. For a graph, see Figure 5.1.3 or the cover of this book. 0 
.r-+0 

There are results that are parallel to Theorems 3.2.9 and 3.2.10; however, we will leave 
them as exercises. We conclude this section with a result that is, in some sense, a partial 
converse to Theorem 4.2.6. 

4.2.9 Theorem Let A c R, let f: A ~ R and let c e R be a cluster point of A. If 

lim/>0 
X-+C 

[respectively, lim f < o] ' 
X-+C 

then there exists a neighborhood V&(c) of c such that f(x) > 0 [respectively, f(x) < 0] 
for all X E An V&(c), X :1: c. . 

Proof. Let L := lim f and suppose that L > 0. We take E = ! L > 0 in Definition 4.1.4, 
x-+c 

and obtain a number8 > 0 such thatifO < lx- cl < 8 andx e A, then If (x)- Ll < !L. 

Therefore (why?) it follows that if X E An V&(c), X =F C, then f(x) > !L > 0. 
If L < 0, a similar argument applies. Q.E.D. 

Exercises for Section 4.2 

1. Apply Theorem 4.2.4 to determine the following limits: 

(a) lim (x + 1) (2x + 3) (x e R), (b) lim x
2 

+ 2 
(x > 0), 

x-1 .x--.1 x 2 - 2 

(c) ~ C : 1 - ~) (x > 0), (d) ~ : 2 : ~ (x e R). 

2. Determine the following limits and state which theorems are used in each case. (You may wish 

to use Exercise 14 below.) 

(a) lim J2x + 1 
(x > 0), 

x-2 X+ 3 

(c) lim (x + 1)2 - 1 (x > 0), 
x-0 X 

3 F. d lim JI + 2x - J1 + 3x h 0 
. 1n 2 w ere x > . 

x-0 X +2x 

(b) lim x2 - 4 (x > 0), 
.r--.2 X- 2 

(d) lim~- 1 
(x > 0) . 

.r--.1 X- 1 

4. Prove that lim cos(1/x) does not exist but that lim x cos(l/x) = 0. 
x-.o .r--.0 

5. Let 1, g be defined on A ~ R toR, and let c be a cluster point of A. Suppose that I is bounded 

on a neighborhood of c and that lim g = 0. Prove that lim f g = 0 . 
.r ... c .r~c 

6. Use the definition of the limit to prove the first assertion in Theorem 4.2.4(a). 

7. Use the sequential formulation of the limit to prove Theorem 4.2.4(b). 



SOME EXTENSIONS OF THE LIMIT CONCEPT 111 

8. Let n eN be such that n ~ 3. Derive the inequality -x2 !:: x 11 !:: x 2 for -1 < x < 1. Then use 
the fact that lim x 2 = 0 to show that lim x 11 = 0. 

x-o x-o 

9. Let f, g be defined on A to 1R and let c be a cluster point of A. 
(a) Show that if both lim f and lim(/+ g) exist, then lim g exists. 

x-c x-c x-c 

(b) If lim f and lim f g exist, does it follow that lim g exists? 
x-c x-c x-c 

10. Give examples of functions f and g such that f and g do not have limits at a point c, but such 
that both f + g and f g have limits at c. 

11. Determine whether the following limits exist in JR. 
(a) lim sin(ljx2) (x :1: 0), (b) lim x sin(lfx2) (x :1: 0), 

x-o x-o 

(c) lim sgnsin(l/x) (x :1: 0), (d) lim ,Ji sin(1/x2
) (x > 0). 

x-o x-o 

12. Let/: 1R-+ 1R be such that f(x + y) = f(x) + /(y) for all x, yin R. Assume that lim f = L 
x-o 

exists. Prove that L = 0, and then prove that f has a limit at every point c e 1R. [Hint: First note 
that /(2x) = f(x) + f(x) = 2/(x) for x e R. Also note that f(x) = j(x -c)+ f(c) for x, 
c in R.] 

13. Let A ~ 1R, let f: A -+ 1R and let c e 1R be a cluster point of A. If lim f exists, and if 1/1 
x-c 

denotes the function defined for x e A by 1/1 (x) := 1/(x)l, prove that lim 1/1 =I lim /1 
x-c x-c 

14. Let A ~ 1R, let f : A -+ R, and let c e R be a cluster point of A. In addition, suppose that 

j(x) ~ 0 for all x e A, and let IT be the function defined for x e A by (IT) (x) := 

../ f(x) . If lim f exists, prove that lim IT= Jlim f. 
x-c x-c x-c 

Section 4.3 Some Extensions of the Limit Conceptt 

In this section, we shall present three types of extensions of the notion of a limit of a 
function that often occur. Since all the ideas here are closely parallel to ones we have 
already encountered, this section can be read easily. 

One-sided Limits 

There are times when a function f may not possess a limit at a point c, yet a limit does 
exist when the function is restricted to an interval on one side of the cluster point c. 

For example, the signum function considered in Example 4.1.1 O(b ), and illustrated 
in Figure 4.1.2, has no limit at c = 0. However, if we restrict the signum function to the 
interval (0, oo ), the resulting function has a limit of 1 at c = 0. Similarly, if we restrict the 
signum function to the interval ( -oo, 0), the resulting function has a limit of -1 at c = 0. 
These are elementary examples of right-hand and left-hand limits at c = 0. 

4.3.1 Definition Let A e 1R and let f: A ~ 1R. 

(i) If c e 1R is a cluster point of the set An (c, oo) = {x e A: x > c}, then we say that 
L e 1R is a right-hand limit of f at c and we write t 

lim f=L .r-.c+: or lim f(x) = L 
.r-.c+ . 

tThis section can be largely omitted on a first reading of this chapter. 
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if given any e > 0 there exists a 8 = 8 (e) > 0 such that for all x e A with 0 < 
x - c < 8, then If (x) - L I < e. 

(ii) H c e R is a cluster point of the set An ( -oo, c)= {x e A: x < c}, then we say that 
L e R is a left-hand limit off at c and we write 

lim f = L 
x-+c-

or lim f(x) = L 
X-+C-

if given any e > 0 there exists a 8 > 0 such that for all x e A with 0 < c- x < 8, 
then 1/(x)- Ll <e. 

Notes (1) The limits lim f and lim fare called one-sided limits off at c. It is 
x-+c+ x-+c-

possible that neither one-sided limit may exist. Also, one of them may exist without the 
other existing. Similarly, as is the case for f (x) := sgn(x) at c = 0, they may both exist 
and be different. 

(2) If A is an interval with left endpoint c, then it is readily seen that f: A ~ 1R has a 
limit at c if and only if it has a right-hand limit at c. Moreover, in this case the limit lim f 

X-+C 
and the right-hand limit lim f are equal. (A similar situation occurs for the left-hand limit 

x-+c+ 
when A is an interval with right endpoint c.) 

The reader can show that f can have only one right-hand (respectively, left-hand) 
limit at a point. There are results analogous to those established in Sections 4.1 and 4.2 for 
two-sided limits. In particular, the existence of one-sided limits can be reduced to sequential 
considerations. 

4.3.2 Theorem Let A c R, let f : A ~ R, and let c e 1R be a cluster point of A n 
(c, oo). Then the following statements are equivalent: 

(i) lim I= L. 
x-+c+ 

(ii) For every sequence (xn) that converges to c such that xn e A and xn > c for all n e N, 
the sequence (f<xn)) converges to L. 

We leave the proof of this result (and the formulation and proof of the analogous result 
for left-hand limits) to the reader. We will not take the space to write out the f~rmulations 
of the one-sided version of the other results in Sections 4.1 and 4.2. 

The following result relates the notion of the limit of a function to one-sided limits. 
We leave its proof as an exercise. 

4.3.3 Theorem Let A c R, let f: A ~ R, and let c e 1R be a cluster point of both of the 
sets An (c, oo) and An (-oo, c). Then lim f = L if and only if lim f = L = lim f. 

X-+C X-+C+ X-+C-

4.3.4 Examples (a) Let f(x) := sgn(x). 
We have seen in Example 4.1.10(b) that sgn does not have a limit at 0. It is clear that 

lim sgn(x) = + 1 and that lim sgn(x) = -1. Since these one-sided limits are different, 
x-+0+ x-+0-
it also follows from Theorem 4.3.3 that sgn(x) does not have a limit at 0. 

(b) Let g(x) := e11x for x ¢ 0. (See Figure 4.3.1.) 
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Figure 4.3.1 Graph of g(x) = e1fx (x '# 0). 

We first show that g does not have a finite right-hand limit at c = 0 since it is not 
bounded on any right-hand neighborhood (0, 8) of 0. We shall make use of the inequality 

(1) 0 < t < e' . for t > 0, 

which will be proved later (see Corollary 8.3.3). It follows from (1) that if x > 0, then 
0 < 1/x < e11x. Hence, if we take x,. = 1/n, then g(x,.) > n for all n eN. Therefore 
lim e 11 x does not exist in lR. 

x-+0+ 

However, lim e11x = 0. Indeed, if x < 0 and we take t = -1/x in (1) we obtain 
x-+0-

0 < -1/x < e- 1/x. Since x < 0, this implies that 0 < e11x < -x for all x < 0. It follows 
from this inequality that lim e 11x = 0. 

x-+0-

(C) Let h(x) :=.1/(e11x + 1) for x -:/: 0. (See Figure 4.3.2.) 
We have seen in part (b) that 0 < 1/x < e11x for x > 0, whence 

1 1 
O < e1/x + 1 < e1/x < X' 

which implies that lim h = 0. 
x-+0+ 

F1gure 4.3.2 Graph of h(x) = 1/(e1/x + 1) (x '# 0). 
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Since we have seen in part (b) that lim e11x = 0, it follows from the analogue of 
x~o-

Theorem 4.2.4(b) for left-hand limits that 

lim ( 1 )= 1 =-1-=1. 
x~o- e 11x + 1 lim ellx + 1 0 + 1 

x~o-

Note that for this function, both one-sided limits exist in R, but they are unequal. 0 

~uLmmu -----------------------------------------------
The function I (x) := 1 I x 2 for x :/: 0 (see Figure 4.3.3) is not bounded on a neighborhood of 
0, so it cannot have a limit in the sense of Definition 4.1.4. While the symbols oo ( = +oo) 
and -oo do not represent real numbers, it is sometimes useful to be able to say that 
"l(x) = Ijx2 tends to oo as x --+ 0". This use of ±oo will not cause any difficulties, 
provided we exercise caution and never interpret oo or -oo as being real numbers. 

Figure 4.3.3 Graph of 
/(x) = 1/x2 (x ~ 0) 

Figure 4.3.4 Graph of 
g(x) = lfx (x ~ 0) 

4.3.5 Definition Let A c R, let I: A --+ R, and let c e R be a cluster point of A. 

(i) We say that I tends to oo as x --+ c, and write 

lim I= oo, 
x~c 

if for every a e R there exists 8 = 8(a) > 0 such that for all x e A with 0 < lx - cl 
< 8, then l(x) >a. 

(ii) We say that I tends to -oo as x --+ c, and write 

lim I= -oo, 
x~c 

if for every fJ e R there exists 8 = 8 (/J) > 0 such that for all x e A with 0 < lx - c I < 
8, then l(x) < fJ. 

4.3.6 Examples (a) lim(l/x2
) = oo. 

x~o 

For, if a > 0 is given, let 8 := 1/ ..;a. It follows that if 0 < lxl < 8, then x 2 < 1/a so 
that 1jx2 >a. 

(b) Let g(x) := 1/x for x :1: 0. (See Figure 4.3.4.) 
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The function g does not tend to either oo or -oo as x ---+ 0. For, if a > 0 then g(x) < a for all x < 0, so that g does not tend to oo as x ---+ 0. S1milarly, if fJ < 0 then g(x) > fJ for all x > 0, so that g does not tend to -oo as x ---+ 0. 0 

While many of the results in Sections 4.1 and 4.2 have extensions to this limiting notion, not all of them do since ±oo are not real numbers. The following result is an analogue of the Squeeze Theorem 4.2.7. (See also Theorem 3.6.4.) 

4.3.7 Theorem Let A c :R, Jet f, g: A ---+ :R, and let c E :R be a cluster point of A. Suppose that f(x) :S g(x) for all x E A, x #c. 

(a) If lim f = oo, then lim g = oo. 
x~c x~c 

(b) If lim g = -oo, then lim f = -oo. 
x~c x~c 

Proof. (a) If lim f = oo and a E :R is given, then there exists 8(a) > 0 such that if x~c 

0 < lx- cl < 8 (a) andx E A, then f(x) >a. But since f(x) :S g(x) forallx E A,x =I= c, it follows that ifO < lx- cl < 8 (a) and x E A, then g(x) >a. Therefore lim g = oo. 
x~c 

The proof of (b) is similar. Q.E.D. 

The function g(x) = 1/x considered in Example 4.3.6(b) suggests that it might be useful to consider one-sided infinite limits. We will define only right-hand infinite limits. 

4.3.8 Definition Let A c :R and let f : A ---+ JR. If c E :R is a cluster point of the set An (c, oo) = {x E A: x > c}, then we say that f tends to oo [respectively, -oo] as x ~ c+, and we write 

lim f = oo [respectively, lim f = -oo] , x~c+ x~c+ 

if for every a E :R there is 8 = 8(a) > 0 such that for all x E A with 0 < x- c < 8, then /(x) >a [respectively, f(x) <a]. 

4.3.9 Examples (a) Let g(x) := 1/x for x # 0. We have noted in Example 4.3.6(b) that lim
0 

g does not exist. However, it is ~ easy exercise to show tha~ X-4 

lim (1/x) = oo 
x~O+ 

and lim (1/~ -oo. 
x~o-. 

(b) ItwasseeninExample4.3.4(b)thatthefunctiong(x) := e1fx forx =I= Oisnotbounded on any interval (0, 8), 8 > 0. Hence the right-hand limit of e1fx as x ---+ 0+ does not exist in the sense of Definition 4.3.1 (i). However, since 

1/x < elfx for x > 0, 

it is readily seen that lim e 1fx = oo in the sense of Definition 4.3.8. x~O+ 

Limits at Infinity 

0 

It is also desirable to define the notion of the limit of a function as x ---+ oo. The definition as x ~ --oo is similar. 
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4.3.10 Definition Let A c 1R and let f: A-+ IR. Suppose that (a, oo) c A for some 
a e JR. We say that L e 1R is a limit of f as x -+ oo, and write 

limf=L 
x~oo 

or lim f(x) = L, 
x~oo 

if given any e > 0 there exists K = K(e) >a such that for any x > K, then 
lf(x) - Ll < e. 

The reader should note the close resemblance between 4.3.10 and the definition of a 
limit of a sequence. 

We leave it to the reader to show that the limits of f as x -+ ±oo are unique whenever 
they exist. We also have sequential criteria for these limits; we shall only state the criterion 
as x -+ oo. This uses the notion of the limit of a properly divergent sequence (see Definition 
3.6.1). 

4.3.11 Theorem Let A c 1R, let f: A-+ 1R, and suppose that (a, oo) c A for some 
a e JR. Then the following statements are equivalent: 

(i) L = lim f. 
x~oo 

(ii) For evezy sequence (x,.) in An (a, oo) such thatlim(x,.) = oo, the sequence (f(x,.)) 
converges to L. 

We leave it to the reader to prove this theorem and to formulate and prove the companion 
result concerning the limit as x -+ -oo. 

4.3.12 Examples (a) Let g(x) := 11x for x '# 0. 
It is an elementary exercise to show that lim ( 1 I x) = 0 = lim ( 1 I x). (See Figure 

x~oo x~-oo 

4.3.4.) 

(b) Let f(x) := 11x2 for x '# 0. 
The reader may show that lim (11x2

) = 0 = lim (llx2
). (See Figure 4.3.3.) One 

x~oo x~-oo 

way to do this is to show that if x :::: 1 then 0 ~ 1 I x 2 ~ 11 x. In view of part (a), this implies 
that lim (11x2

) = 0. 0 
x-oo 

Just as it is convenient to be able to say that l(x)-+ ±oo as x --+ c force 1R, it is 
convenient to have the corresponding notion as x -+ ±oo. We will treat the case where 
X-+ 00. 

4.3.13 Definition Let A c 1R and let 1: A-+ 1R. Suppose that (a, oo) c A for some 
a e A. We say that I tends to oo [respectively, -oo] as x -+ oo, and write 

lim I = oo [respectively, lim I = -oo] 
x~oo x~oo 

if given any a e 1R there exists K = K(a) >a such that for any x > K, then l(x) >a 
[respectively, l(x) <a]. 

As before there is a sequential criterion for this limit. 

4.3.14 Theorem Let A e 1R, let f: A-+ R, and suppose that (a, oo) c A for some 
a e 1R. Then the following statements are equivalent: 
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(i) lim f = oo [respectively, lim f = -oo]. 
X-+00 X-+00 

(H) For evezy sequence (xn) in (a, oo) such that lim(xn) = oo, then lim (f(xn)) = oo 
[respectively, lim(f(xn)) = -oo]. 

The next result is an analogue of Theorem 3.6.5. 

4.3.15 Theorem Let A c 1R, let f, g: A-+ 1R, and suppose that (a, oo) c A for some 
a e JR. Suppose further that g (x) > 0 for all x > a and that for some L e 1R, L #= 0, we 
have 

lim f (x) = L. 
x-+oo g (x) 

(i) If L > 0, then lim f = oo if and only if lim g = oo. 
X-+00 X-+00 

(H) If L < 0, then lim f = -oo if and only if lim g = oo. 
X-+00 X-+00 

Proof. (i) Since L > 0, the hypothesis implies that there exists a 1 >a such that 

0 < lL < f(x) < ~L 
2 - g(x) 2 

for x > a 1• 

Therefore we have (! L) g (x) < f (x) < ( ~ L) g (x) for all x > a 1, from which the conclu
sion follows readily. 

The proof of (ii) is similar. Q.E.D. 

We leave it to the reader to formulate the analogous result as x -+ -oo. 

4.3.16 Examples (a) lim xn = oo for n e N. 
X-+00 

Let g(x) := xn for x e {0, oo). Given a e 1R, let K := sup{1, a}. Then for all x > K, 
we have g (x) = xn ~ x > a. Since a e 1R is arbitrary, it follows that lim g = oo. 

X-+00 

(b) lim xn = oo for n eN, n even, and lim xn = -oo for n eN, n odd. 
x-+-oo x-+-oo 

We will treat the case n odd, say n = 2k + 1 with k = 0, 1, · · ·. Given a e JR, let 
K := inf{a, -1}. For any x < K, then since (x2)A: ~ 1, we have xn = (x2)kx ~ x <a. 
Since a e 1R is arbitrary, it follows that lim xn = -oo. 

X-+-00 

(c) Let p: 1R-+ 1R be the polynomial function 

p(x) := anxn + an_lxn-l + ... + alx + ao. 

Then lim p = 00 if an > 0, and lim p = -00 if an < 0. 
X-+00 X-+00 

Indeed, let g(x} := xn and apply Theorem 4.3.15. Since 

:~=~=an +an-I G)+ ... +at cn1-t) +ao (:n)' 
it follows that lim (p{x)/g(x)) =an. Since lim g = oo, the assertion follows from The-

x-+oo x-+oo 

orem 4.3.15. 
(d) Let p be the polynomial function in part (c). Then lim p = oo [respectively, -oo] 

x-+-oo 

_ if n is even [respectively, odd] and an > 0. 
We leave the details to the reader. D 
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Exercises for Section 4.3 

1. Prove Theorem 4.3.2. 

2. Give an example of a function that has a right-hand limit but not a left-hand limit at a point. 

3. Let f (x) := lxl- 112 for x #:. 0. Show that lim f(x) = lim f (x) = +oo. 
x~O+ x~o-

4. Let c e 1R and let f be defined for x e (c, oo) and f(x) > 0 for all x e (c, oo). Show that 
lim f = oo if and only if lim 1/ f = 0. 
x~c x~c 

S. Evaluate the following limits, or show that they do not exist. 

(a) lim _!_I (x #:. 1), (b) lim _x- (x :1: 1), 
x~ 1 + X - x~ 1 X - } 

(c) lim (x + 2)/ -/X (x > 0), (d) lim (x + 2)/ -/X (x > 0), 
x~O+ x~oo 

(e) lim (.JX+l) fx (x > -1), (f) lim (.JX+l) fx (x > 0), 
x~o x~oo 

(g) lim -/X- 5 
(x > 0), (h) lim .JX- x (x > 0). 

x~oo -/X + 3 x~oo .Ji + X 

6. Prove Theorem 4.3.11. 

7. Suppose that f and g have limits in R as x --+ oo and that f (x) !:: g (x) for all x e (a, oo). 
Prove that lim f !:: lim g. 

x~oo x~oo 

8. Let f be defined on (0, oo) toR. Prove that lim f(x) = L if and only if lim /(1/x) = L. 
x-oo x~O+ 

9. Show that iff: (a, oo)--+ R is such that lim xf(x) = L where L e R, then lim f(x) = 0. 
x-oo x-oo 

10. Prove Theorem 4.3.14. 

11. Suppose that lim /(x) = L where L > 0, and that lim g(x) = oo. Show that lim f(x)g(x) = 
x-c x~c x~c 

oo. If L = 0, show by example that this conclusion may fail. 

12. Find functions f and g defined on (0, oo) such that lim f = oo and lim g = oo, and lim (/ -
x~oo x~oo x~oo 

g) = 0. Can you find such functions, with g(x) > 0 for all x e (0, oo), such that lim fIg = 0? 
x~oo 

13. Let f and g be defined on (a, oo) and suppose lim f = L and lim g = oo. Prove that 
x-oo x-oo 

lim fog= L. 
x-oo 



CHAPTERS 

CONTINUOUS FUNCTIONS 

We now begin the study of the most important class of functions that arises in real analysis: 
the class of continuous functions. The term "continuous" has been used since the time of 
Newton to refer to the motion of bodies or to describe an unbroken curve, but it was not 
made precise until the nineteenth century. Work of Bernhard Bolzano in 1817 and Au gus tin
Louis Cauchy in 1821 identified continuity as a very significant property of functions and 
proposed definitions, but since the concept is tied to that of limit, it was the careful work of 
Karl Weierstrass in the 1870s that brought proper understanding to the idea of continuity. 

We will first define the notions of continuity at a point and continuity on a set, and then 
show that various combinations of continuous functions give rise to continuous functions. 
Then in Section 5.3 we establish the fundamental properties that make continuous functions 
so important. For instance, we will prove that a continuous function on a closed bounded 
interval must attain a maximum and a minimum value. We also prove that a continuous 
function must take on every value intermediate to any two values it attains. These properties 
and others are not possessed by general functions, as various examples illustrate, and thus 
they distinguish continuous functions as a very special class of functions. 

In Section 5.4 we introduce the very important notion of uniform continuity. The 
distinction between continuity and uniform continuity is somewhat subtle and was not fully 
appreciated until the work of Weierstrass and the mathematicians of his era, but it proved to 

Karl Weierstrass 
Karl Weierstrass (=Weierstra8) (1815-1897) was born in Westphalia, Ger
many. His father, a customs officer in a salt works, insisted that he study 
law and public finance at the University of Bonn, but he had more interest 
in drinking and fencing, and left Bonn without receiving a diploma. He then 
enrolled in the Academy of Munster where he studied mathematics with 
Christoph Gudermann. From 1841-1854 he taught at various gymnasia in 
Prussia. Despite the fact that he had no contact with the mathematical world 
during this time, he worked hard on mathematical research and was able 
to publish a few papers, one of which attracted considerable attention. Indeed, the University of 
Konigsberg gave him an honorary doctoral degree for this work in 1855. The next year, he secured 
positions at the Industrial Institute of Berlin and the University of Berlin. He remained at Berlin 
until his death. 

A methodical and painstaking scholar, Weierstrass distrusted intuition and worked to put 
everything on a finn and logical foundation. He did fundamental work on the foundations of 
arithmetic and analysis, on complex analysis, the calculus of variations, and algebraic geometry. 
Due to his meticulous preparation, he was an extremely popular lecturer; it was not unusual for 
him to speak about advanced mathematical topics to audiences of more than 250. Among his 
auditors are counted Georg Cantor, Sonya Kovalevsky, Gosta Mittag-Leffler, Max Planck, Otto 
Holder, David Hilbert, and Oskar Bolza (who had many American doctoral students). Through 
his writings and his lectures, Weierstrass had a profound influence on contemporary mathematics. 
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be very significant in applications. We present one application to the idea of approximating 
continuous functions by more elementary functions (such as polynomials). 

The notion of a "gauge" is introduced in Section 5.5 and is used to provide an alter
native method of proving the fundamental properties of continuous functions. The main 
significance of this concept, however, is in the area of integration theory where gauges are 
essential in defining the generalized Riemann integral. This will be discussed in Chapter 10. 

Monotone functions are an important class of functions with strong continuity proper
ties and they are discussed in Section 5 .6. 

Section 5.1 Continuous Functions 

In this section, which is very similar to Section 4.1, we will define what it means to say 
that a function is continuous at a point, or on a set. This notion of continuity is one of the 
central concepts of mathematical analysis, and it will be used in almost all of the following 
material in this book. Consequently, it is essential that the reader master it. 

5.1.1 Definition Let A c IR, let f: A~ IR, and let c eA. We say that f is continuous 
at c if, given any number e > 0 there exists ~ > 0 such that if x is any point of A satisfying 
lx- cl <~,then 1/(x)- /(c) I <e. 

If f fails to be continuous at c, then we say that f is discontinuous at c. 

As with the definition of limit, the definition of continuity at a point can be formulated 
very nicely in terms of neighborhoods. This is done in the next result. We leave the 
verification as an important exercise for the reader. See Figure 5.1.1. 

c 

Figure 5.1.1 Given V£(/(c)), a neighborhood V&(c) is to be determined. 

5.1.2 Theorem A function f : A ~ IRis continuous at a point c e A if and only if given 
any e-neighborhood Vs(f(c)) of f(c) there exists a ~-neighborhood V8(c) ofc such that if 
xis any point of An V8(c), then f(x) belongs to Vs(f(c}), that is, 

f(A n V8(c)) c Vs(f(c)). 

Remark (1) If c e A is a cluster point of A, then a comparison of Definitions 4.1.4 and 
5 .1.1 show that f is continuous at c if and only if 

(1) I (c) = lim f(x). 
x~c 
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Thus, if cis a cluster point of A, then three conditions must hold for f to be continuous 
ate: 

(i) f must be defined at c (so that /(c) makes sense). 

(ii) the limit off at c must exist in JR (so that lim f(x) makes sense), and 
x~c 

(iii) these two values must be equal. 

(2) H c e A is not a cluster point of A, then there exists a neighborhood v, (c) of c such 
that An V,(c) = {c}. Thus we conclude that a function f is automatically continuous at a 
point c e A that is not a cluster point of A. Such points are often called "isolated points" 
of A. They are of little practical interest to us, since they have no relation to a limiting 
process. Since continuity is automatic for such points, we generally test for continuity only 
at cluster points. Thus we regard condition ( 1) as being characteristic for continuity at c. 

A slight modification of the proof of Theorem 4.1.8 for limits yields the following 
sequential version of continuity at a point. 

5.1.3 Sequential Criterion for Continuity A function f : A -+ R is continuous at the 
point c e A if and only if for every sequence (x,.) in A that converges to c, the sequence 
(f(x,.)) converges to f(c). 

The following Discontinuity Criterion is a consequence of the last theorem. It should 
be compared with the Divergence Criterion 4.1.9(a) with L = /(c). Its proof should be 
written out in detail by the reader. 

5.1.4 Discontinuity Criterion Let A c R, let f : A --+ JR, and let c e A. Then f is 
discontinuous at c if and only if there exists a sequence (x,.) in A such that (x,.) converges 
to c, but the sequence (f(x,.)) does not converge to f(c). 

So far we have discussed continuity at a point. To talk about the continuity of a function 
on a set, we will simply require that the function be continuous at each point of the set. We 
state this formally in the next definition. 

5.1.5 Definition Let A c Rand let f :A--+ R. H B is a subset of A, we say that f is 
continuous on the set B if f is continuous at every point of B. · 

5.1.6 Examples (a) The constant function f(x) := b is continuous on R. 
It was seen in Example 4.1.7(a) that if c e R, then lim f(x) =b. Since /(c)= b, 

x~c 

we have lim f(x) =/(c), and thus f is continuous at every point c e R. Therefore f is 
x~c 

continuous on JR. 
(b) g (x) : = x is continuous on R. 

It was seen in Example 4.1.7(b) that if c e JR, then we have lim g =c. Since g(c) = c, 
x~c 

then g is continuous at every point c e JR. Thus g is continuous on JR. 

(c) h(x) := x 2 is continuous on R. . 
It was seen in Example 4.1.7(c) that if c e R, then we have lim h = c2• Since h(c) 

x~c 

= c2 , then h is continuous at every point c e JR. Thus h is continuous on JR. 

(d) qJ(x) := 1/x is continuous on A := {x e R: x > 0}. 

----------------
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It was seen in Example 4.1.7(d) that if c e A, then we have lim qJ = 1/c. Since 
x-.c 

qJ (c) = I I c, this shows that qJ is continuous at every point c e A. Thus qJ is continuous 
on A. 

(e) q;(x) := 1/x is not continuous at x = 0. 
Indeed, if cp(x) = 1/x for x > 0, then cp is not defined for x = 0, so it cannot be 

continuous there. Alternatively, it was seen in Example 4.1.10(a) that lim cp does not exist 
x-.0 

in 1R, so cp cannot be continuous at x = 0. 

(f) The signum function sgn is not continuous at 0. 
The signum function was defined in Example 4.1.1 O(b ), where it was also shown that 

lim sgn(x) does not exist in 1R. Therefore sgn is not continuous at x = 0 (even though sgn 0 
x-.0 
is defined). 

It is an exercise to show that sgn is continuous at every point c # 0. 

(g) Let A := 1R and let f be Dirichlet's "discontinuous f}lnction" defined by 

{ 
1 if x is rational, 

f(x) := 0 
if x is irrational. 

We claim that f is not continuous at any point of 1R. (This function was introduced in 1829 
by P. G. L. Dirichlet.) 

Indeed, if c is a rational number, let (xn) be a sequence of irrational numbers that 
converges to c. (Corollary 2.4.9 to the Density Theorem 2.4.8 assures us that such a 
sequence does exist.) Since f(xn) = 0 for all n e N, we have lim (f<xn)) = 0, while 
f (c) = I. Therefore f is not continuous at the rational number c. 

On the other hand, if b is an irrational number, let (y n) be a sequence of rational 
numbers that converge to b. (The Density Theorem 2.4.8 assures us that such a sequence 
does exist.) Since /(yn) = 1 for all n E N, we have lim (f<Yn)) = 1, while /(b) = 0. 
Therefore f is not continuous at the irrational number b. 

Since every real number is either rational or irrational, we deduce that f is not 
continuous at any point in 1R. 

(h) Let A := {x e 1R: x > 0}. For any irrational number x > 0 we define h(x) = 0. For 
a rational number in A of the form mfn, with natural numbers m, n having no common 
factors except I, we define h(m/n) := 1/n. (See Figure 5.1.2.) 

1 • • 

0.8 

0.6 

• • 

0.4 
• • • • 

• • • • 
• • • • • • 0.2 • • • • • • ,. . • • • • ., 
• • • • • • ,. . · .. ·. . .. · . ., 

0 0.5 1 1.5 2 

Fipre 5.1.2 Thomae's function. 
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We claim that h is continuous at every irrational number in A, and is discontinuous 
at every rational number in A. (This function was introduced in 1875 by K. J. Thomae.) 

Indeed, if a > 0 is rational, let (xn) be a sequence of irrational numbers in A that 
converges to a. Then lim (h(xn)} = 0, while h(a) > 0. Hence his discontinuous at a. 

On the other hand, if b is an in:ational number and £ > 0, then (by the Archimedean 
Property) there is a natural number n0 such that 1/n0 <£.There are only a finite num
ber of rationals with denominator less than n0 in the interval (b- 1, b + 1). (Why?) 
Hence ~ > 0 can be chosen so small that the neighborhood (b- ~' b + ~) contains no 
rational numbers with denominator less than n0• It then follows that for lx- bl < ~' x e 
A, we have lh(x)- h(b)l = lh(x)l ~ 1/n0 < £. Thus h is continuous at the irrational 
number b. 

Consequently, we deduce that Thomae's function h is continuous precisely at the 
irrational points in A. D 

5.1.7 Remarks (a) Sometimes a function 1: A~ 1R is not continuous at a point c 
because it is not defined at this point. However, if the function I has a limit L at the point 
c and if we define F on AU {c} ~ 1R by 

F(x) := {L 
l(x) 

for x = c, 

for x e A, 

then F is continuous at c. To see this, one needs to check that lim F = L, but this follows 
x-+c 

(why?), since lim I = L. 
X-+C 

(b) If a function g : A ~ 1R does not have a limit at c, then there is no way that we can 
obtain a function G : A U { c} ~ 1R that is continuous at c by defining 

G(x) := {c 
g(x) 

for x = c, 

for x eA. 

To see this, observe that if lim G exists and equals C, then lim g must also exist and 
X-+C X-+C 

equal C. 

5.1.8 Examples (a) The function g(x) := sin(l/x) for x :;: 0 (see Figure 4.1.3) does 
not have a limit at x = 0 (see Example 4.1.10(c)). Thus there is no value that we can assign 
at x = 0 to obtain a continuous extension of g at x = 0. 

(b) Let l(x) = x sin(l/x) for x :;: 0. (See Figure 5.1.3.) Since I is not defined at x = 0, 
the function 1 cannot be continuous at this point. However, it was seen in Example 4.2.8(t) 
that lim(x sin(l/x)) = 0. Therefore it follows from Remark 5.1.7(a) that if we define 

x-+0 

F: 1R-+ R by 

F(x) := 

-- then F is continuous at x = 0. 

{
0 

x sin(l/x) 

for x = 0, 

for x :;: 0, 

D 
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y 

/ ' .. 

Figure 5.1.3 Graph of /(x) = x sin(l/x) (x :f: 0). 

Exercises for Section 5.1 

1. Prove the Sequential Criterion 5.1.3. 

2. Establish the Discontinuity Criterion 5.1.4. 

3. Let a < b < c. Suppose that f is continuous on [a, b), that g is continuous on [b, c), and that 
/(b) = g(b). Define h on [a, c) by h(x) := /(x) for x e [a, b) and h(x) := g(x) for x e (b, c). 
Prove that his continuous on [a, c). 

4. If x e R, we define [x D to be the greatest integer n e Z such that n ~ x. (Thus, for exam
ple, (8.3) = 8, (1r] = 3, (-1r) = -4.) The function x 1-+ (x) is called the greatest integer 
function. Determine the points of continuity of the following functions: 
(a) f(x) := (x) (b) g(x) := x(x), 
(c) h(x) := (sinx), (d) k(x) := (1/x) (x :f: 0). 

5. Let f be defined for all x e R, x :f: 2, by /(x) = (x2 + x - 6)/(x - 2). Can f be defined at 
x = 2 in such a way that f is continuous at this point? 

6. Let A s; R and let f : A ~ R be continuous at a point c e A. Show that for any £ > 0, there 
exists a neighborhood V

45
(c) of c such that if x, yeAn V

15
(c), then 1/(x)- /(y)l < £. 

7. Let f: R ~ R be continuous at c and let /(c) > 0. Show that there exists a neighborhood 
V

15
(c) of c such that if x e V

15
(c), then /(x) > 0. 

8. Let f: R ~ R be continuous on Rand letS:= {x e R: /(x) = 0} be the .. zero set" of f. If 
(x,.) is inS and x = lim(x,.), show that x e S. 

9. Let As; B s; R, let f: B ~Rand let g be the restriction off to A (that is, g(x) = /(x) for 
x e A). 
(a) Iff is continuous at c e A, show that g is continuous at c. 
(b) Show by example that if g is continuous at c, it need not follow that f is continuous at c. 

10. Show that the absolute value function f (x) := lx I is continuous at every point c e R. 

11. Let K > 0 and let f : R ~ R satisfy the condition If (x) - f (y) I ~ K lx - yl for all x, y e R. 
Show that f is continuous at every point c e R. 

12. Suppose that f: R ~ R is continuous on Rand that /(r) = 0 for every rational number r. 
Prove that f (x) = 0 for all x e R. 

13. Define g : R ~ R by g(x) := 2x for x rational, and g(x) := x + 3 for x irrational. Find all 
points at which g is continuous. 
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14. Let A:= (0, oo) and let k: A-+ R be defined as follows. For x e A, x irrational, we define 
k(x) = 0; for x e A rational and of the form x = m/n with natural numbers m, n having no 
common factors except I, we define k(x) := n. Prove that k is unbounded on every open interval 
in A. Conclude that k is not continuous at any point of A. (See Example 5.1.6(h).) 

15. Let f: (0, 1)-+ R be bounded but such that lim f does not exist. Show that there are two 
x-o 

sequences (xn) and (yn) in (0, 1) with lim(xn) = 0 = lim(yn)' but such that lim (f<xn)) and 
lim (/ (y n)) exist but are not equal. 

Section 5.2 Combinations of Continuous Functions 

Let A c 1R and let f and g be functions that are defined on A to 1R and let b e 1R. In 
Definition 4.2.3 we defined the sum, difference, product, and multiple functions denoted 
by f + g, f- g, fg, bf. In addition, if h :A--+ 1R is such that h(x) '# 0 for all x e A, 
then we defined the quotient function denoted by f I h. 

The next result is similar ro Theorem 4.2.4, from which it follows. 

5.2.1 Theorem Let A ~ 1R, let f and g be functions on A to 1R, and let b e 1R. Suppose 
that c e A and that f and g are continuous at c. 

(a) Then f + g, f- g, fg, and bf are continuous at c. 

(b) If h : A --+ 1R is continuous at c e A and if h (x) '# 0 for all x e A, then the quotient 
f I h is continuous at c. 

Proof. If c e A is not a cluster point of A, then the conclusion is automatic. Hence we 
assume that cis a cluster point of A. 

(a) Since f and g are continuous at c, then 

f(c) =lim f and g(c) =lim g. 
X-+C X-+C 

·Hence it follows from Theorem 4.2.4(a) that 

(f + g)(c) =/(c)+ g(c) = lim(/+ g). 
X-+C 

Therefore f + g is continuous at c. The remaining assertions in part (a) are proved in a , 
similar fashion. 

(b) Since c e A, then h(c) '# 0. But since h(c) =lim h, it follows from Theorem 4.2.4(b) 
X-+C 

that 

r 1 
f (c)= f (c) = x~ =lim (1). 
h h (c) lim h x-+c h 

X-+C 

Therefore f 1 h is continuous at c. Q.E.D. 

The next result is an immediate consequence of Theorem 5.2.1, applied to every point 
of A. However, since it is an extremely important result, we shall state it formally. 
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5.2.2 Theorem Let A c 1R, let f and g be continuous on A to R, and let b e R. 

(a) The functions f + g, f- g, fg, and bf are continuous on A. 

(b) If h: A~ R is continuous on A and h(x) -:1:0 for x e A, then the quotient f/ his 
continuous on A. 

Remark To define quotients, it is sometimes more convenient to proceed as follows. If 
({) : A ~ 1R, let A 1 := {x e A : ({) (x) '# 0}. We can define the quotient//({) on the set A 1 
by 

(1) (f) (x) := f (x) 
(/) (/) (x) 

for x e A 1• 

If ({) is continuous at a point c e A 1 , it is clear that the restriction ({)1 of ({) to A 1 is also 
continuous at c. Therefore it follows from Theorem 5.2.1(b) applied to ({)1 that //({)1 
is continuous at c eA. Since (//({))(x) = (//({)1)(x) for x e A1 it follows that //({) is 
continuous at c e A1• Similarly, iff and({) are continuous on A, then the function //({), 
defined on A 1 by ( 1 ), is continuous on A 1• 

5.2.3 Examples (a) Polynomial functions. 
If pis a polynomial function, so that p(x) = anxn + an_1xn-l + · · · + a1x + a0 for 

all x e R, then it follows from Example 4.2.5(f) that p(c) = limp for any c e 1R. Thus 

a polynomial function is continuous on 1R. 

(b) Rational functions. 

.r-.c 

If p and q are polynomial functions on R, then there are at most a finite number 
a 1, ···,am of real roots of q. If x ¢ {a1, ···,am} then q(x) '# 0 so that we can define the 
rational function r by 

r(x) := p(x) 
q (x) 

It was seen in Example 4.2.5(g) that if q(c) '# 0, then 

p (c) . p (x) . 
r (c) = -- = bm -- = bm r (x). 

q (c) .r-.c q (x) .r-.c 

In other words, r is continuous at c. Since c is any real number that is not a root of q, we 
infer that a rational function is continuous at every real number for which it is defined. 

(c) We shall show that the sine function sin is continuous on R. 
To do so we make use of the following properties of the sine and cosine functions. 

(See Section 8.4.) For all x, y, z e 1R we have: 

I sin z I ~ lz I, I cos z I ~ 1, 

sinx- siny = 2sin (!<x- y)] cos (!<x + y)]. 

Hence if c e R, then we have 

I sinx- sincl < 2 · !lx- cl· 1 = lx- cl. 

Therefore sin is continuous at c. Since c e 1R is arbitrary, it follows that sin is continuous 
on R. 
(d) The cosine function is continuous on R. 
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We make use of the following properties of the sine and cosine functions. For all 
x, y, z e 1R we have: 

I sin z I ~ I z I, I sin z I ~ 1, 
cosx- cosy= -2sin[~(x + y)] sin[~(x- y)]. 

Hence if c e R, then we have 

I cos x - cos cl ~ 2 · 1 · ~ lc - xI = lx - cl. 

Therefore cos is continuous at c. Since c e 1R is arbitrary, it follows that cos is continuous 
on R. (Alternatively, we could use the relation cos x = sin(x + 1r /2).) 

(e) The functions tan, cot, sec, esc are continuous where they are defined. 
For example, the cotangent function is defined by 

cosx 
cotx := -.-

stnx 
provided sin x :1: 0 (that is, provided x :1: n1r, n e Z). Since sin and cos are continuous 
on R, it follows (see the Remark before Example 5.2.3) that the function cot is continuous 
on its domain. The other trigonometric functions are treated similarly. 0 

5.2.4 Theorem Let A c R, let f: A--+ R, and let 1/1 be defined by 1/l(x) := 1/(x)l 
forx eA. 

(a) Iff is continuous at a point c e A, then Ill is continuous at c. 

(b) Iff is continuous on A, then 1/1 is continuous on A. 

Proof. This is an immediate consequence of Exercise 4.2.13. Q.E.D. 

5.2.5 Theorem Let A ~ R, let f : A --+ R, and let f (x) ~ 0 for all x e A. We let .J1 
be defined for x e A by (.Jl) (x) := ../T[i). 

(a) Iff is continuous at a point c e A, then .J1 is continuous at c. 

(b) Iff is continuous on A, then .J1 is continuous on A. 

Proof. This is an immediate consequence of Exercise 4.2.14. Q.E.D. 

Composition of Continuous Functions ---------------

We now show that if the function f : A --+ 1R is continuous at a point c and if g : B --+ 1R 
is continuous at b = f(c), then the composition go f is continuous at c. In order to assure 
that go f is defined on all of A, we also need to assume that f(A) c B. 

5.2.6 Theorem Let A, B c 1R and let f : A --+ 1R and g: B --+ 1R be functions such that 
f(A) c B. Iff is continuou~ at a point c e A and g is continuous at b = f(c) e B, then 
the composition g o f : A --+ 1R is continuous at c. 

Proof. Let W be an £-neighborhood of g(b). Since g is continuous at b, there is a&
neighborhood V of b = f (c) such that if y e B n V then g(y) e W. Since f is continuous 
at c, there is a y-neighborhood U of c such that if x e An U, then f(x) e V. (See 
Figure 5.2.1.) Since f (A) C B, it follows that if x e A n U, then f (x) e B n V so that 
go f(x) = g(f(x)) e W. But since W is an arbitrary e-neighborliood of g(b), this implies 
that go f is continuous at c. Q.E.D. 
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u 

I g 

A B c 

Figure 5.2.1 The composition off and g. 

5.2.7 Theorem Let A, B c IR, let f: A---. JR be continuous on A, and let g: B-+ IR be 
continuous on B. If f(A) c B, then the composite function go f :A---. IRis continuous 
on A. 

Proof. The theorem follows imme~iately from the preceding result, iff and g are con
tinuous at every point of A and B, respectively. Q.E.D. 

Theorems 5.2.6 and 5.2.7 are very useful in establishing that certain functions are 
continuous. They can be used in many situations where it would be difficult to apply the 
definition of continuity directly. 

5.2.8 Examples (a) Let g1 (x) := lxl for x e JR. It follows from the Triangle Inequality 
that 

IK1 (x)- g1 (c)l ~ lx - cl 

for all x, c e IR. Hence g 1 is continuous at c e JR. If f: A ---. IR is any function that is 
continuous on A, then Theorem 5.2.7 implies that g1 of= 1/1 is continuous on A. This 
gives another proof of Theorem 5.2.4. 

(b) Let g2(x) := .JX for x 2:: 0. It follows from Theorems 3.2.10 and 5.1.3 that g2 is 
continuous at any number c 2:: 0. Iff: A ---. JR is continuous on A and if f(x) 2:: 0 for 
all X E A, then it follows from Theorem 5.2.7 that g2 0 f = n is continuous on A. This 
gives another proof of Theorem 5.2.5. 

(c) ·Let g3(x) := sinx for x e IR. We have seen in Example 5.2.3(c) that g3 is continuous 
on IR. Iff: A--+ JR is continuous on A, then it follows from Theorem 5.2.7 that g3 of is 
continuous on A. 

In particular, if f(x) := 1/x for x :f= 0, then the function g(x) := sin(1/x) is contin
uous at every point c :f= 0. [We have seen, in Example 5.1.8(a), that g cannot be defined 
at 0 in order to become continuous at that point.] 0 

Exercises for Section 5.2 

1. Determine the points of continuity of the following functions and state which theorems are used 
in each case. 

x 2 + 2x + 1 
(a) /(x) := 2 

(x e R), 
X + 1 

(b) g(x) := Jx + .Ji (x ~ 0), 

h ) 
JI + I sin xI 

(c) (x := (x :F 0), (d) k(x) :=cos Jt + x 2 (x e R). 
X 
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2. Show that iff : A -+ 1R is continuous on A ~ 1R and if n e N, then the function f" defined by 
/"(x) = (/(x))" for x e A, is continuous on A. 

3. Give an example of functions f and g that are both discontinuous at a point c in R such that 
(a) the sum f + g is continuous at c, (b) the product fg is continuous at c. 

4. Let x ~ [xD denote the greatest integer function (see Exercise 5.1.4). Detennine the points of 
continuity of the function /(x) := x- (xD. x e R. 

5. Let g be defined on JR by g(l) := 0, and g(x) := 2 if x :1: 1, and let /(x) := x + 1 for all x e R. 
Show that lim go f :1: (go /)(0). Why doesn't this contradict Theorem 5.2.6? 

x-o 
6. Let f, g be defined on JR and let c e JR. Suppose that lim f = b and that g is continuous 

x-c 
at b. Show that lim go f = g(b). (Compare this result with Theorem 5.2.7 and the preceding 

x-c 
exercise.) 

7. Give an example of a function f : [0, 1] -+ JR that is discontinuous at every point of [0, 1] but 
such that 1/1 is continuous on [0, 1]. 

8. Let f, g be continuous from JR to JR, and suppose that /(r) = g(r) for all rational numbers r. 
Is it true that f(x) = g(x) for all x e JR? 

9. Let h: JR-+ JR be continuous on JR satisfying h(m/2") = 0 for all m e Z, n eN. Show that 
h(x) = 0 for all x e JR. 

10. Let f: JR-+ JR be continuous on JR, and let P := {x e R: /(x) > 0}. If c e P, show that there 
exists a neighborhood VcS (c) ~ P. 

11. Iff and g are continuous on JR. letS := {x e R: /(x) ~ g(x)}. If (sn) ~ Sand lim(sn) = s, 
show that s e S. 

12. A function f : R -+ JR is said to be additive if f (x + y) = f (x) + f (y) for all x, y in R. Prove 
that if f is continuous at some point x0 , then it is continuous at every point of R. (See Exercise 
4.2.12.) 

13. Suppose that f is a continuous additive function on R. If c := f (1), show that we have 
f(x) =ex for all x e JR. [Hint: First show that if r is a rational number, then f(r) =cr.] 

14. Let g: R-+ R satisfy the relation g(x + y) = g(x)g(y) for all x, y in R. Show that if g is 
continuous at x = 0, then g is continuous at every point of R. Also if we have g(a) = 0 for 
some a e R, then g(x) = 0 for all x e R. 

15. Let f, g : JR-+ JR be continuous at a point c, and let h(x) :=sup {/(x), g(x)} for x e R. 

Show that h(x) = ~ (f(x) + g(x)) + 41/(x)- g(x)l for all x e R. Use this to show that his 
continuous at c. 

Section 5.3 Continuous Functions on Intervals 

Functions that are continuous on intervals have a number of very important properties that 
are not possessed by general continuous functions. In this section, we will establish some 
deep results that are of considerable importance and that will be applied later. Alternative 
proofs of these results will be given in Section 5.5. 

5.3.1 Definition A function f : A -+ 1R is said to be bounded on A if there exists a 
constant M > 0 such that 1/(x)l ~ M for all x eA. 

In other words, a function is bounded on a set if its range is a bounded set in lll. To 
say that a function is not bounded on a given set is to say that no particular number can 
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serve as a bound for its range. In exact language, a function f is not bounded on the set 
A if given any M > 0, there exists a point x M e A such that 1 f (x M) I > M. We often say 
that f is unbounded on A in this case. 

For example, the function f defined on the interval A := (0, oo) by f(x) := 1/x is 
not bounded on A because for any M > 0 we can take the point xM := 1/(M + 1) in A 
to get f (x M) = 1 I x M = M + 1 > M. This example shows that continuous functions need 
not be bounded. In the next theorem, however, we show that continuous functions on a 
certain type of interval are necessarily bounded. 

5.3.2 Boundedness Theoremt Let I:= [a, b] be a -closed 'bounded interval and let 
f: I ~ 1R be continuous on I. Then f is bounded on I. 

Proof. Suppose that f is not bounded on /. Then, for any n e N there is a number x,. e I 
such that 1/ (x,.) I > n. Since I is bounded, the sequence X := (x,.) is bounded. Therefore, 
the Bolzano-Weierstrass Theorem 3.4.8 implies that there is a subsequence X' = (x,. ) of X , 
that converges to a number x. Since I is closed and the elements of X' belong to I, it follows 
from Theorem 3.2.6 that x e /. Then f is continuous at x, so that (/ (x,.- ) ) converges to , 
f(x). We then conclude from Theorem 3.2.2 that the convergent sequence (f(x,. ) ) must , 
be bounded. But this is a contradiction since 

for r eN. 

Therefore the supposition that the continuous function f is not bounded on the closed 
bounded interval/leads to a contradiction. Q.E.D. 

To show that each hypothesis of the Boundedness Theorem is needed, we can construct 
examples that show the conclusion fails if any one of the hypotheses is relaxed. 

(i) The interval must be bounded. The function f(x) := x for x in the unbounded, 
closed interval A := [0, oo) is continuous but not bounded on A. 

(ii) The interval must be closed. The function g(x) := 1/x for x in the half-open 
interval B := (0, 1] is continuous but not bounded on B. 

(iii) The function must be continuous. The function h defined on the closed interval 
C := [0, 1] by h(x) := 1/x for x e (0, 1] and h(O) := 1 is discontinuous and unbounded 
on C. 

The Maximum-Minimum Theorem 

5.3.3 Definition Let A ~ 1R and let f : A ~ R. We say that f has an absolute maxi
mum on A if there is a point x* e A such that 

f(x*) ~ f(x) for all x eA. 

We say that f has an absolute minimum on A if there is a point x. e A such that 

f(x.) ~ f(x) forall X EA. 

We say that x* is an absolute maximum point for f on A, and that x. is an absolute 
minimum point for f on A, if they exist. 

tThis theorem, as well as 5.3.4, is true for an arbitrary closed bounded seL For these developments, see Sections 
11.2 and 11.3. ... · 



We note that a continuous function on a set A does not necessarily have an absolute 
maximum· or an absolute minimum on the set. For example, l(x) := 1/x has neither an 
absolute maximum nor an absolute minimum on the set A := (0, oo). (See Figure 5.3.1). 
There can be no absolute maximum for I on A since I is not bounded above on A, and 
there is no point at which I attains the value 0 = inf{l(x) : x e A}. The same function has 
neither an absolute maximum nor an absolute minimum when it is restricted to the set (0, 1), 
while it has both an absolute maximum and an absolute minimum when it is restricted to 
the set [1, 2]. In addition, l(x) = 1/x has an absolute maximum but no absolute minimum 
when restricted to the set [1, oo ), but no absolute maximum and no absolute minimum 
when restricted to the set ( 1, oo). 

It is readily seen that if a function has an absolute maximum point, then this point 
is not necessarily uniquely determined. For example, the function g(x) := x 2 defined for 
x e A:= [-1, +1] has the two points x = ±1 giving the absolute maximum on A, and 
the single point x = 0 yielding its absolute minimum on A. (See Figure 5.3.2.) To pick an 
extreme example, the constant function h(x) := 1 for x e lR is such that every point of lR 
is both an absolute maximum and an absolute minimum point for h. 

1 2 

Figure 5.3.1 The function 
f(x) = 1/x (x > 0). 

- 1 

Figure 5.3.2 The function 
g(x) = x 2 (lxl ~ 1). 

1 

3.3.4 Maximum-Minimum Theorem Let I :=[a, b] be a closed bounded interval and 
Jet I : I ~ lR be continuous on I. Then I has an absolute maximum and an absolute 
minimum on I. 

Proof. Consider the nonempty set I (I) := {I (x) : x e I} of values of I on I. In Theorem 
j.3.2 it was established that I(I) is a bounded subset of JR. Lets* :=sup I(I) and s. := 
inf I(I). We claim that there exist points x* and x. in I such that s* = l(x*) and s. = 
f(x.). We will establish the existence of the point x•, leaving the proof of the existence of 

x. to the reader. 
Since s* =sup I(I), if n eN, then the numbers* - 1/n is not an upper bound of the 

~et 1 (I). Consequently there exists a number x,. e I such that 

J) 
1 

s* - - < l(x,.) ~ s• 
n 

for all n eN. 

;ince I is bounded, the sequence X:= (x,.) is bounded. Therefore, by the Bolzano
Weierstrass Theorem 3.4.8, there is a subsequence X'= (x ) of X that converges to some n, 

umber x*. Since the elements of X' belong to I= [a, b], it follows from Theorem 3.2.6 
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that x* e I. Therefore f is continuous at x* so that (lim f(x ) ) = f(x*). Since it follows n, 
from ( 1) that 

I 
s*-- < f(x ) ~ s* n n, 

r 
for all r eN, 

we conclude from the Squeeze Theorem 3.2.7 that lim(f(x )) = s*. Therefore we have n, 

f(x*) = lim(f(xn ) ) = s* =sup f (/). 
r 

We conclude that x* is an absolute maximum point of f on I. Q.E.D. 

The next result is the theoretical basis for locating roots of a continuous function by 
means of sign changes of the function. The proof also provides an algorithm, known as 
the Bisection Method, for the calculation of roots to a specified degree of accuracy and 
can be readily programmed for a computer. It is a standard tool for finding solutions of 
equations of the form f (x) = 0, where f is a continuous function. An alternative proof of 
the theorem is indicated in Exercise 11. 

5.3.5 Location of Roots Theorem Let I= [a, b] and let f: I~ 1R be continuous on 
I. If f(a) < 0 < f(b), or if f(a) > 0 > f(b), then there exists a numberc e (a, b) such 
that f(c) = 0. 

Proof. We assume that f(a) < 0 < f(b). We will generate a sequence of intervals by 
successive bisections. Let / 1 := [a1, b.J, wherea1 :=a, b1 := b, and let p 1 be the midpoint 
p 1 := !<a1 + b1). If f(p 1) = 0, we take c := p 1 and we are done. If f(p 1) # 0, then either 
f(p 1) > 0 or f(p 1) < 0. If f(p 1) > 0, then we seta2 := a 1, b2 := p., while if f(p 1) < 0, 
then we set a2 := p 1, b2 := b1• In either case, we let /2 := [a2, b2]; then we have /2 C / 1 
and f (a2) < 0, f (b2) > 0. 

We continue the bisection process. Suppose that the intervals I., 12 , • • ·, Ik have 
been obtained by successive bisection in the same manner. Then we have f(ak) < 0 
and f(bk) > 0, and we set pk := !<ak + bk). If f(pk) = 0, we take c := pk and we are 
done. If f(pk) > 0, we set ak+t := ak, bk+l := pk, while if f(pk) < 0, we set ak+l := 
pk, bk+t := bk. In either case, we let /k+l := [ak+t, bk+1]; then /k+l c Ik and f(ak+l) < 0, 
f(bk+l) > 0. 

If the process terminates by locating a point p n such that f (p n) = 0, then we are done. 
If the process does not terminate, then we obtain a nested sequence of closed bounded 
intervals In :=[an, bn] such that for every n EN we have 

and 

Furthermore, since the intervals are obtained by repeated bisection, the length of In is 
equal to bn -an = (b- a)/2n-t. It follows from the Nested Intervals Property 2.5.2 that 
there exists a point c that belongs to In for all n eN. Since an ~ c ~ bn for all n eN, we 
have 0 < c- a < b -a = (b- a)/2n-t, and 0 < b - c < b -a = (b- a)/2n-t. - n- n n - n - n n 
Hence, it follows that lim(an) = c = lim(bn). Since f is continuous at c, we have 

lim (f<an)) = f(c) =lim (f(bn)). 

The fact that f(an) < 0 for all n eN implies that f(c) =lim (f<an)) ::S 0. Also, the fact 
that f(bn) ~ 0 for all n eN implies that f(c) =lim (/(bn)) > 0. Thus, we conclude that 
f(c) = 0. Consequently, cis a root of f. Q.E.D. 
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The following example illustrates how the Bisection Method for finding roots is applied 
in a systematic fashion. 

5.3.6 Example The equation f(x) = xex- 2 = 0 has a root c in the interval [0, 1], 
because f is continuous on this interval and f (0) = -2 < 0 and f ( 1) = e - 2 > 0. We 
construct the following table, where the sign of f ( p n) determines the interval at the next 
step. The far right column is an upper bound on the error when p n is used to approximate 
the root c, because we have 

IPn- cl !S !<bn -an)= 1/2n. 

We will find an approximation Pn with error less than 10-2
• 

n an bn Pn f(pn) !<bn -an) 

1 0 1 .5 -1.176 .5 
2 .5 1 .75 -.412 .25 
3 .75 1 .875 +.099 .125 
4 .75 .875 .8125 -.169 .0625 
5 .8125 .875 .84375 -.0382 .03125 
6 .84375 .875 .859375 +.0296 .015625 
7 .84375 .859375 .8515625 .0078125 

We have stopped at n = 7, obtaining c ~ p1 = .8515625 with error less than .0078125. 
This is the first step in which the error is less than 1 o-2

• The decimal place values of p1 past 
the second place cannot be taken seriously, but we can conclude that .843 < c < .860. 0 

Bolzano's Theorem ---------------------

The next result is a generalization of the Location of Roots Theorem. It assures us that a 
continuous function on an interval takes on (at least once) any number that lies between 
two of its values. 

5.3. 7 Bolzano's Intermediate Value Theorem Let I be an interval and let f : I ~ R 
be continuous on I. If a, be I and if k e R satisfies f(a) < k < f(b), then there exists a 
point c e I between a and b such that f (c) = k. 

Proof. Suppose that a < b and let g(x) := f(x)- k; then g(a) < 0 < g(b). By the 
Location of Roots Theorem 5 .3.5 there exists a point c with a < c < b such that 0 = 
g(c) = f(c)- k. Therefore /(c)= k. 

If b <a, let h(x) := k- f(x) so that h(b) < 0 < h(a). Therefore there exists a point 
c with b < c <a such that 0 = h(c) = k- f(c), whence /(c) = k. Q.E.D. 

5.3.8 Corollary Let I= [a, b] be a closed, bounded interval and let f: I~ R be 
continuous on I. If k e R is any number satisfying 

inf /(1) < k <sup /(I), 

then there exists a numberc e I such that f(c) = k. 

Proof. It follows from the Maximum-Minimum Theorem 5.3.4 that there are points c* 
and c• in I such that 

inf /(I) = /(c.) !S k < f(c*) = sup /(I)c 

The conclusion now follows from Bolzano's Theorem 5.3.7. Q.E.D. 
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The next theorem summarizes the main results of this section. It states that the image 
of a closed bounded interval under a continuous function is also a closed bounded interval. 
The endpoints of the image interval are the absolute minimum and absolute maximum 
values of the function, and the statement that all values between the absolute minimum 
and the absolute maximum values belong to the image is a way of describing Bolzano's 
Intermediate Value Theorem. 

5.3.9 Theorem Let I be a closed bounded interval and let f : I --+ 1R be continuous 
on I. Then the set f(l) := {/(x): x e I} is a closed bounded interval. 

Proof. If we let m := inf f(l) and M :=sup f(l), then we know from the Maximum
MinimumTheorem5.3.4thatm andMbelongto /(1). Moreover, we have f(l) c [m, M]. 
If k is any element of [m, M], then it follows from the preceding corollary that there exists 
a point c e I such that k = f(c). Hence, k e /(1) and we conclude that [m, M] c f(l). 
Therefore, /(1) is the interval [m, M]. Q.E.D. 

Warning If I := [a, b] is an interval and./ : I ~ 1R is continuous on I, we have proved 
that f(l) is the interval [m, M]. We have not proved (and it is not always true) that f(l) 
is the interval [/(a), /(b)]. (See Figure 5.3.3.) 

a x. 

Figure 5.3.3 /(f)= [m, M]. 

The preceding theorem is a "preservation" theorem in the sense that it states that 
the continuous image of a closed bounded interval is a set of the same type. The next 
theorem extends this result to general intervals. However, it should be noted that although 
the continuous image of an interval is shown to be an interval, it is not true that the image 
interval necessarily has the same form as the domain interval. For example, the continuous 
image of an open interval need not be an open interval, and the continuous image of an 
unbounded closed interval need not be a closed interval. Indeed, if f(x) := 1f(x2 + 1) 
for x e lR, then f is continuous on lR [see Example 5.2.3(b)]. It is easy to see that if 
11 := ( -1, 1), then f(/1) = (!, 1], which is not an open interval. Also, if 12 := [0, oo), 
then /(12) = (0, 1], which is not a closed interval. (See Figure 5.3.4.) 
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1 

-1 1 

Figure 5.3.4 Graph of l(x) = 1/(x2 + 1) (x e lR). 

To prove the Preservation of Intervals Theorem 5.3.10, we will use Theorem 2.5.1 
characterizing intervals. 

5.3.10 Preservation of Intervals Theorem Let I be an interval and let f : I ~ 1R be 
continuous on I. Then the set f(I) is an interval. 

Proof. Let a, fJ e /(I) with a < fJ; then there exist points a, be I such that a = f(a) 

and fJ = f(b). Further, it follows from Bolzano's Intermediate Value Theorem 5.3.7 that 
if k e (a, fJ) then there exists a number c e I with k = f(c) e /(I). Therefore [a, fJ] c 
f(I), showing that f(I) possesses property (1) of Theorem 2.5.1. Therefore /(I) is an 
interval. Q.E.D. 

Exercises for Section 5.3 

1. Let I := [a. b 1 and let I : I ~ lR be a continuous function such that I (x) > 0 for each x in I. 
Prove that there exists a number a > 0 such that I (x) ~ a for all x e I. 

2. Let I := [a. b 1 and let I : I ~ lR and g : I ~ 1R be continuous functions on I. Show that the 
set E := {x e I : l(x) = g(x)} has the property that if (x,.) ~ E and x,. ~ x0 , then x0 e E. 

3. Let I := [a. b 1 and let I : I ~ lR be a continuous function on I such that for each x in I there 
exists y in I such that I I (y) I ~ 41 I (x) 1. Prove there exists a point c in I such that f (c) = 0. 

4. Show that every polynomial of odd degree with real coefficients has at least one real root. 

5. Show that the polynomial p(x) := x 4 + 7x3
- 9 has at least two real roots. Use a calculator to 

locate these roots to within two decimal places. 

6. Let f be continuous on the interval [0, 1] to 1R and such that 1(0) =I (1). Prove that there 
existsapointcin [0, !l such thatl(c) =I (c +!).[Hint: Consider g(x) = f(x)- f (x + !).] 
Conclude that there are, at any time, antipodal points on the earth's equator that have the same 
temperature. 

7. Show that the equation x = cos x has a solution in the interval [0, n'/2]. Use the Bisection 
Method and a calculator to find an approximate solution of this equation, with error less than 
1o-3• 

8. Show that the function f (x) := 2ln x + ../X - 2 has root in the interval [1, 2]. Use the Bisection 
Method and a calculator to find the root with error less than 10-2

• 

9. (a) The function l(x) := (x- 1)(x - 2)(x - 3)(x - 4)(x - 5) has five roots in the interval 

[0, 7]. If the Bisection Method is applied on this interval, which of the roots is located? 
(b) Same question for g(x) := (x - 2)(x- 3)(x - 4)(x - S)(x - 6) on the interval [0, 7]. 

10. If the Bisection Method is used on an interval of length 1 to find p
11 

with error IP,. - cl < to-', 
determine the least value of n that will assure this accuracy. 
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11. Let I := [a, b], let f : I ~ R be continuous on I, and assume that /(a) < 0, /(b) > 0. Let 
W := {x e I : /(x) < 0}, and let w :=sup W. Prove that f(w) = 0. (This provides an alter
native proof of Theorem 5.3.5.) 

12. Let I := [0, 7r/2] and let f: I~ R be defined by f(x) := sup{x2, cosx} for x e /. Show 
there exists an absolute minimum point x0 e I for f on /. Show that x0 is a solution to the 
equation cos x = x2

• 

13. Suppose that f: R ~ R is continuous on Rand that lim f = 0 and lim f = 0. Prove that 
x--oo x-oo 

f is bounded on Ill and attains either a maximum or minimum on R. Give an example to show 
that both a maximum and a minimum need not be attained. 

14. Let f: R ~ R be continuous on Rand let fJ e R. Show that if x0 e R is such that /(x0) < {J, 
then there exists a ~-neighborhood U of x0 such that f(x) < {J for all x e U. 

15. Examine which open [respectively, closed] intervals are mapped by f(x) := x 2 for x e R onto 
open [respectively, closed] intervals. 

16. Examine the mapping of open [respectively, closed] intervals under the functions g(x) := 
1/(x2 + 1) and h(x) := x 3 for x e R. 

17. If f : [0, 1] ~ R is continuous and has only rational [respectively, irrational] values, must I 
be constant? Prove your assertion. 

18. Let I := [a, b] and let I : I ~ R be a (not necessarily continuous) function with the property 
that for every x e I, the function I is bounded on a neighborhood V8 (x) of x (in the sense of 

X 

Definition 4.2.1 ). Prove that I is bounded on I. 

19. Let J :=(a, b) and let g: J ~ R be a continuous function with the property that for every 
x e J, the function g is bounded on a neighborhood V8 (x) of x. Show by example that g is not 

JC 

necessarily bounded on J. 

Section 5.4 Uniform Continuity 

Let A c JR. and let f : A -+ 1R. Definition 5 .1.1 states that the following statements are 
equivalent: 

(i) f is continuous at every point u e A; 

(ii) given E > 0 and u e A, there is a 8(E, u) > 0 such that for all x such that x e A 
and lx- ul < 8(E, u), then 1/(x)- f(u)l <E. 

The point we wish to emphasize here is that 8 depends, in general, on both E > 0 and 
u e A. The fact that 8 depends on u is a reflection of the fact that the function f may change 
its values rapidly near certain points and slowly near other points. [For example, consider 
f(x) := sin(1/x) for x > 0; see Figure 4.1.3.] 

Now it often happens that the function f is such that the number 8 can be chosen to be 
independent of the point u e A and to depend only on E. For example, if f(x) := 2x for 
all x e JR., then 

If (x) - f (u) I = 21x - u I , 

and so we can choose 8(E, u) := E/2 for all E > 0, u E 1R. (Why?) 
On the other hand if g(x) := 1/x for x e A:= {x e R: x > 0}, then 

u-x 
(1) g(x)- g(u) = -. 

ux 
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H u e A is given and if we take 

(2) 

then if lx- ul < 8(e, u), we have lx- ul < !u so that !u < x < ~u, whence it follows 
that 1/x < 2fu. Thus, if lx- ul < !u, the equality (1) yields the inequality 

(3) lg(x)- g(u)l ~ (2/u2
) lx- ul. 

Consequently, if lx - ul < 8(e, u), then (2) and (3) imply that 

lg(x)- g(u)l < (2/u2
) (!u2e) =e. 

We have seen that the selection of 8 (e, u) by the formula (2) "works" in the sense that it 
enables us to give a value of 8 that will ensure that lg (x)- g(u)l < e when lx- ul < 8 
and x, u eA. We note that the value of 8 (e, u) given in (2) certainly depends on the point 
u eA. If we wish to consider all u e A, formula (2) does not lead to one value 8 (e) > 0 
that will "work" simultaneously for all u > 0, since inf{8(e, u) : u > 0} = 0. 

An alert reader will have observed that there are other selections that can be made 
for 8. (For example we could also take 81 (e, u) := inf { iu, ju2e }, as the reader can show; 
however, we still have. inf { 81 ( e, u): u > 0} = 0.) In fact, there is no way of choosing one 
value of 8 that will "work" for all u > 0 for the function g (x) = 1 I x, as we shall see. 

The situation is exhibited graphically in Figures 5.4.1 and 5.4.2 where, for a given 
£-neighborhood~(!) about! = /(2) and ~(2) about 2 =/(!),the corresponding max
imum values of 8 are seen to be considerably different. As u tends to 0, the permissible 
values of 8 tend to 0. 

1 

v.~~t-----....,.,. 
-~~~------~x -"-..!. 

2 
a- neighborhood 

Figure 5.4.1 g(x) = lfx (x > 0). Figure 5.4.2 g(x) = lfx (x > 0). 

5.4.1 Definition Let A c 1R and let f : A ~ 1R. We say that f is uniformly continuous 
on A if for each e > 0 there is a ~ (e) > 0 such that if x, u e A are any numbers satisfying 
lx- ul <~(e), then 1/(x)- /(u)l <e. 

It is clear that iff is uniformly continuous on A, then it is continuous at every point of 
A. In general, however, the converse does not hold, as is shown by the function g(x) = 1/x 
on the set A := {x e lR : x > 0}. 

It is useful to formulate a condition equivalent to saying that f is not unifonnly 
continuous on A. We give such criteria in the next result, leaving the proof to the reader as 
an exercise. 
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5.4.2 Nonuniform Continuity Criteria Let A c IR and let 1 : A ~ IR. Then the fol
lowing statements are equivalent: 

(i) I is not uniformly continuous on A. 

(ii) There exists an E0 > 0 such that for evezy ~ > 0 there are points x 8, u 8 in A such that 
lxcS- ucSI <~and ll(x&)- l(u&)l ~ E0 • 

(iii) There exists an E0 > 0 and two sequences (x,.) and (u,.) in A such that 
lim(x,. - u,.) = 0 and ll(x,.)- l(u,.)l ~Eo for all n eN. 

We can apply this result to show that g(x) := 1/x is not uniformly continuous on A := 
{x e IR : x > 0}. For, if x,. := 1/n and u,. := 1/(n + 1), then we have lim(x,. - u,.) = 0, 
but lg(x,.)- g(u,.)l = 1 for all n e N. 

We now present an important result that assures that a continuous function on a closed 
bounded interval I is uniformly continuous on I. Other proofs of this theorem are given in 
Sections 5.5 and 11.3. 

5.4.3 Uniform Continuity Theorem Let I be a closed bounded interval and let I : I ~ 
IR be continuous on I. Then I is unifonnly continuous on I. 

Proof. If I is not uniformly continuous on I then, by the preceding result, there exists 
E0 > 0 and two sequences (x,.) and (u,.) in I such that lx,. - u,.l < 1/n and ll(x,.)
l(u,.)l ~ E0 for all n e N. Since I is bounded, the sequence (x,.) is bounded; by the 
Bolzano-Weierstrass Theorem 3.4.8 there is a subsequence (x,. ) of (x,.) that converges to 

lc 
an element z. Since I is closed, the limit z belongs to I, by Theorem 3.2.6. It is clear that 
the corresponding subsequence (u,. ) also converges to z, since 

lc 

Now if I is continuous at the point z, then both of the sequences (l(x,. ) ) and (l(u,. ) ) 
lc k 

must converge to l(z). But this is not possible since 

ll(x,.)- l(u,.)l ~ E0 

for all n e N. Thus the hypothesis that I is not uniformly continuous on the closed bounded 
interval I implies that I is not continuous at some point z e I. Consequently, if I is 
continuous at every point of I, then I is uniformly continuous on I. Q.E.D. 

Lipschitz Functions ----------------------

If a uniformly continuous function is given on a set that is not a closed bounded interval, 
then it is sometimes difficult to establish its uniform continuity. However, there is a condi
tion that frequently occurs that is sufficient to guarantee uniform continuity. 

5.4.4 Definition Let A c IR and let I : A ~ IR. If there exists a constant K > 0 such 
that 

(4) 1/ (x)- f(u)l ~ K lx - ul 

for all x, u e A, then I is_ said to be a Lipschitz function (or to satisfy a Lipschitz 
condition) on A. 
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The condition (4) that a function I: I -+ Ron an interval I is a Lipschitz function 
an be interpreted geometrically as follows. If we write the condition as 

I 
l(x)- l(u) I < K, x, u e I, x :1: u, 

x-u 

I n the quantity inside the absolute values is the slope of a line segment joining the points 
x, I (x)) and ( u, I (u)). Thus a function I satisfies a Lipschitz condition if and only if the 
lnpes of all line segments joining two points on the graph of y = I (x) over I are bounded 
• J some number K. 

: ~.s Theorem HI: A-+ R is a Lipschitz function, then I is uniformly continuous 
>nA. 

-, oof. If condition ( 4) is satisfied, then given e > 0, we can take 8 := e I K. H x, u e A 
;atisfy lx- ul < 8, then 

£ 
ll(x)- l(u)l < K · K =e. 

· erefore I is uniformly continuous on A. 

: 1.6 Examples (a) If l(x) := x 2 on A := [0, b], where b > 0, then 

ll(x)- l(u)l = lx + ullx- ul ~ 2b lx- ul 

Q.E.D. 

. ·all x, u in [0, b]. Thus I satisfies (4) with K := 2b on A, and therefore I is uniformly 
;ontinuous on A. Of course, since I is continuous and A is a closed bounded interval, this 
. n also be deduced from the Uniform Continuity Theorem. (Note that I does not satisfy 
1 Lipschitz condition on the interval [0, oo).) 

;L) Not every uniformly continuous function is a Lipschitz function. 
Let g(x) := ,Ji for x in the closed bounded interval I := [0, 2]. Since g is continuous 

~n I, it follows from the Uniform Continuity Theorem 5.4.3 that g is uniformly continuous 
I. However, there is no number K > 0 such that lg(x)l ~ Klxl for all x e I. (Why 

not?) Therefore, g is not a Lipschitz function on I. 

1 t The Uniform Continuity Theorem and Theorem 5.4.5 can sometimes be combined to 
establish the uniform continuity of a function on a set. 

We consider g(x) :. ,Ji on the set A := [0, oo). The uniform continuity of g on 
lu~ interval I := [0, 2] follows from the Uniform Continuity Theorem as noted in (b). H 
J := [1, oo), then if both x, u are in J, we have 

lg (x) - g(u)l = I.Ji- .Jill = ); - Ju < 4 lx - ul. 
x+ u 

~aus g is a Lipschitz function on J with constant K = !, and hence by Theorem 5.4.5, 
R is uniformly continuous on [1, oo). Since A= I U J, it follows [by taking 8(e) := 

f { 1, 81 (e), 81 (e)}] that g is uniformly continuous on A. We leave the details to the 
reader. 0 

lbe Continuous Extension Theorem -----------------

'e have seen examples of functions that are continuous but not uniformly continuous on 
open intervals; for example, the function l(x) = 1/x on the interval (0, 1). On the other 
\.~d, by the Uniform Continuity Theorem, a function that is continuous on a closed bounded 
uaterval is always uniformly continuous. So the question arises: Under what conditions is a 
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function uniformly continuous on a bounded open interval? The answer reveals the strength 
of uniform continuity, for it will be shown that a function on (a, b) is uniformly continuous 
if and only if it can be defined at the endpoints to produce a function that is continuous on 
the closed interval. We first establish a result that is of interest in itself. 

5.4.7 Theorem H f: A~ R is uniformly continuous on a subset A of Rand if(x,.) is 
a Cauchy sequence in A, then (f(x,.)) is a Cauchy sequence in R. 

Proof. Let (x,.) be a Cauchy sequence in A, and let e > 0 be given. First choose~ > 0 
such that if x, u in A satisfy lx- ul <~,then 1/(x)- f(u)l < e. Since (x,.) is a Cauchy 
sequence, there exists H(~) such that lx,.- xml <~for all n, m > H(~). By the choice of 
~, thisimpliesthatforn, m > H(~), we have 1/(x,.)- f(xm)l <e. Therefore the sequence 
(/(x,.)) is a Cauchy sequence. Q.E.D. 

The preceding result gives us an alternative way of seeing that f(x) := 1/x is not 
uniformly continuous on (0, 1). We note that the sequence given by x,. := 1/n in (0, 1) is 
a Cauchy sequence, but the image sequence, where /(x,.) = n, is not a Cauchy sequence. 

5.4.8 Continuous Extension Theorem A function f is unifonnly continuous on the 
interval (a, b) if and only if it can be defined at the endpoints a and b such that the ex
tended function is continuous on [a, b]. 

Proof. ( ~) This direction is trivial. 
(~)Suppose f is uniformly continuous on (a, b). We shall show how to extend f 

to a; the argument for b is similar. This is done by showing that lim f (x) = L exists, and 
X-+C 

this is accomplished by using the sequential criterion for limits. If (x,.) is a sequence in 
(a, b) with lim(x,.) =a, then it is a Cauchy sequence, and by the preceding theorem, the 
sequence (/ (x,.)) is also a Cauchy sequence, and so is convergent by Theorem 3.5.5. Thus 
the limit lim(/(x,.)) = L exists. If (u,.) is any other sequence in (a, b) that converges to a, 

then lim(u,. - x,.) =a- a.= 0, so by the uniform continuity off we have 

lim{f(u,.)) = lim{/(u,.) - f(x,.)) + lim{f(x,.)) 

=O+L = L. 

Since we get the same value L for every sequence converging to a, we infer from the 
sequential criterion for limits that f has limit L at a. If we define /(a) := L, then f is 
continuous at a. The same argument applies to b, so we conclude that f has a continuous 
extension to the interval [a, b]. Q.E.D. 

Since the limit of f(x) := sin(l/x) at 0 does not exist, we infer from the Continuous 
Extension Theorem that the function is not uniformly continuous on (0, b] for any b > 0. 
On the other hand, since lim x sin(l/x) = 0 exists, the function g(x) := x sin(l/x) is 

x-+0 

uniformly continuous on (0, b] for all b > 0. 

Approximation t 

In many applications it is important to be able to approximate continuous functions by 
functions of an elementary nature. Although there are a variety of definitions that can be 
used to make the word "approximate" more precise, one of the most natural (as well as one of 

tThe rest of this section can be omitted on a ftnt reading of this chapter. 



the most important) is to require that, at every point of the given domain, the approximating 

function shall not differ from the given function by more than the preassigned error. 

5.4.9 Definition Let I c 1R be an interval and let s : I --+ JR. Then s is called a step 

function if it has only a finite number of distinct values, each value being assumed on one 

or more intervals in I. 

For example, the function s : [-2, 4] --+ 1R defined by 

0, -2:Sx<-1, 

1, -1 <X :S 0, 
1 0 <X<~' 

s(x) := l' 
3, ~ :S X < 1, 

-2, 1 <X :S 3, 

2, 3 <X :S 4, 

is a step function. (See Figure 5.4.3.) 

y 

Figure 5.4.3 Graph of y = s(x). 

We will now show that a continuous function on a closed bounded interval I can be 

approximated arbitrarily closely by step functions. 

5.4.10 Theorem Let I be a closed bounded interval and let f: I--+ 1R be continuous on 

I. If E > 0, then there exists a step function s £ : I --+ 1R such that If (x) - s £ (x) I < E for 

allxel. 

Proof. Since (by the Uniform Continuity Theorem 5.4.3) the function f is uniformly 

continuous, it follows that given E > 0 there is a number c5(e) > 0 such that if x, y e I 

and lx- yl < c5(e), then 1/(x)- /(y)l <E. Let I :=[a, b] and let m eN be sufficiently 

large so that h := (b- a)fm < c5(e). We now divide I= [a, b] into m disjoint intervals 

of length h; namely, 11 :=[a, a+ h], and lk :=(a+ (k- l)h, a+ kh] fork= 2, · · ·, m. 

Since the length of each subinterval lie ish < &(t), the difference between any two values 

of f in I /c is less than t. We now define 

(5) s£(x) := f(a + kh) for x e lie, k = 1, · · ·, m, 
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so that se is constant on each interval//c. (In fact the value of ss on lie is the value of I at 
the right endpoint of //c. See Figure 5.4.4.) Consequently if x e /lc, then 

lf(x)- ss(x)l = ll(x)- f(a + kh)l <e. 

Therefore we have lf(x)- ss(x)l < e for all x e /. Q.E.D. 

a b 

Figure 5.4.4 Approximation by step functions. 

Note that the proof of the preceding theorem establishes somewhat more than was 
announced in the statement of the theorem. In fact, we have proved the following, more 
precise, assertion. 

5.4.11 Corollary Let I :=[a, b] be a closed bounded interval and let I : I~ 1R be 
continuous on I. If e > 0, there exists a natural number m such that if we divide I into 
m disjoint intervals lie having length h := (b- a)fm, then the step function ss defined in 
equation (5) satisfies 1/(x) - st(x)l < e for all x e /. 

Step functions are extremely elementary in character, but they are not continuous 
(except in trivial cases). Since it is often desirable to approximate continuous functions by 
elementary continuous functions, we now shall show that we can approximate continuous 
functions by continuous piecewise linear functions. 

5.4.12 Definition Let I :=[a, b] be an interval. Then a function g: I~ 1R is said to be 
piecewise linear on I if I is the union of a finite number of disjoint intervals / 1, • • ·, /m, 

such that the restriction of g to each interval I k is a linear function. 

Remark It is evident that in order for a piecewise linear function g to be continuous 
on I, the line segments that form the graph of g must meet at the endpoints of adjacent 

subintervals //c, Ilc+l (k = 1, · · ·, m - 1). 

5.4.13 Theorem Let I be a closed bounded interval and let 1 : I ~ R be continuous on 
I. If e > 0, then there exists a continuous piecewise linear function g

8 
:I~ R such that 

lf(x)- gs(x)l < e for all x e I. 

Proof. Since f is uniformly continuous on I:= [a, b], there is a number &(e) > 0 such 
that if x, y e I and lx- yl < 8(e), then 1/(x)- f(y)J <e. Let m eN be sufficiently 
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large so that h := (b- a)/m <~(e). Divide I = [a, b] into m disjoint intervals of length 
h; namely let 11 = [a, a + h], and let lie = (a + (k - l)h, a + kh] fork = 2, · · ·, m. On 
each interval lie we define g

6 
to be the linear function joining the points 

(a+ (k- 1)h, l(a + (k- 1)h)) and (a+ kh, l(a + kh)). 

Then g 6 is a continuous piecewise linear function on I. Since, for x e I le the value I (x) is 
within e of l(a + (k- 1)h) and l(a + kh), it is an exercise to show that ll(x)- g

6
(x)l < 

e for all x e lie; therefore this inequality holds for all x e I. (See Figure 5.4.5.) Q.E.D. 

Figure 5.4.5 Approximation by piecewise linear function. 

We shall close this section by stating the important theorem of Weierstrass concerning 
the approximation of continuous functions by polynomial functions. As would be expected, 
in order to obtain an approximation within an arbitrarily preassigned e > 0, we must be 
prepared to use polynomials of arbitrarily high degree. 

5.4.14 Weierstrass Approximation Theorem Let I= [a, b] and let 1: I-+ 1R be a 
continuous function. If e > 0 is given, then there exists a polynomial function p 

6 
such 

that ll(x)- p
6
(x)l < e for all x e I. 

There are a number of proofs of this result. Unfortunately, all of them are rather 
intricate, or employ results that are not yet at our disposal. One of the most elementary 
proofs is based on the following theorem, due to Serge Bernstein, for continuous functions 
on [0, 1]. Given I : [0, 1] -+ R, Bernstein defined the sequence of polynomials: 

(6) 

The polynomial function B,. is called the nth Bernstein polynomial for f; it is a polynomial 
of degree at most n and its coefficients depend on the values of the function f at the n + 1 
equally spaced points 0, 1/n, 2/n, · · ·, kfn, · · ·, 1, and on the binomial coefficients 

(n) = n! = n(n - 1) · · · (n - k + 1). 
k k!(n - k) 1 · 2 · · · k 
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5.4.15 Bernstein's Approximation Theorem Let f : [0, 1] --+ 1R be continuous and let 
E > 0. There exists ann, eN such that ifn ~ n,, then we have lf(x)- B,.(x)l < E for all 
X E [0, 1]. 

The proof of Bernstein's Approximation Theorem is given in [ERA, pp. 169-172]. 
The Weierstrass Approximation Theorem 5.4.14 can be derived from the Bernstein 

Approximation Theorem 5 .4.15 by a change of variable. Specifically, we replace 
f : [a, b] --+ 1R by a function F: [0, 1] --+ lR, defined by 

F(t) := f(a + (b- a)t) for t e [0, 1]. 

The function F can be approximated by Bernstein polynomials for F on the interval [0, 1], 
which can then yield polynomials on [a, b] that approximate f. 

Exercises for Section 5.4 

1. Show that the function l(x) := 1/x is uniformly continuous on the set A :=[a, oo), where a 
is a positive constant. 

2. Show that the function l(x) := 1/x2 is uniformly continuous on A := [1, oo), but that it is not 
uniformly continuous on B := (0, oo). 

3. Use the Nonuniform Continuity Criterion 5.4.2 to show that the following functions are not 
uniformly continuous on the given sets. 
(a) l(x) := x 2

• A := [0. oo). 
(b) g(x) := sin(l/x), B := (0, oo). 

4. Show that the function l(x) := 1/(1 + x 2
) for x e lR is uniformly continuous on R. 

5. Show that if I and g are uniformly continuous on a subset A of R, then I+ g is uniformly 
continuous on A. 

6. Show that if I and g are uniformly continuous on A~ lR and if they are both bounded on A, 
then their product lg is uniformly continuous on A. 

7. If l(x) := x and g(x) := sinx, show that both I and g are uniformly continuous on R, but that 
their product I g is not uniformly continuous on R. 

8. Prove that if I and g are each uniformly continuous on R, then the composite furiction I o g is 
uniformly continuous on JR. 

9. H 1 is uniformly continuous on A~ R, and ll(x)l ~ k > 0 for all x e A, show that 1/1 is 
uniformly continuous on A. 

10. Prove that if I is uniformly continuous on a bounded subset A of R, then I is bounded on A. 

11. Hg(x) := ,Jiforx e [0, 1],showthattheredoesnotexistaconstantKsuchthatlg(x)l!:: Klxl 
for all x e [0. 1]. Conclude that the uniformly continuous g is not a Lipschitz function on [0. 1]. 

12. Show that if I is continuous on [0, oo) and uniformly continuous on [a, oo) for some positive 
constant a, then I is uniformly continuous on [0, oo). 

13. Let A ~ R and suppose that 1 : A ~ R has the following .property: for each £ > 0 there exists 
a function g

8 
:A~ R such that g

6 
is uniformly continuous on A and 1/(x)- gt(x)l < e for 

all x e A. Prove that I is uniformly continuous on A. 

14. A function I: R ~ R is said to be periodic on R if there exists a number p > 0 such that 
1 (x + p) = 1 (x) for all x e R. Prove that a continuous periodic function on R is bounded and 
uniformly continuous on R. 



5.5 CONTINUITY AND GAUGES 145 

15. If / 0(x) := 1 for x e [0, 1], calculate the first few Bernstein polynomials for f 0 • Show that they 
coincide with f 0• [Hint: The Binomial Theorem asserts that 

(a+ b)n = t (n)a/cbn-k.] 
lc=O k 

16. If / 1 (x) := x for x e [0, 1], calculate the first few Bernstein polynomials for / 1• Show that they 
coincide with / 1 • 

17. If / 2 (x) := x 2 for x e [0, 1], calculate the first few Bernstein polynomials for / 2 • Show that 
Bn(x) = (1- 1/n)x2 + (1/n)x. 

Section 5.5 Continuity and Gauges 

We will now introduce some concepts that will be used later-especially in Chapters 7 
and 10 on integration theory. However, we wish to introduce the notion of a "gauge" now 
because of its connection with the study of continuous functions. We first define the notion 
of a tagged partition of an interval. 

5.5.1 Definition A partition of an interval/ := [a, b] is a collection 'P = { / 1, • • • , I,} of 
non-overlapping closed intervals whose union is [a, b]. We ordinarily denote the intervals 
by I; := [xi-1' X;], where 

a =X < · · · <X. <X. < · · · <X = b 0 1-l I 11 • 

The points X; (i = 0, · · ·, n) are called the partition points of 'P. If a point I; has been 
chosen from each interval I;, for i = 1, · · · , n, then the points I; are called the tags and the 
set of ordered pairs 

P = {(I., 11), ••• , (I,, 1,)} 

is called a tagged partition of I. (The dot signifies that the partition is tagged.) 

The "fineness" of a partition 'P refers to the lengths of the subintervals in 'P. Instead of 
requiring that all subintervals have length less than some specific quantity, it is often useful 
to allow varying degrees of fineness for different subintervals I; in 'P. This is accomplished 
by the use of a "gauge", which .we now define. 

5.5.2 Definition A gauge on I is a strictly positive function defined on I. If 8 is a gauge 
on I, then a (tagged) partition Pis said to be 8-ftne if 

(I) t. E /. C [t. - 8(t.), t. + 8(t.)] 
I 1- I I I I for i = 1 , · · · , n. 

We note that the notion of ~-fineness requires that the partition be tagged, so we do not 
need to say "tagged partition" in this case. 

Figure 5.5.1 Inclusion ( 1 ). 

A gauge 8 on an interval/ assigns an interval [t- 8(t), t + 8(t)] to each point t e /. 
The 8-fineness of a partition P requires that each subinterval/; of Pis contained in the 
interval determined by the gauge 8 and the tag t; fo_! _!lu~t_ sul_?interval. This is indicated 



by the inclusions in (1); see Figure 5.5.1. Note that the length of the subintervals is also 
controlled by the gauge and the tags; the next lemma reflects that control. 

5.5.3 Lemma If a partition P of I := [a, b] is 8-fine and x e I, then there exists a tag t; 
in P such that lx - t; I =:: 8(t;)· 

Proof. If x e I, there exists a subinterval [x; _1 , x;] from P that contains x. Since P is 
8-fine, then 

(2) t. - 8 (t.) < X. I < X < X. < t. + 8 (t.), ' ' - ,_ - - ' - ' ' 
whence it follows that lx - t; I =:: 8(t;). Q.E.D. 

In the theory of Riemann integration, we will use gauges 8 that are constant functions 
to control the fineness of the partition; in the theory of the generalized Riemann integral, 
the use of nonconstant gauges is essential. But nonconstant gauge functions arise quite 
naturally in connection with continuous functions. For, let f : I ~ 1R be continuous on 
I and let e > 0 be given. Then, for each point t e I there exists 8e(t) > 0 such that 
if lx- tl < 8e(t) and x e I, then lf(x)- f(t)l <e. Since 8e is defined and is strictly 
positive 9n I, the function 8 e is a gauge on I. Later in this section, we will use the relations 
between gauges and continuity to give alternative proofs of the fundamental properties of 
continuous functions discussed in Sections 5.3 and 5.4. 

5.5.4 Examples (a) If 8 andy are gauges on I := [a, b] and ifO < 8(x) =:: y(x) for all 
x e I, then every partition P that is 8-fine is also y-fine. This follows immediately from 
the inequalities 

t;- y(t;) =:: t;- 8(t;) and t; + 8(t;) =:: t; + y(t;) 

which imply that 

t; e [t; -8(t;),t; +8(t;)] c [t;- y(t;),t; +y(t;)] for i = 1, ···,n. 

(b) If 81 and 82 are gauges on I := [a, b] and if 

8(x) := min{81 (x), 82(x)} for all x e I, 

then 8 is also a gauge on I. Moreover, since 8(x) =:: 81 (x), then every 8-fine partition is 
81-fine. Similarly, every 8-fine partition is also 82-fine. 

(c) Suppose that 8 is defined on I := [0, 1] by 

{ I~ if X= 0, 
8(x) := ! X if 0 < X ::: 1. 

Then 8 is a gauge on [0, 1]. If 0 < t =:: 1, then [t- 8(t), t + 8(t)] = [!t, ~~],which does 
not contain the point 0. Thus, if P is a 8-fine partition of I, then the only subinterval in P 
that contains 0 must have the point 0 as its tag. 

(d) Let y be defined on I := [0, 1] by 

I
I~ if X = 0 Or X = 1, 

y(x) := !x if 0 < x ::: !, 
~ ( 1 - X) if ~ < X < 1. 

Then y is a gauge on I, and it is an exercise to show that the subintervals in any y-fine 
partition that contain the points 0 or 1 must have these points as tags. 0 
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Existence of &-Fine Partitions ------------------

In view of the above examples, it is not obvious that an arbitrary gauge 8 admits a &-fine 
partition. We now use the Supremum Property of 1R to establish the existence of &-fine 
partitions. In the Exercises, we will sketch a proof based on the Nested Intervals Theorem 
2.5.2. 

5.5.5 Theorem If 8 is a gauge defined on the interval [a, b], then there exists a &-fine 
partition of [a, b]. 

Proof. Let E denote the set of all points x e [a, b] such that there exists a &-fine partition 
of the subinterval [a, x]. The set E is not empty, since the pair ([a, x], a) is a &-fine partition 
of the interval [a, x] when x e [a, a+ &(a)] and x ~b. Since E c [a, b], the set E is also 
bounded. Let u := sup E so that a < u ~ b. We will show that u e E and that u = b. 

We claim that u e E. Since u- &(u) < u =sup E, there exists veE such that u
&(u) < v < u. Let P1 be a &-fine partition of [a, v] and let P2 := P1 U ([v, u], u). Then 
P 2 is a &-fine partition of [a, u], so that u e E. 

If u < b, let w e [a, b] be such that u < w < u + &(u). If Q1 is a &-fine partition 
of [a, u], we let Q2 := Q1 U ([u, w], u). Then Q2 is a &-fine partition of [a, w], whence 
w e E. But this contradicts the supposition that u is an upper bound of E. Therefore u = b. 

Q.E.D. 

Some AppUcations 

Following R. A. Gordon (see his Monthly article), we will now show that some of the major 
theorems in the two preceding sections can be proved by using gauges. 

Alternate Proof of Theorem 5.3.2: Boundedness Theorem. Since f is continuous on 
I, then for each t e I there exists &(t) > 0 such that if x e I and lx - tl < &(t), then 
lf(x)- f(t)l ~ 1. Thus 8 is a gauge on I. Let {(li' t;)}7=t be a &-fine partition of I and 
let K := max{l/(t;)l : i = I,···, n}. By Lemma 5.5.3, given any x e I there exists i with 
lx - t; I ~ &(t;), whence 

1/(x)l ~ 1/(x)- /(t;)l + 1/(t;)l ~ 1 + K. 

Since x e I is arbitrary, then f is bounded by 1 + K on I. Q.E.D. 

Alternate Proof of Theorem 5.3.4: Maximum-Minimum Theorem. We will prove the 
existence of x•. Let M := sup{f(x) : x e I} and suppose that f(x) < M for all x e I. 
Since f is continuous on I, for each t e I there exists &(t) > 0 such that if x e I and 
lx- tl ~ &(t), then f(x) < !(M + /(t)). Thus 8 is a gauge on I, and if {(1;, t;)}f=1 is a 
&-fine partition of I, we let 

- • 1 M .= 2 max{M + /(t1), • • ·, M + /(tn)}. 

By Lemma 5.5.3, given any x e I, there exists i with lx - t;l < &(t;), whence 

f(x) < ! (M + /(t;)) ~ M. 

Since x e I is arbitrary, then M ( < M) is an upper bound for f on I, contrary to the 
definition of M as the supremum of f. Q.E.D. 

Alte17Ulte Proof of Theorem 5.3.5: Location of Roots Theorem. We assume that f (t) :1= 0 
for all t e I. Since f is continuous at t, Exercise 5.1.7 implies that there exists &(t) > 0 
such that if x e I and lx- tl ~ &(t), then f(x) < 0 if f(t) < 0, and f(x) > 0 if /(t) > 0. 
Then 8 is a gauge on I and we let {(Ii' 1;)}7=1 be a &-fine partition. Note that for each i, 
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either f(x) < 0 for all x e [x;_ 1, X;] or f(x) > 0 for all such x. Since f(x0) = f(a) < 0, 
this implies that f (x 1) < 0, which in tum implies that f (x2) < 0. Continuing in this way, 
we have f(b) = f(xn) < 0, contrary to the hypothesis that f(b) > 0. Q.E.D. 

Alternate Proof of Theorem 5.4.3: Uniform Continuity Theorem. Let e > 0 be given. 
Since f is continuous at t e I, there exists B(t) > 0 such that if x e I and lx- tl ~ U(t), 
then 1/(x)- f(t)l ::: ~e. Thus 8 is a gauge on I. If {(li' t;)J?=t is a 8-fine partition of I, 
let 8£ := min{8(t1), • • ·, 8(tn)}. Now suppose that x, u e I and lx- ul ::: 8

8
, and choose i 

with lx - t; I ~ 8 (t; ). Since 

lu- t;l::: lu- xl + lx- t;l ~ 8
8 
+ 8(t;) < 2c5(t;), 

then it follows that 

1/(x) - /(u)l ::: lf(x)- f(t;)l + 1/(t;)- f(u)l < !e + ~e =e. 
Therefore, f is uniformly continuous on I. 

Exercises for Section 5.5 

I. Let 8 be the gauge on [0. 1] defined by 8(0) := ~ and 8(t) := ~~fort e (0, 1]. 

(a) Show that P 1 := { (£0, ~ ]. 0). (li. ~ ], ~), (£ ~, 1], ~)} is 8-fine. 

(b) Show that P2 := { (£0, ~], 0). (li. ~]. ~), (£~, 1], j)} is not 8-fine. 

Q.E.D. 

2. Suppose that 81 is the gauge defined by 81 (0) := ~, 81 (t) := ~ t for t e (0, 1 ]. Are the partitions 
given in Exercise 1 81-fine? Note that 8(t) ~ 81 (t) for all t e [0, 1]. 

3. Suppose that 82 is the gauge defined by 82(0) := 1~ and 82(t) := ~0 t for t e (0, 1]. Are the 
partitions given in Exercise I 82-fine? 

4. Let y be the gauge in Example 5.5.4(d). 
(a) If t e (0, 41 show that [t- y(t), t + y(t)] = [~t, ~t] 5; (0, ~]. 

(b) If t e <4. I) show that [t- y(t), t + y(t)] 5; (~. 1). 

5. Let a < c < band let 8 be a gauge on [a, b]. If P' is a 8-fine partition of [a, c] and if P" is a 
8-fine partition of [c, b], show that P' UP" is 8-fine partition of [a, b] having c as a partition 
point. 

6. Let a < c < b and let 8' and 8" be gauges on [a, c] and [c, b], respectively. H 8 is defined on 
[a, 6] by · 

I 
8' (t) if t e [a, c), 

8(t) := min{8'(c), &"(c)} if t = c, 

8"(t) if t e (c,b], 

then 8 is a gauge on [a, b]. Moreover, if P' is a 8' -fine partition of [a, c] and P" is a 8" -fine 
partition of[c, b], then P' UP" is a tagged partitionof[a, b] having cas a partition point. Explain 

• I • II 

why 'P U 'P may not be 8-fine. Give an example. 

7. Let 8' and 8" be as in the preceding exercise and let 8* be defined by 

I 
min{&' (t), ~(c- t)} if t e [a, c), 

8*(t) := min{8'(c), &"(c)} if t = c, 

min{8"(t), 4<t- c)} if t e (c, b]. 

Show that 8* is a gauge on [a, b] and that every 8* -fine partition P of [a, b] having cas a partition 
point gives rise to a 8' -fine partition P' of [a, c) and a 8" -fine partition P" of [c, b] such that 

• • I • II 

'P='P U'P. 
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8. Let 8 be a gauge on I :=[a, b] and suppose that I does not have a 8-fine partition. 
(a) Let c := ! (a+ b). Show that at least one of the intervals [a, c] and [c, b] does not have a 

8-fine partition. 
(b) Construct a nested sequence (In) of subintervals with the length of In equal to (b- a)/2n 

such that In does not have a &-fine partition. 
(c) Let ~ e n~ 1 1n and let peN be such that (b- a)f2P < &(~). Show that 

IP 5; [~ - &(~), ~ + 8(~)], so the pair (IP, ~)is a &-fine partition of IP. 

9. Let I:= [a, b] and let I: I~ 1R be a (not necessarily continuous) function. We say that 1 is 
"locally bounded" at c e I if there exists 8(c) > 0 such that I is bounded on In [c- 8(c), c + 
8 (c)]. Prove that if I is locally bounded at every point of I, then I is bounded on I. 

10. Let I :=[a, b] and I : I ~ lR. We say that I is "locally increasing" at c e I if there ex
ists 8(c) > 0 such that I is increasing on In [c- 8(c), c +&(c)]. Prove that if I is locally 
increasing at every point of I, then I is increasing on I. 

Section 5.6 Monotone and Inverse Functions 

Recall that if A c 1R, then a function f : A ~ 1R is said to be increasing on A if whenever 
x 1,x2 e Aandx1 ~ x2,thenl(x1) ~ f(x2).Thefunctionlissaidtobestrictlyincreasing 
on A if whenever x 1, x2 e A and x 1 < x2, then l(x1) < l(x2). Similarly, g :A ~ 1R is 
said to be decreasing on A if whenever x 1, x2 e A and x 1 ~ x2 then g(x1) ~ g(x2). The 
function g is said to be strictly decreasing on A if whenever x 1 , x2 e A and x 1 < x2 then 
g(x1) > g(x2). 

If a function is either increasing or decreasing on A, we say that it is monotone on A. If 
I is either strictly increasing or strictly decreasing on A, we say that I is strictly monotone 
on A. 

We note that if f : A ~ 1R is increasing on A then g : = - f is decreasing on A; 
similarly if({) : A ~ 1R is decreasing on A then 1/1 := -({)is increasing on A. 

In this section, we will be concerned with monotone functions that are defined on an 
interval I c 1R. We will discuss increasing functions explicitly, but it is clear that there are 
corresponding results for decreasing functions. These results can either be obtained directly 
from the results for increasing functions or proved by similar arguments. 

Monotone functions are not necessarily continuous. For example, if f(x) := 0 for 
x e [0, 1] and f(x) := 1 for x e (1, 2], then f is increasing on [0, 2], but fails to be 
continuous at x = 1. However, the next result shows that a monotone function always has 
both one-sided limits (see Definition 4.3.1) in 1R at every point that is not an endpoint of its 
domain. 

5.6.1 Theorem Let I c 1R be an interval and let f : I --+ 1R be increasing on I. Suppose 
that c e I is not an endpoint of I. Then 

(i) 

(H) 

lim I= sup{f(x) : x e I, x < c}, 
x~c-

lim f = inf{l(x): X E I, X > c}. 
x~c+ 

Proof. (i) First note that if x e I and x < c, then f(x) < f(c). Hence the set {f(x): 
x e I, x < c}, which is nonvoid since c is not an endpoint of I, is bounded above by f (c). 
Thus the indicated supremum exists; we denote it by L. If e > 0 is given, then L - e is not 

.:1 -~•L!- --• TT---- .. 1. - J' L •I " I' 
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Sincefisincreasing,wededucethatifc5e :=c-yeandifO < c-y < c5e,thenye < y < c 
so that 

L- E < f(ye) ~ f(y) ~ L. 

Therefore 1/(y)- Ll < E when 0 < c- y < c5e. Since E > 0 is arbitrary we infer that (i) 
holds. 

The proof of (ii) is similar. Q.E.D. 

The next result gives criteria for the continuity of an increasing function f at a point c 
that is not an endpoint of the interval on which f is defined. 

5.6.2 Corollary Let I c IR be an interval and let f : I ~ IR be increasing on I. Suppose 
that c e I is not an endpoint of I. Then the following statements are equivalent. 

(a) f is continuous at c. 
(b) lim f = f(c) = lim f. 

x.-.c- x.-.c+ 

(c) sup{f(x) : x e /, x < c} = f(c) = inf{j(x) : x e /, x > c}. 

This follows easily from Theorems 5.6.1 and 4.3.3. We leave the details to the reader. 
Let I be an interval and let f : I ~ IR be an increasing function. If a is the left 

endpoint of I, it is an exercise to show that f is continuous at a if and only if 

f(a) = inf{j(x): x e /,a< x} 

or if and only if f (a) = lim f. Similar conditions apply at a right endpoint, and for 
x.-.a+ 

decreasing functions. 
If f : I --+ IR is increasing on I and if c is not an endpoint of I, we define the jump of 

fat c to be j1 (c) := lim f- lim f. (See Figure 5.6.1.) It follows from Theorem 5.5.1 
x.-.c+ x.-.c-

that 

j1 (c) = inf{/(x) : x e /, x > c}- sup{f(x) : x e /, x < c} 

for an increasing function. If the left endpoint a of I belongs to I, we define the Jump of 
fat a to be j1 (a) := lim f- f(a).lf the right endpoint b of I belongs to I, we define 

x.-.a+ 
the jump off at b to be j1 (b) :=/(b)- lim f. 

x.-.b-

c 

Figure 5.6.1 The jump of f at c. 

5.6.3 Theorem Let I c IR be an interval and let f : I ~ 1R be increasing on I. If c e I, 
then f is continuous at c if and only if i1(c) = 0. 
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Proof. If c is not an endpoint, this follows immediately from Corollary 5.6.2. H c e I is 
the left endpoint of I, then f is continuous at c if and only if f (c) = lim f, which is 

x-+c+ 
equivalent to j1 (c) = 0. Similar remarks apply to the case of a right endpoint. Q.E.D. 

We now show that there can be at most a countable set of points at which a monotone 
function is discontinuous. 

5.6.4 Theorem Let I c IR be an interval and let f : I ~ R be monotone on I. Then the 
set of points D c I at which f is discontinuous is a countable set. 

Proof. We shall suppose that f is increasing on I. It follows from Theorem 5.6.3 that 
D = {x e I : j1 (x) #= 0}. We shall consider the case that I :=[a, b] is a closed bounded 
interval, leaving the case of an arbitrary interval to the reader. 

We first note that since f is increasing, then j 1 (c) :::=: 0 for all c e I. Moreover, if 
a ::=: x 1 < · · · < xn ::=: b, then (why?) we have 

(1) 

whence it follows that 

i1 {x1) + · · · + i1 (xn) ::=: /(b)- f(a). 

(See Figure 5.6.2.) Consequently there can be at most k points in I = [a, b] where j1(x) > 
(f(b)- f(a))/ k. We conclude that there is at most one point x e I where j1(x) = 
f(b)- f(a); there are at most two points in I where j1 (x) :::=: (/(b)- f(a))/2; at most 
three points in I where j1 (x) :::=: (f(b)- /(a))/3, and so on. Therefore there is at most a 
countable set of points x where j1 (x) > 0. But since every point in D must be included in 
this set, we deduce that Dis a countable set. Q.E.D. 

/(b) 

/(b)- j(a) 
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Theorem 5.6.4 has some useful applications. For example, it was seen in Exercise 
5.2.12 that if h : JR --+ JR satisfies the identity 

(2) h(x + y) = h(x) + h(y) for all x, y e JR, 

and if h is continuous at a single point x0 , then h is continuous at every point of JR. Thus, 
if h is a monotone function satisfying (2), then h must be continuous on JR. [It follows 
from this that h(x) = Cx for all x e JR, where C := h(l).] 

Inverse Functions 

We shall now consider the existence of inverses for functions that are continuous on an 
interval I c 1R. We recall (see Section 1.1) that a function f : I --+ 1R has an inverse 
function if and only if I is injective (=one-one); that is, x, y e I and x # y imply that 
l(x) # l(y). We note that a strictly monotone function is injective and so has an inverse. 
In the next theorem, we show that if I : I --+ 1R is a strictly monotone continuous function, 
then I has an inverse function g on J := 1(1) that is strictly monotone and continuous 
on J. In particular, if I is strictly increasing then so is g, and if I is strictly decreasing 
then so is g. 

5.6.5 Continuous Inverse Theorem Let I c 1R be an interval and let I : I --+ JR be 
strictly monotone and continuous on I. Then the function g inverse to I is strictly monotone 
and continuous on J := 1(1). 

Proof. We consider the case that I is strictly increasing, leaving the case that I is strictly 
decreasing to the reader. 

Since I is continuous and I is an interval, it follows from the Preservation of Intervals 
Theorem 5.3.10 that J := 1(1) is an interval. Moreover, since I is strictly increasing on 
I, it is injective on I; therefore the function g : J --+ 1R inverse to I exists. We claim 
that g is strictly increasing. Indeed, if y., y2 e J with y1 < y2 , then y1 = l(x1) and y2 = 
l(x2) for some x 1, x2 e I. We must have x 1 < x2; otherwise x 1 ::::, x2, which implies that 
y1 = l(x1) ::::, l(x2) = y2, contrary to the hypothesis that y1 < y2• Therefore we have 
g(y1) = x 1 < x2 = g(y2). Since y1 and y2 are arbitrary elements of J with y1 < y2, we 
conclude that g is strictly increasing on J. 

It remains to show that g is continuous on J. However, this is a consequence of the fact 
that g(J) = I is an interval. Indeed, if g is discontinuous at a point c e J, then the jump 
of g at c is nonzero so that lim g < lim g. If we choose any number x # g (c) satisfying 

y-+c- y-+c+ 
lim g < x < lim g, then x has the property that x # g (y) for any y e J. (See Figure 

x-+c- x-+c+ 
5.6.3.) Hence x ¢ I, which contradicts the fact that I is an interval. Therefore we conclude 
that g is continuous on J. Q.E.D. 

The nth Root Function 

We will apply the Continuous Inverse Theorem 5.6.5 to the nth power function. We need 
to distinguish two cases: (i) n even, and (ii) n odd. 

(i) n even. In order to obtain a function that is strictly monotone, we restrict our 
attention to the interval/ := [0, oo). Thus, let f(x) := xn for x e /.(See Figure 5.6.4.) We 
have seen (in Exercise 2.1.23) that if 0 =:: x < y, then I (x) = xn < yn = I (y); therefore I 
is strictly increasing on I. Moreover, it follows from Example 5.2.3(a) that I is continuous 
on I. Therefore, by the Preservation of Intervals Theorem 5.3.10, J := f(l) is an interval. 
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I· 
c 
J ·I 

Figure 5.6.3 g (y) :f: x for y e J. 

We will show that J = [0, oo). Let y ~ 0 be arbitrary; by the Archimedean Property, there 
exists k e N such that 0 ~ y < k. Since 

/(0) = 0 ~ y < k ~ k" = f(k), 

it follows from Bolzano's Intermediate Value Theorem 5.3.7 that y e J. Since y ~ 0 is 
arbitrary, we deduce that J = [0, oo). 

We conclude from the Continuous Inverse Theorem 5.6.5 that the function g that is 
inverse to f (x) = x" on I = [0, oo) is strictly increasing and continuous on J = [0, oo ). 
We usually write 

g(x) = xlfn or g(x) = '!/X 
for x ~ 0 (n even), and call x lfn = '!/X the nth root of x ~ 0 (n even). The function g is 
called the nth root function (n even). (See Figure 5.6.5.) 

Since g is inverse to f we have 

g(f(x)) = x and f(g(x)) = x for all x e [0, oo). 

We can write these equations in the following form: 

(x")l/n =X and (xlfn)" =X 

for all x e [0, oo) and n even. 

y 

Figure 5.6.4 Graph of 
f(x) = x" (x ~ 0, n even). 

y 

Figure 5.6.5 Graph of 
g(x) = x l/n (x ~ 0, n even). 
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(ii) n odd. In this case we let F(x) := x" for all x e 1R; by 5.2.3(a), F is continuous 
on 1R. We leave it to the reader to show that F is strictly increasing on 1R and that F(1R) = 
R. (See Figure 5.6.6.) 

It follows from the Continuous Inverse Theorem 5.6.5 that the function G that is inverse 
to F (x) = x" for x e 1R, is strictly increasing and continuous on 1R. We usually write 

G(x) = x 1
'" or G(x) = "Jx for x e 1R, n odd, 

and call x 1'" the nth root of x e 1R. The function G is called the nth root function (n odd). 
(See Figure 5.6.7.) Here we have 

( ") 1/n x =x 

for all x e 1R and n odd. 

y 

Figure 5.6.6 Graph of 
F(x) = x" (x e R, n odd). 

and 

y 

Figure 5.6. 7 Graph of 
G(x) = x 11n (x e R, n odd). 

RationaiPowen ------------------------------------------------
Now that the nth root functions have been defined for n eN, it is easy to define rational 
powers. 

5.6.6 Definition (i) If m, n eN and x ?: 0, we define xmln := (x 1'")m. 
(ii) If m, n EN and x > 0, we define x-m/n := (x 11")-m. 

Hence we have defined x' when r is a rational number and x > 0. The graphs of x ~ x' 
depend on whether r > 1, r = 1, 0 < r < 1, r = 0, or r < 0. (See Figure 5.6.8.) Since a 
rational number r e Q can be written in the form r =min with me Z, n eN, in many 
ways, it should be shown that Definition 5.6.6 is not ambiguous. That is if r = mIn = pI q 
withm,p e Zandn,q e Nandifx > O,then(x 1'")m = (x 11q)P.Weleaveitasanexercise 
to the reader to establish this relation. 

5.6.7 Theorem Hm e Z, n eN, and X > 0, then xmln = (xm) 1
'". 

Proof. If x > 0 and m, n e Z, then (xm)" = xm" = (x")m. Now let y := xmln = 
(x 1'")m > 0 so that y" = ( (xll")m)" = ( (x 1'">")m = xm. Therefore it follows that y = 
(xm)1/n • Q.E.D. 

The reader should also show, as an exercise, that if x > 0 and r, s e Q, then 

x' x' = x'+' = x' x' and (x')' = x" = (x')'. 
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y 

1 

Figure 5.6.8 Graphs of X-+ xr (x ~ 0). 

Exercises for Section S.6 

1. If I :=[a, b) is an interval and I : I -+ 1R is an increasing function, then the point a [respectively, 
b] is an absolute minimum [respectively, maximum] point for I on I. If I is strictly increasing, 
then a is the only absolute minimum point for I on I. 

2. If 1 and g are increasing functions on an interval I ~ .R, show that I + g is an increasing 
function on I. If I is also strictly increasing on I, then I + g is strictly increasing on I. 

3. Show that both l(x) := x and g(x) := x - 1 are strictly increasing on I := [0, 1], but that their 
product I g is not increasing on I. 

4. Show that if I and g are positive increasing functions on an interval I, then their product I g is 
increasing on I. 

5. Show that if I := [a, b] and I : I -+ R is increasing on I, then I is continuous at a if and only 
if l(a) = inf{l(x) : x e (a, b]}. 

6. Let I ~ R be an interval and let I : I -+ R be increasing on I. Suppose that c e I is not an 
endpoint of I. Show that I is continuous at c if and only if there exists a sequence (xn) in I 
such that x < c for n = 1, 3, 5, · · ·; x > c for n = 2, 4, 6, ···;and such that c = lim(xn) and n n 
l(c) =lim (l<xn)). 

7. Let I ~ R be an interval and let I : I -+ R be increasing on I. If c is not an endpoint of I, show 
that the jump j 1 (c) off at cis given by inf{l(y)- l(x): x < c < y, x, y e I}. 

8. Letf,gbeincreasingonanintervali ~ IRandletf(x) > g(x)forallx e I.Ify e /(I) ng(l), 
show that /-1 (y) < g-1 (y). [Hint: First interpret this statement geometrically.] 

9. Let I := [0, 1] and let I: I-+ R be defined by l(x) := x for x rational, and l(x) := 1- x for 
x irrational. Show that I is injective on I and that I <I (x)) = x for all x e I. (Hence I is its 
own inverse function!) Show that I is continuous only at the point x = 4. 
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10. Let I :=[a, b) and let I: I~ R be continuous on I. If 1 has an absolute maximum [respec
tively, minimum) at an interior point c of I, show that 1 is not injective on I. 

11. Let l(x) := x for x e [0, 1), and l(x) := 1 + x for x e (1, 2]. Show that I and 1-1 are strictly 
increasing. Are I and 1-1 continuous at every point? 

12. Let I : [0, 1) ~ 1R be a continuous function that does not take on any of its values twice and 
with 1(0) < 1(1). Show that I is strictly increasing on [0, 1]. 

13. Let h : [0, 1) ~ 1R be a function that takes on each of its values exactly twice. Show that h 
cannot be continuous at every point. [Hint: If c 1 < c2 are the points where h attains its supremum, 
show that c 1 = 0, c2 = 1. Now examine the points where h attains its infimum.) 

14. Let x e JR., x > 0. Show that if m, p e Z, n, q e N, and mq = np, then (x l/n)m = (x lfq)p. 

15. If x e JR., x > 0, and if r, s e Q, show that x' xs = x'+s = xs x' and (x')s = x's = (xs)'. 
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CHAPTER6 

DIFFERENTIATION 

Prior to the seventeenth century, a curve was generally described as a locus of points 
satisfying some geometric condition, and tangent lines were obtained through geometric 
construction. This viewpoint changed dramatically with the creation of analytic geometry 
in the 1630s by Rene Descartes (1596-1650) and Pierre de Fermat (1601-1665). In this 
new setting geometric problems were recast in terms of algebraic expressions, and new 
classes of curves were defined by algebraic rather than geometric conditions. The concept 
of derivative evolved in this new context. The problem of finding tangent lines and the 
seemingly unrelated problem pf finding maximum or minimum values were first seen to 
have a connection by Fermat in the 1630s. And the relation between tangent lines to curves 
and the velocity of a moving particle was discovered in the late 1660s by Isaac Newton. 
Newton's theory of "fluxions", which was based on an intuitive idea of limit, would be 
familiar to any modem student of differential calculus once some changes in terminology 
and notation were made. But the vital observation, made by Newton and, independently, by 
Gottfried Leibniz in the 1680s, was that areas under curves could be calculated by reversing 
the differentiation process. This exciting technique, one that solved previously difficult area 
problems with ease, sparked enormous interest among the mathematicians of the era and 
led to a coherent theory that became known as the differential and integral calculus. 

Isaac Newton 
Isaac Newton (1642-1727) was born in Woolsthorpe, in Lincolnshire, Eng
land, on Christmas Day; his father, a fanner, had died three months earlier. 
His mother remarried when he was three years old and he was sent to live 
with his grandmother. He returned to his mother at age eleven, only to be 
sent to boarding school in Grantham the next year. Fortunately, a perceptive 
teacher noticed his mathematical talent and, in 1661, Newton entered Trinity 
College at Cambridge University, where he studied with Isaac Barrow. 

When the bubonic plague struck in 1665-1666, leaving dead nearly 
70,000 persons in London, the university closed and Newton spent two years back in Woolsthorpe. 
It was during this period that he formulated his basic ideas concerning optics, gravitation, and his 
method of"ftuxions", later called "calculus". He returned to Cambridge in 1667 and was appointed 
Lucasian Professor in 1669. His theories of universal gravitation and planetary motion were 
published to world acclaim in 1687 under the title Philosophia Naturalis Principia Mathematica. 
However, he neglected to publish his method of inverse tangents for finding areas and other work 
in calculus, and this led to a controversy over priority with Leibniz. 

Following an illness, he retired from Cambridge University and in 1696 was appointed War
den of the British mint. However, he maintained contact with advances in science and mathematics 
and served as President of the Royal Society from 1703 until his death in 1727. At his funeral, 
Newton was eulogized as ''the greatest genius that ever existed". His place of burial in Westminster 
Abbey is a popular tourist site. 
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In this chapter we will develop the theory of differentiation. Integration theory, includ
ing the fundamental theorem that relates differentiation and integration, will be the subject 
of the next chapter. We will assume that the reader is already familiar with the geometrical 
and physical interpretations of the derivative of a function as described in introductory 
calculus courses. Consequently, we will concentrate on the mathematical aspects of the 
derivative and not go into its applications in geometry, physics, economics, and so on. 

The first section is devoted to a presentation of the basic results concerning the dif
ferentiation of functions. In Section 6.2 we discuss the fundamental Mean Value Theorem 
and some of its applications. In Section 6.3 the important L'Hospital Rules are presented 
for the calculation of certain types of "indeterminate" limits. 

In Section 6.4 we give a brief discussion of Taylor's Theorem and a few of its 
applications-for example, to convex functions and to Newton's Method for the location 
of roots. 

Section 6.1 The Derivative 

In this section we will present some of the elementary properties of the derivative. We begin 
with the definition of the derivative of a function. 

6.1.1 Definition Let I ~ 1R be an interval, let f : I --. JR, and let c e I. We say that a 
real number Lis the derivative off at c if given any e > 0 there exists 8(e) > 0 such that 
if x e I satisfies 0 < lx - cl < 8(e), then 

(1) I f(x)- /(c) - Ll <e. 
x -c 

In this case we say that f is ditTerentiable at c, and we write /'(c) for L. 

(2) 

In other words, the derivative of f at c is given by the limit 

/'(c)= lim f(x)- /(c) 
X-+C X- c 

provided this limit exists. (We allow the possibility that c may be the endpoint of the 
interval.) 

Note It is possible to define the derivative of a function having a domain more general 
than an interval (since the point c need only be an element of the domain and also a cluster 
point of the domain) but the significance of the concept is most naturally apparent for 
functions defined on intervals. Consequently we shall limit our attention to such functions. 

Whenever the derivative of f : I --. 1R exists at a point c e I, its value is denoted by 
f' (c). In this way we obtain a function /' whose domain is a subset of the domain of f. 
In working with the function f', it is convenient to regard it also as a function of x. For 
example, if f(x) := x 2 for x e JR, then at any c in IR we have 

/'(c) = lim f(x)- /(c) = lim x2- c2 = lim (x +c)= 2c. 
X-+C X - c X-+C X - c X-+C 

Thus, in this case, the function f' is defined on all of IR and /' (x) = 2x for x e R. 
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We now show that continuity of f at a point c is a necessary (but not sufficient) 
condition for the existence of the derivative at c. 

6.1.2 Theorem H f: I --+ 1R has a derivative at c e I, then f is continuous at c. 

Proof. For all x e I, x # c, we have 

(
f(x)- f(c)) 

f(x)- f(c) = (x -c). 
x-c 

Since /'(c) exists, we may apply Theorem 4.2.4 concerning the limit of a product to 
conclude that 

lim(f(x)- f(c)) =lim (f(x)- f(c)) ( lim(x- c)) 
x~c x~c X - c x~c 

= f'(c) · 0 = 0. 

Therefore, lim f (x) = f (c) so that f is continuous at c. Q.E.D. 
x~c 

The continuity of f: I --+ 1R at a point does not assure the existence of the deriv.ative 
at that point. For example, if f(x) := lxl for x e 1R, then for x # 0 we have (f(x)
f (0)) I (x - 0) = lx 1/ x which is equal to I if x > 0, and equal to -1 if x < 0. Thus the limit 
at 0 does not exist [see Example 4.1.10(b)], and therefore the function is not differentiable 
at 0. Hence, continuity at a point c is not a sufficient condition for the derivative to exist 
at c. 

Remark By taking simple algebraic combinations of functions of the form x ~ lx - cl, 
it is not difficult to construct continuous functions that do not have a derivative at a finite (or 
even a countable) number of points. In 1872, Karl Weierstrass astounded the mathematical 
world by giving an example of a function that is continuous at every point but whose 
derivative does not exist anywhere. Such a function defied geometric intuition about curves 
and tangent lines, and consequently spurred much deeper investigations into the concepts 
of real analysis. It can be shown that the function f defined by the series 

oo I 
f(x) := L 

2
" cos(3"x) 

n=O · 

has the stated property. A very interesting historical discussion of this and other examples of 
continuous, nondifferentiable functions is given in Kline, p. 955-966, and also in Hawkins, 
p. 44-46. A detailed proof for a slightly different example can be found in Appendix E. 

There are a number of basic properties of the derivative that are very useful in the 
calculation of the derivatives of various combinations of functions. We now provide the 
justification of some of these properties, which will be familiar to the reader from earlier 
courses. 

6.1.3 Theorem Let I c 1R be an interval, let c e I, and let f : I --+ 1R and g: I --+ 1R 
be functions that are differentiable at c. Then: 

(a) If a e 1R, then the function af is differentiable at c, and 

(3) (a f)' (c) = af' (c). 
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(b) The function f + g is differentiable at c, and 

(4) (/ + g)'(c) = f'(c) + g'(c). 

(c) (Product Rule) The function fg is differentiable at c, and 

(5) (/g)'(c) = f'(c)g(c) + f(c)g'(c). 

(d) (Quotient Rule) If g(c) :F 0, then the function fig is differentiable at c, and 

(6) (1)' (c)= f'(c)g(c)- ~(c)g'(c). 
g (g(c)) 

Proof. We shall prove (c) and (d), leaving (a) and (b) as exercises for the reader. 

(c) Let p := fg; then for x e /, x :F c, we have 

p(x)- p(c) f(x)g(x)- f(c)g(c) 

x-c x-c 

f(x)g(x)- f(c)g(x) + f(c)g(x)- f(c)g(c) 
- x-c 
= f(x).- f(c) . g(x) + f(c). g(x)- g(c). 

x-c x-c 

Since g is continuous at c, by Theorem 6.1.2, then lim g(x) = g(c). Since f and g are 
x~c 

differentiable at c, we deduce from Theorem 4.2.4 on properties of limits that 

I. p(x) - p(c) f'( ) ( ) /( ) '( ) tm = c g c + c g c . 
x~c X-C 

Hence p := fg is differentiable at c and (5) holds. 

(d) Let q := fIg. Since g is differentiable at c, it is continuous at that point (by 
Theorem 6.1.2). Therefore, since g(c) :F 0, we know from Theorem 4.2.9 that there exists 
an interval J c I with c e J such that g(x) :f: 0 for all x e J. For x e J, x :F c, we have 

q(x)- q(c) f(x)lg(x)- f(c)lg(c) f(x)g(c)- f(c)g(x) 

x- c x- c g(x)g(c)(x- c) 

f(x)g(c)- f(c)g(c) + f(c)g(c)- f(c)g(x) 
-

g(x)g(c)(x- c) 

= 1 [f(x)- f(c) . g(c) _ f(c). g(x)- g(c)]. 
g(x)g(c) x- c x - c 

Using the continuity of g at c and the differentiability of f and g at c, we get 

q'(c) = lim q(x)- q(c) = f'(c)g(c)- f(c)g'(c). 
x~c x - c (g(c) )2 

Thus, q = fIg is differentiable at c and equation ( 6) holds. Q.E.D. 

Mathematical Induction may be used to obtain the following extensions of the differ
entiation rules. 

6.1.4 Corollary If ft, / 2, • • • , !,. are functions on an interval/ to 1R that are differentiable 
at c e I, tben: 

(a) The function ft + /2 +···+!,.is dilferentiable at c and 

(7) (ft + / 2 +···+/,.)'(c)= f{(c) + J;(c) + · · · + f~(c). 
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(b) The function / 1 / 2 • • • fn is differentiable at c, and 

(8) (/1/ 2 • • • fn)'(c) = f{(c)f2(c) · · · fn(c) + /1 (c)f~(c) · · · fn(c) 

+ · · · + / 1 (c)/2 (c) · · · f~(c). 

An important special case of the extended product rule (8) occurs if the functions are 
equal, that is, / 1 = / 2 = · · · = In = f. Then (8) becomes 

(9) (/")'(c) = n(f(c))"-1 /'(c). 

In particular, if we take f (x) := x, then we find the derivative of g(x) := x" to beg' (x) = 
nx"-1

, n e N. The formula is extended to include negative integers by applying the Quotient 
Rule 6.1.3(d). 

Notation If I c 1R is an interval and f : I ~ 1R, we have introduced the notation f' to 
denote the function whose domain is a subset of I and whose value at a point c is the 
derivative /' (c) of f at c. There are other notations that are sometimes used for f'; for 
example, one sometimes writes Df for f'. Thus one can write formulas (4) and (5) in the 
form: 

D(f +g) = Df + Dg, D(fg) = (Df) · g + f · (Dg). 

When x is the "independent variable", it is common practice in elementary courses to write 
dffdx for f'. Thus formula (5) is sometimes written in the form 

d (df ) (dg ) dx (f(x)g(x)) = dx (x) g(x) + f(x) dx (x) . 

This last notation, due to Leibniz, has certain advantages. However, it also has certain 
disadvantages and must be used with some care. 

The Chain Rule 

We now tum to the theorem on the differentiation of composite functions known as the 
"Chain Rule". It provides a formula for finding the derivative of a composite function g o f 
in terms of the derivatives of g and f. 

We first establish the following theorem concerning the derivative of a function at a 
point that gives us a very nice method for proving the Chain Rule. It will also be used to 
derive the formula for differentiating inverse functions. 

6.1.5 Caratheooory's Theorem Let f be defined on an interval I containing the point c. 
Then f is differentiable at c if and only if there exists a function qJ on I that is continuous 
at c and satisfies 

(10) f(x)- f(c) = qJ(x)(x- c) for x e I. 

In this case, we have qJ(c) = f' (c). 

Proof. ( =>) If f' (c) exists, we can define qJ by 

I 
f(x)- f(c) 

qJ(x):= x-c 
/'(c) 

for x '# c, x e I, 

for x =c. 

The continuity of qJ follows from the fact that lim qJ(x) =/'(c). If x = c, then both sides 
x-.c 

of (10) equal 0, while if x '# c, then multiplication of qJ(x) by x- c gives (10) for all other 
X E I. 



162 CHAPTER 6 DIFFERENTIATION 

( <=) Now assume that a function lfJ that is continuous at c and satisfying ( 1 0) exists. If 
we divide ( 1 0) by x - c # 0, then the continuity of lfJ implies that 

( ) lim ( ) li 
/(x)- f(c) 

l(JC = l{JX = m----
x-+c JC-+C X - C 

exists. Therefore f is differentiable at c and/' (c) = l{J(c). Q.E.D. 

To illustrate Caratheodory 's Theorem, we consider the function f defined by f (x) : = 
x 3 for x e IR. For c e IR, we see from the factorization 

x 3 
- c3 = (x 2 +ex + c2)(x -c) 

that l{J(x) := x 2 +ex+ c2 satisfies the conditions of the theorem. Therefore, we conclude 
that f is differentiable at c e IR and that f' (c) = lfJ (c) = 3c2• 

We will now establish the Chain Rule. If f is differentiable at c and g is differentiable 
at f (c), then .the Chain Rule states that the derivative of the composite function g o f at c 
is the product (go f)'(c) = g'(f(c)) · f'(c). Note this can be written 

(g 0 /)' = (g' 0 /) • f'. 

One approach to the Chain Rule is the observation that the difference quotient can be 
written, when f(x) :f. f(c), as the product 

g(f(x))- g(f(c)) g(f(x))- g(f(c)) f(x)- /(c) 
-

x-c f (x) - f (c) x - c 

This suggests the correct limiting value. Unfortunately, the first factor in the product on 
the right is undefined if the denominator f (x) - f (c) equals 0 for values of x near c, and 
this presents a problem. However, the use of Caratheodory's Theorem neatly avoids this 
difficulty. 

6.1.6 Chain Rule Let I, J be intervals in IR, let g : I ~ IR and f : J ~ IR be functions 
such that f ( J) c I, and let c e J. Iff is differentiable at c and if g is differentiable at 
f(c), then the composite function go f is differentiable at c and 

(11) (go /)'(c) = g'(f(c)) ·/'(c). 

Proof. Since /'(c) exists, Caratheodory's Theorem 6.1.5 implies that there exists a func
tion lfJ on J such that (/) is continuous at c and f(x)- f(c) = l{J(x)(x- c) for x e J, 
and where l{J(c) = f'(c). Also, since g'(f(c)) exists, there is a function 1/1 defined on I 
such that 1/1 is continuous at d := f(c) and g(y)- g(d) = 1/f(y)(y- d) for y e I, where 
1/f(d) = g'(d). Substitution of y = f(x) and d = f(c) then produces 

g(f(x))- g(f(c)) = 1/1(/(x))(/(x)- /(c))= [(1/1 o /(x)) ·l(J(x)](x- c) 

for all x e J such that f (x) e I. Since the function ( 1/1 o /) · lfJ is continuous at c and its 
value at cis g'(f(c)) · f'(c), Caratheodory's Theorem gives (11). Q.E.D. 

If g is differentiable on/, iff is differentiable on J and if f(J) c /,then it follows 
from the Chain Rule that (g o /)' = (g' o /) · !' which can also be written in the form 
D(g o /) = (Dg o /) · Df. 
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6.1.7 Examples (a) H f: I--+ 1R is differentiable on I and g(y) := y" for y e 1R and 
n e N, then since g 1 (y) = n y" - 1, it follows from the Chain Rule 6.1.6 that 

(go f)'(x) = g1(f(x)) · / 1(X) for x e /. 

I ( )n-1 I Therefore we have (/") (x) = n f (x) f (x) for all x e I as was seen in (9). 

(b) Suppose that f : I ~ 1R is differentiable on I and that f (x) ¥= 0 and f' (x) =F 0 for 
x e I. H h(y) := 1/y for y =F 0, then it is an exercise to show that h1(y) = -1jy2 for 
y e 1R, y =F 0. Therefore we have 

( 
1 ) I 1 1 ( ) I !'(X) 
f 

(x) = (h o /) (x) = h f (x) f (x) = - 2 
(f(x)) 

for x e I. 

(c) The absolute value function g(x) := lxl is differentiable at all x =F 0 and has derivative 
g1(x) = sgn(x) for x :f: 0. (The signum function is defined in Example 4.1.10(b).) Though 
sgn is defined everywhere, it is not equal to g' at x = 0 since g' (0) does not exist. 

Now iff is a differentiable function, then the Chain Rule implies that the function 
g o f = If I is also differentiable at all points x where f (x) :f: 0, and its derivative is given 
by 

1/li(x) = sgn(/(x)) · /'(x) = { !'tlx) if f(x) > 0, 
if f(x) < 0. 

Iff is differentiable at a point c with f(c) = 0, then it is an exercise to show that 1/1 is 
differentiable at c if and only if f'(c) = 0. (See Exercise 7.) 

For example, if f (x) := x2 
- 1 for x e 1R, then the derivative of its absolute value 

1/l(x) = lx2
- 11 is equal to 1/l'(x) = sgn(x2

- 1) · (2x) for x =F 1, -1. See Figure 6.1.1 
for a graph of I fl. 

y 

1 2 

Figure 6.1.1 The function 1/l(x) = lx2
- 11. 

(d) It will be proved later that if S(x) := sinx and C(x) := cosx for all x e 1R, then 

S1(x) = cosx = C(x) and C 1(x) =- sinx = -S(x) 

for all x e 1R. If we use these facts together with the definitions 

sinx 1 
tanx := --, secx := --, 

cosx cosx 
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for x # (2k + 1 )1r /2, k e Z, and apply the Quotient Rule 6.1.3( d), we obtain 

D 
(cosx)(cosx)- (sinx)(- sinx) )2 tanx = 

2 
= (secx , 

(cosx) 

0- 1(- sinx) sinx 
D secx = 

2 
= 

2 
= (secx)(tanx) 

(cosx) (cosx) 

for x # (2k + 1)1r/2, k e Z. 
Similarly, since 

cosx 
cotx := -.-, 

StnX 

for x # k1r, k e Z, then we obtain 

D cotx = -(cscx)2 and 

for x # k1r, k e Z. 
(e) Suppose that f is defined by 

{ 
x 2 sin(1/x) f(x) := 
0 

1 
CSCX := -.

SffiX 

Desex= -(cscx)(cotx) 

for x # 0, 
for x = 0. 

If we use the fact that D sin x = cos x for all x e R and apply the Product Rule 6.1.3( c) 
and the Chain Rule 6.1.6, we obtain (why?) 

f'(x) = 2x sin(1/x)- cos(1/x) for x # 0. 

If x = 0, none of the calculational rules may be applied. (Why?) Consequently, the deriva
tive of f at x = 0 must be found by applying the definition of derivative. We find that 

/
'(O) _ 

1
. f(x) - /(0) _ 

1
. x

2 
sin (1/x) _ lim . (

1
/ ) _ 

0 - tm - tm - x sm x - . 
x-0 X - 0 x-0 X x-0 

Hence, the derivative/' off exists at all x e R. However, the function f' does not have a 
limit at x = 0 (why?), and consequently/' is discontinuous at x = 0. Thus, a function f 
that is differentiable at every point of R need not have a continuous derivative /'. 0 

Inverse Functions 

We will now relate the derivative of a function to the derivative of its inverse function, 
when this inverse function exists. We will limit our attention to a continuous strictly 
monotone function and use the Continuous Inverse Theorem 5.6.5 to ensure the existence 
of a continuous inverse function. 

Iff is a continuous strictly monotone function on an interval I, then its inverse function 
g = f- 1 is defined on the interval J :=/(f) and satisfies the relation 

g(f(x)) = x for x e f. 

If c e I and d := f(c), and if we knew that both /'(c) and g'(d) exist, then we could 
differentiate both sides of the equation and apply the Chain Rule to the left side to get 
g'(f(c)) · f'(c) =I. Thus, if f'(c) #= 0, we would obtain 

I 1 
g (d)= /'(c). 
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However, it is necessary to deduce the differentiability of the inverse function g from the 
assumed differentiability of f before such a calculation can be performed. This is nicely 
accomplished by using Caratheodory's Theorem. 

6.1.8 Theorem Let I be an interval in 1R and let f : I -+ 1R be strictly monotone and 
continuous on I. Let J : = f (I) and let g : J -+ 1R be the strictly monotone and continuous 
function inverse to f. Iff is differentiable at c e I and f' (c) ':f: 0, then g is differentiable 
atd :=/(c) and 

(12) 'd)--·-- 1 
g ( - /'(c) - f'(g(d)) · 

Proof. Given c e JR, we obtain from Caratheodory's Theorem 6.1.5 a function qJ on I 
with properties that qJ is continuous at c, f (x) - f (c) = qJ(x) (x - c) for x e I, and qJ( c) = 
/'(c). Since qJ(c) ':/: 0 by hypothesis, there exists a neighborhood V := (c- 8, c + 8) such 
that ({J(X) ':/: 0 for all X E v n I. (See Theorem 4.2.9.) If u := f(V n I), then the inverse 
function g satisfies f (g (y)) = y for all y e U, so that 

y- d = f(g(y)) -/(c) = qJ(g(y)) · (g(y)- g(d) ) .. 

Since qJ(g(y)) ':f: 0 for y e U, we can divide to get 

1 
g(y)- g(d) = (/J(g(y)) . (y- d). 

Since the function 1 I ( qJ o g) is continuous at d, we apply Theorem 6.1.5 to conclude that 
g'(d)existsandg'(d) = llqJ(g(d)) = llqJ(c) = 11/'(c). Q.E.D. 

Note The hypothesis, made in Theorem 6.1.8, that /'(c) ':f: 0 is essential. In fact, if 
!' (c) = 0, then the inverse function g is never differentiable at d = f (c), since the assumed 
existence of g' (d) would lead to 1 = f' (c)g' (d) = 0, which is impossible. The function 
f (x) := x 3 with c = 0 is such an example. 

6.1.9 Theorem Let I be an interval and let f : I -+ 1R be strictly monotone on I. Let 
J : = f (I) and let g : J -+ R be the function inverse to f. Iff is differentiable on I and 
f' (x) ':f: 0 fo~ x e I, then g is differenti~ble on J and 

(13) 
I 1 

g = !' og" 

Proof. If f is differentiable on I, then Theorem 6.1.2 implies that f is continuous on I, 
and by the Continuous Inverse Theorem 5.6.5, the inverse function g is continuous on J. 
Equation (13) now follows from Theorem 6.1.8. Q.E.D. 

Remark Iff and g are the functions of Theorem 6.1.9, and if x e I andy e J are related 
by y = f(x) and x = g(y), then equation (13) can be written in the fonn 

' 1 ' 1 g (y) = (/' 
0 

g)(y), y e J, or (g o /)(x) = /'(x), x e I. 

It can also be written in the form g' (y) = 11 f' (x ), provided that it is kept in mind that x 
andy are related by y = f(x) and x = g(y). 



b.l.IU Examples (a) The function I : 1R ~ 1R defined by 1 (x) := x 5 + 4x + 3 is con
tinuous and strictly monotone increasing (since it is the sum of two strictly increasing func
tions). Moreover, l'(x) = 5x4 + 4 is never zero. Therefore, by Theorem 6.1.8, the inverse 
function g = 1-1 is differentiable at every point. H we take c = 1, then since 1(1) = 8, 
we obtain g'(8) = g'(l(1)) = 1/1'(1) = 1/9. 

(b) Let n eN be even, let I := [0, oo), and let l(x) := xn for x e I. It was seen at the 
end of Section 5.6 that I is strictly increasing and continuous on I, so that its inverse 
function g(y) := y 11n for y e J := [0, oo) is also strictly increasing and continuous on J. 
Moreover, we have I' (x) = nxn-1 for all x e I. Hence it follows that if y > 0, then g' (y) 
exists and 

1 1 1 1 
g (y) = I'( { )} = { }n-1 = (n-1)/n · g Y n g(y) ny 

Hence we deduce that 
1 g'(y) = -y(lfn)-1 for y > 0. 
n 

However, g is not differentiable at 0. (For a graph of I and g, see Figures 5.6.4 and 5.6.5.) 

(c) Letn e N, n -::/: 1, be odd, let F(x) := x" for x e 1R, and let G(y) := y 11n be its inverse 
function defined for all y e 1R. As in part (b) we find that G is differentiable for y -::/: 0 
and that G'(y) = (1/n)yOin>-1 for y -::j: 0. However, G is not differentiable at 0, even 
though G is differentiable for ally-::/: 0. (For a graph ofF and G, see Figures 5.6.6 and 
5.6.7.) 

(d) Let r := mfn be a positive rational number, let I := [0, oo), and let R(x) := xr for 
x e I. (Recall Definition 5.6.6.) Then R is the composition of the functions l(x) := xm 
and g(x) := x 1'", x e I. That is, R(x) = l(g(x)) for x e I. ffwe apply the Chain Rule 
6.1.6 and the results of (b) [or (c), depending on whether n is even or odd], then we obtain 

1 
R'(x) = l'(g(x))g'(x) = m(x1fn)m-1. -x(lfn)-1 

n 
m = -x<mfn)-1 = rxr-1 
n 

for all x > 0. H r > 1, then it is an exercise to show that the derivative also exists at x = 0 
and R' (0) = 0. (For a graph of R see Figure 5.6.8.) 

(e) The sine function is strictly increasing on the interval I := [ -1r /2, 1r /2]; therefore 
its inverse function, which we will denote by Arcsin, exists on J := [ -1, 1]. That is, if 
x e [ -1r /2, 1r /2] andy e [ -1, 1] then y = sinx if and only if Arcsin y = x. It was asserted 
(without proof) in Example 6.1.7(d) that sin is differentiable on I and that D sinx = 
cos x for x e I. Since cos x -::/: 0 for x in ( -1r /2, 1r /2) it follows from Theorem 6.1.8 that 

D 
0 1 1 

Arcstny = D . = --
smx cosx 

1 1 

= J1 - (sinx)2 = )1 - y2 

for all y e ( -1, 1). The derivative of Arcsin does not exist at the points -1 and 1. 0 

Exercises for Section 6.1 

1. Use the definition to find the derivative of each of the following functions: 
(a) f(x) := x 3 for x e R, (b) g(x) := 1/x for x e R, x :F 0, 
(c) h(x) := ,jX for x > 0, (d) k(x) := 1/ ,jX for x > 0. 
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2. Show that f (x) := x I/J, x e R, is not differentiable at x = 0. 

3. Prove Theorem 6.1.3(a), (b). 

4. Let f : R ~ R be defined by /(x) := x 2 for x rational, f(x) := 0 for·x irrational. Show that 
f is differentiable at x = 0, and find /' (0). 

S. Differentiate and simplify: 
X 

(a) /(x) := --2 , 
1+x 

(c) h(x) := (sinxk)m form, k e N, (d) k(x) := tan(x2
) for lxl < .[iCfi. 

6. Let n eN and let f : R ~ R be defined by /(x) := x" for x ~ 0 and f(x) := 0 for x < 0. For 
which values of n is /' continuous at 0? For which values of n is f' differentiable at 0? 

7. Suppose that f: R ~ R is differentiable at c and that /(c)= 0. Show that g(x) := 1/(x)l is 
differentiable at c if and only iff' (c) = 0. 

8. Determine where each of the following functions from R to R is differentiable and find the 
derivative: 
(a) /(x) := lxl + lx + 11, 
(c) h(x) := xlxl, 

(b) g(x) := 2x + lxl, 
(d) k(x) := I sinxl, 

9. Prove that iff: R ~ R is an even function [that is, /(-x) = f(x) for all x e R] and bas a 
derivative at every point, then the derivative/' is an odd function [that is, f'(-x) =- f'(x) 
for all x e R]. Also prove that if g : R ~ 1R is a differentiable odd function, then g' is an even 
function. 

10. Let g : R ~ 1R be defined by g(x) := x 2 sin(lfx2
) for x :f: 0, and g(O) := 0. Show that g is 

differentiable for all x e R. Also show that the derivative g' is not bounded on the interval 
[-1, 1]. 

11. Assume that there exists a function L : (0, oo) ~ 1R such that L'(x) = 1/x for x > 0. Calculate 
the derivatives of the following functions: 
(a) /(x) := L(2x + 3) for x > 0, (b) g(x) := (L(x2))3 for x > 0, 

(c) h(x) := L(ax) for a > 0, x > 0, (d) k(x) := L(L(x)) when L(x) > 0, x > 0. 

12. H r > 0 is a rational number, let f: 1R ~ 1R be defined by /(x) := x' sin(l/x) for x :f: 0, and 
f (0) := 0. Determine those values of r for which /' (0) exists. 

13. Iff: R ~ R is differentiable at c e R, show that 

/'(c) =lim (n{/(c + 1/n)- /(c)}). 

However, show by example that the existence of the limit of this sequence does not imply the 
existence of f' (c). 

14. Given that the function h(x) := x 3 + 2x + 1 for x e R has an inverse h- 1 on R, find the value 
of (h - 1 )' (y) at the points corresponding to x = 0, 1, -1. 

IS. Given that the restriction of the cosine function cos to I := [0, 1r] is strictly decreasing and 
that cos 0 = 1, cos 1Z' = -1, let J : = [ -1, 1 ], and let Arccos: J ~ R be the function inverse 
to the restriction of cos to I. Show that Arccos is differentiable on ( -1, 1) and D Arccos y = 
( -1) 1 ( 1 - y2) 

112 for y e ( -1, 1). Shovy that Arccos is not differentiable at -1 and 1. 

16. Given that the restriction of the tangent function tan to I := ( -1Z' /2, 1r /2) is strictly increasing 
and that tan(/) = R, let Arctan: R ~ R be the function inverse to the restriction of tan to I. 
Show that Arctan is differentiable on R. and that D Arctan(y) = ( 1 + y2) -• for y e R. 

17. Let f : I ~ R be differentiable at c e /. Establish the Straddle Lemma: Given e > 0 there 
exists &(e)> 0 such that if u, v e I satisfy c- &(e)< u ~ c ~ v < c +&(e), then we have 
1/(v)- f(u)- (v- u)/'(c)l ~ e(v- u). [Hint: The &(e) is given by Definition 6.1.1. Sub
tract and add the tenn /(c)- cf'(c) on the left side and use the Triangle Inequality.] 
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Section 6.2 The Mean Value Theorem 

The Mean Value Theorem, which relates the values of a function to values of its derivative, 
is one of the most useful results in real analysis. In this section we will establish this 
important theorem and sample some of its many consequences. 

We begin by looking at the relationship between the relative extrema of a function 
and the values of its derivative. Recall that the function f : I -+ 1R is said to have a 
relative maximum [respectively, relative minimum] at c e I if there exists a neighborhood 
V := V8(c) of c such that f(x) ::; /(c) [respectively, /(c) ::; f(x)] for all x in V n I. We 
say that f has a relative extremum at c e I if it has either a relative maximum or a relative 
minimum at c. 

The next result provides the theoretical justification for the familiar process of finding 
points at which f has relative extrema by examining the zeros of the derivative. However, 
it must be realized that this procedure applies only to interior points of the interval. For 
example, if f(x) := x on the interval I := [0, 1], then the endpointx = 0 yields the unique 
relative minimum and the endpoint x = 1 yields the unique maximum off on I, but neither 
point is a zero of the derivative of f. 

6.2.1 Interior Extremum Theorem Let c be an interior point of the interval I at which 
f: I-+ 1R has a relative extremum. If the derivative off at c exists, then f'(c) = 0. 

Proof. We will prove the result only for the case that f has a relative maximum at c; the 
proof for the case of a relative minimum is similar. 

If /'(c) > 0, then by Theorem 4.2.9 there exists a neighborhood V c I of c such that 

f(x)- /(c) > 0 for x e V, x =I= c. 
x-c 

If x e V and x > c, then we have 

f(x)- /(c)= (x- c)· f(x)- /(c) > 0. 
x-c 

But this contradicts the hypothesis that f has a relative maximum at c. Thus we cannot 
have /'(c) > 0. Similarly (how?), we cannot have /'(c) < 0. Therefore we must have 
/'(c)= 0. Q.E.D. 

6.2.2 CoroUacy Let f: I -+ 1R be continuous on an interval I and suppose that f has a 
relative extremum at an interior point c of I. Then either the derivative off at c does not 
exist, or it is equal to zero. 

Wenotethatif/(x) := lxlonl := [-1, 1],thenfhasaninteriorminimumatx =0; 
however, the derivative of f fails to exist at x = 0. 

6.2.3 Rolle's Theorem Suppose that f is continuous on a closed interval I := [a, b ], that 
the derivative!' exists at every point of the open interval (a, b), and that f(a) = f(b) = 0. 
Then there exists at least one point c in (a, b) such that f' (c) = 0. 

Proof. Iff vanishes identically on I, then any c in (a, b) will satisfy the conclusion of 
the theorem. Hence we suppose that I does not vanish identically; replacing I by - f 
if necessary, we may suppose that I assumes some positive values. By the Maximum
Minimum Theorem 5.3.4, the function f attains the value sup{l(x): x e I}> 0 at some 
point c in I. Since /(a)= f(b) = 0, the point c must lie in (a, b); therefore /'(c) exists. 
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c b 

Figure 6.2.1 Rolle's Theorem 

Since f has a relative maximum at c, we conclude from the Interior Extremum Theorem 
6.2.1 that /'(c)= 0. (See Figure 6.2.1.) Q.E.D. 

As a consequence of Rolle's Theorem, we obtain the fundamental Mean Value 
Theorem. 

6.2:4 Mean Value Theorem Suppose that f is continuous on a closed interval I:= 
[a, b], and that f has a derivative in the open interval (a, b). Then there exists at least one 
point c in (a, b) such that 

f(b)- f(a) = f'(c)(b- a). 

Proof. Consider the function tp defined on I by 

q~(x) := /(x) - /(a) - f(b~ =~(a) (x -a). 

[The function tp is simply the difference off and the function whose graph is the line 
segment joining the points (a, f(a)) and (b, f(b)); see Figure 6.2.2.] The hypotheses of 

Q b 

Figure 6.2.2 The Mean Value Theorem 
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Rolle's Theorem are satisfied by({) since({) is continuous on [a, b], differentiable on (a, b), 
and qJ(a) = qJ(b) = 0. Therefore, there exists a point c in (a, b) such that 

0 _ '( ) _ /'( ) /(b)- f(a) 
-({) c- c- b-a . 

Hence, f(b)- f(a) = f'(c)(b- a). Q.E.D. 

Remark The geometric view of the Mean Value Theorem is that there is some point on 
the curve y = f (x) at which the tangent line is parallel to the line segment through the 
points (a, f(a)) and (b, /(b)). Thus it is easy to remember the statement of the Mean 
Value Theorem by drawing appropriate diagrams. While this should not be discouraged, 
it tends to suggest that its importance is geometrical in nature, which is quite misleading. 
In fact the Mean Value Theorem is a wolf in sheep's clothing and is the Fundamental 
Theorem of Differential Calculus. In the remainder of this section, we will present some of 
the consequences of this result. Other applications will be given later. 

The Mean Value Theorem permits one to draw conclusions about the nature of a 
function f from information about its derivative f'. The following results are obtained in 
this manner. 

6.2.5 Theorem Suppose that f is continuous on the closed interval I :=[a, b], that f 
is differentiable on the open interval (a, b), and that f'(x) = 0 for x e (a, b). Then f is 
constant on I. 

Proof. We will show that f (x) = f (a) for all x e I. Indeed, if x e I, x > a, is given, 
we apply the Mean Value Theorem to f on the closed interval [a, x]. We obtain a point c 
(depending onx) between a andx such that f(x)- f(a) = f'(c)(x- a). Since /'(c) = 0 
(by hypothesis), we deduce that f(x)- f(a) = 0. Hence, f(x) = f(a) for any x e I. 

Q.E.D. 

6.2.6 Corollary Suppose that f and g are continuous on I :=[a, b], that they are dif
ferentiable on (a. b), and that f'(x) = g'(x) for all x e (a, b). Then there exists a constant 
C such that f = g + C on I. 

Recall that a function f : I ~ 1R is said to be increasing on the interval I if whenever 
x 1, x 2 in I satisfy x 1 < x2, then f (x 1) ~ f (x2). Also recall that f is decreasing on I if the 
function - f is increasing on I. 

6.2. 7 Theorem Let f: I ~ 1R be differentiable on the interval I. Then: 

(a) f is increasing on I if and only iff' (x) :::: 0 for all x e I. 

(b) f is decreasing on I if and only if!' (x) ~ 0 for all x e I. 

Proof. (a) Suppose that f'(x):::: 0 for all x e I. If xl' x2 in I satisfy x1 < x2, then we 
apply the Mean Value Theorem to f on the closed interval J := [x 1, x2] to obtain a point 
c in (x 1, x2 ) such that 
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Since /'(c) ~ 0 and x2 - x 1 > 0, it follows that /(x2)- f(x 1) ~ 0. (Why?) Hence, 
f (x 1) :::: f (x2) and, since x 1 < x2 are arbitrary points in I, we conclude that f is in
creasing on /. 

For the converse assertion, we suppose that f is differentiable and increasing on /. 
Thus, for any point x :f: c in/, we have (/(x)- /(c))/(x- c)~ 0. (Why?) Hence, by 
Theorem 4.2.6 we conclude that 

/'(c)= lim /(x)- /(c) ~ 0. 
x~c X-C 

(b) The proof of part (b) is similar and will be omitted. Q.E.D. 

A function f is said to be strictly increasing on an interval/ if for any points x 1, x2 in 

I such thatx1 < x2 , we have f(x1) < f(x2 ). An argument along the same lines of the proof 
of Theorem 6.2. 7 can be made to show that a function having a strictly positive derivative on 

an interval is strictly increasing there. (See Exercise 13.) However, the converse assertion 

is not true, since a strictly increasing differentiable function may have a derivative that 

vanishes at certain points. For example, the function f: R--+ R defined by f(x) := x 3 is 
strictly increasing on R, but f' (0) = 0. The situation for strictly decreasing functions is 
similar. 

Remark It is reasonable to define a function to be increasing at a point if there is a 

neighborhood of the point on which the function is increasing. One might suppose that, 
if the derivative is strictly positive at a point, then the function is increasing at this point. 
However, this supposition is false; indeed, the differentiable function defined by 

g(x) := { x
0 

+ 2x
2 

sin(l/x) if x :f: 0, 
if X= 0, 

is such that g' (0) = I, yet it can be shown that g is not increasing in any neighborhood of 

x = 0. (See Exercise 10.) 

We next obtain a sufficient condition for a function to have a relative extremum at an 

interior point of an interval. 

6.2.8 First Derivative Test for Extrema Let f be continuous on the interval/ :=[a, b] 
and let c be an interior point of I. Assume that f is differentiable on (a, c) and (c, b). Then: 

(a) H there is a neighborhood (c- 8, c + 8) c I such that f'(x) ~ 0 for c- 8 < x < c 
and f' (x) :::: 0 for c < x < c + 8, then f has a relative maximum at c. 

(b) If there is a neighborhood (c- 8, c + 8) c I such that f'(x):::: 0 for c- 8 < x < c 
and f' (x) > 0 for c < x < c + 8, then f has a relative minimum at c. 

Proof. (a) If x e (c- 8, c), then it follows from the Mean Value Theorem that there 

exists a point ex E (x, c) such that /(c)- f(x) = (c- x)f'(cx>· Since /'(ex) > 0 we 
infer that f(x) :::: f(c) for x e (c- 8, c). Similarly, it follows (how?) that f(x) :::: /(c) 
for x e (c, c + 8). Therefore f(x) :::: /(c) for all x e (c- 8, c + 8) so that f has a relative 

maximum at c. 
(b) The proof is similar. Q.E.D. 

Remark The converse of the First Derivative Test 6.2.8 is not true. For example, there 

exists a differentiable function f : 1R --+ R with absolute minimum at x = 0 but such that 
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I' takes on both positive and negative values on both sides of (and arbitrarily close to) 
x = 0. (See Exercise 9.) 

Further Applications of the Mean Value Theorem -----------

We will continue giving other types of applications of the Mean Value Theorem; in doing 
so we will draw more freely than before on the past experience of the reader and his or her 
knowledge concerning the derivatives of certain well-known functions. 

6.2.9 Examples (a) Rolle's Theorem can be used for the location of roots of a function. 
For, if a function g can be identified as the derivative of a function I, then between any two 
roots of I there is at least one root of g. For example, let g (x) : = cos x, then g is known to 
be the derivative of I (x) := sin x. Hence, between any two roots of sin x there is at least 
one root of cosx. On the other hand, g'(x) =- sinx =-l(x), so another application of 
Rolle's Theorem tells us that between any two roots of cos there is at least one root of sin. 
Therefore, we conclude that the roots of sin and cos interlace each other. This conclusion 
is probably not news to the reader; however, the same type of argument can be applied to 
the Bessel functions Jn of order n = 0, 1, 2, · · · by using the relations 

[x" Jn(x)]' = x" Jn-1 (x), [xn-1 Jn(x)]' = -x-n Jn+1 (x) 

The details of this argument should be supplied by the reader. 

for x > 0. 

(b) We can apply the Mean Value Theorem for approximate calculations and to obtain 
error estimates. For example, suppose it is desired to evaluate .J'i05. We employ the Mean 
Value Theorem with l(x) := ..ji, a = 100, b = 105, to obtain 

for some number c with 100 < c < 105. Since 10 < ../C < .J'i05 < v'i2I = 11, we can 
assert that 

5 5 
2(11) < .J'i05- 10 < 2(10)' 

whence it follows that 10.2272 < .J'i05 < 10.2500. This estimate may not be as sharp as 
desired. It is clear that the estimate ../C < .J'i05 < v'i2I was wasteful and can be improved 
by making use of our conclusion that .J'i05 < 10.2500. Thus, Jc < 10.2500 and we easily 
determine that 

5 
0.2439 < 2( 1 0.2500) < .J'i05 - 10. 

Our improved estimate is 10.2439 < .J'i05 < 10.2500. 0 

mequatities ------------------------------
One very important use of the Mean Value Theorem is to obtain certain inequalities. 
Whenever information concerning the range of the derivative of a function is available, this 
information can be used to deduce certain properties of the function itself. The following 
examples illustrate the valuable role that the Mean Value Theorem plays in this respect. 
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6.2.10 Examples (a) The exponential function f(x) :=ex has the derivative /'(x) = 
ex for all x e JR. Thus f' (x) > 1 for x > 0, and /' (x) < 1 for x < 0. From these relation
ships, we will derive the inequality 

(1) for x e JR, 

with equality occurring if and only if x = 0. 
H x = 0, we have equality with both sides equal to 1. H x > 0, we apply the Mean 

Value Theorem to the function f on the interval [0, x]. Then for some c with 0 < c < x 
we have 

r- e0 = ec(x- 0). 

Since e0 = 1 and ec > 1, this becomes ex - 1 > x so that we have ex > 1 + x for x > 0. 
A similar argument establishes the same strict inequality for x < 0. Thus the inequality ( 1) 
holds for all x, and equality occurs only if x = 0. 

(b) The function g (x) : = sin x has the derivative g' (x) = cos x for all x e IR. On the basis 
of the fact that -1 < cos x ~ 1 for all x e 1R, we will show that 

(2) - x < sin x ~ x for all x ~ 0. 

Indeed, if we apply the Mean Value Theorem to g on the interval [0, x ], where x > 0, we 
obtain 

sinx- sinO= (cosc)(x- 0) 

for some c between 0 and x. Since sin 0 = 0 and -I ~ cos c ~ I, we have - x ~ sin x ~ x. 
Since equality holds at x = 0, the inequality (2) is established. 
(c) (Bernoulli's inequality) H a > I, then 

(3) (1 +x)a ~I +ax for all x > -1, 

with equality if and only if x = 0. 
This inequality was established earlier, in Example 2.1.13( c), for positive integer 

values of a by using Mathematical Induction. We now derive the more general version by 
employing the Mean Value Theorem. 

If h(x) := (1 + x)a then h' (x) = a(1 + x)a-t for all x > -1. [For rational a this 
derivative was established in Example 6.1.10(c). The extension to irrational will be dis
cussed in Section 8.3.] H x > 0, we infer from the Mean Value Theorem applied to h on 
the interval [0, x] that there exists c with 0 < c < x such that h(x)- h(O) = h'(c)(x- 0). 
Thus, we have 

(1 + x)a- 1 = a(1 + c)a-lx. 

Since c > 0 and a - 1 > 0, it follows that (1 + c)a-l > 1 and hence that (1 + x)a > 
1 +ax. H -1 < x < 0, a similar use of the Mean Value Theorem on the interval [x, 0] 
leads to the same strict inequality. Since the case x = 0 results in equality, we conclude 
that (3) is valid for all x > -1 with equality if and only if x = 0. 
(d) Let a be a real number satisfying 0 < a < 1 and let g(x) =ax - xa for x ~ 0. 
Then g'(x) = a(l- xa-1

), so that g'(x) < 0 for 0 < x < 1 and g'(x) > 0 for x > 1. 
Consequently, if x > 0, then g(x) ~ g(1) and g(x) = g(1) if and only if x = 1. Therefore, 
if x > 0 and 0 < a < 1, then we have 

xa ~ ax + (1 -a). 
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H a > 0 and b > 0 and if we let x = ajb and multiply by b, we obtain the inequality 

aabl-a ::: aa + (1 - a)b, 

where equality holds if and only if a= b. 0 

The Intermediate Value Property of Derivatives ------------

We conclude this section with an interesting result, often referred to as Darboux's Theorem. 
It states that if a function f is differentiable at every point of an interval I, then the function 
f' has the Intermediate Value Property. This means that if f' takes on values A and B, then 
it also takes on all values between A and B. The reader will recognize this property as one of 
the important consequences of continuity as established in Theorem 5.3.7. It is remarkable 
that derivatives, which need not be continuous functions, also possess this property. 

6.2.11 Lemma Let I c IR be an interval, let f: I~ JR, let c e I, and assume that f 
has a derivative at c. Then: 

(a) If f'(c) > 0, then there is a numberB > 0 such that f(x) > f(c) for x e I such that 
c < x < c+B. 
(b) If f'(c) < 0, then there is a numberB > 0 such that f(x) > f(c) for x e I such that 
c- B <X< c. 

Proof. (a) Since 

1
. f(x)- f(c) _ /'( ) 

0 1m - C>, 
X-+C X- c 

it follows from Theorem 4.2.9 that there is a number B > 0 such that if x e I and 0 < 
lx - c I < B, then 

f(x)- f(c) > O. 
x-c 

If x e I also satisfies x > c, then we have 

f(x)- f(c) = (x- c)· f(x)- f(c) > 0. 
x -c 

Hence, if x e I and c < x < c + B, then f(x) > f(c). 
The proof of (b) is similar. · Q.E.D. 

6.2.12 Darboux's Theorem If f is differentiable on I = [a, b] and if k is a number 
between f' (a) and f' (b), then there is at least one point c in (a, b) such that !' (c) = k. 

Proof. Suppose that /'(a) < k < f'(b). We define g on I by g(x) := kx- f(x) for 
x e I. Since g is continuous, it attains a maximum value on I. Since g' (a) = k - !'(a) > 0, 
it follows from Lemma 6.2.11 (a) that the maximum of g does not occur at x = a. Similarly, 
since g'(b) = k -· f'(b) < 0, it follows from Lemma 6.2.11(b) that the maximum does not 
occur at x = b. Therefore, g attains its maximum at some c in (a, b). Then from Theorem 
6.2.1 we have 0 = g'(c) = k- /'(c). Hence, /'(c)= k. Q.E.D. 

6.2.13 Example The function g: [ -1, 1] ~ 1R defined by 

I 1 for 0 < x ~ 1, 
g(x) := 0 for x = 0, 

-1 for - 1 ~ x < 0, 
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(which is a restriction of the signum function) clearly fails to satisfy the intermediate value 
property on the interval [ -1, 1]. Therefore, by Darboux's Theorem, there does not exist a 
function f such that f' (x) = g (x) for all x e [ -1, 1]. In other words, g is not the derivative 
on [ -1, 1] of any function. · D 

Exercises for Section 6.2 

1. For each of the following functions on 1R to R, find points of relative extrema, the intervals on 
which the function is increasing, and those on which it is decreasing: 
(a) l(x) := x 2 - 3x + 5, (b) g(x) := 3x- 4x2

, 

(c) h(x) := x 3 - 3x - 4, (d) k(x) := x 4 + 2x2 
- 4. 

2. Find the points of relative extrema, the intervals on which the following functions are increasing, 
and those on which they are decreasing: 
(a) l(x) := x + 1/x for x :F 0, 
(c) h(x) := ,JX- 2Jx + 2 for x > 0, 

(b) g(x) := xf(x2 + 1) for x e 1R, 
(d) k(x) := 2x + 1/x2 for x :F 0. 

3. Find the points of relative extrema of the following functions on the specified domain: 
(a) l(x) := lx2

- 11 for -4 !S x !S 4, (b) g(x) := 1- (x- 1)2
/
3 for 0 !S x !S 2, 

(c) h(x) := xlx2 - 121 for -2 !S x !S 3, (d) k(x) := x(x- 8) 113 for 0 !S x !S 9. 

4. Let a 1, a2 , • • • , an be real numbers and let I be defined on R by 
n 

f(x) := L<a;- x)2 for x e R. 
i=l 

Find the unique point of relative minimum for f. 
5. Let a > b > 0 and let n eN satisfy n ~ 2. Prove that a 11n- b 1fn < (a- b) 1fn. [Hint: Show 

that f(x) := x 1fn- (x- 1) 1/n is decreasing for x ~ 1, and evaluate fat 1 and afb.] 

6. Use the Mean Value Theorem to prove that I sin x - sin y I !S lx - y I for all x, y in JR. 

7. Use the Mean Value Theorem to prove that (x- 1)/x < lnx < x- 1 for x > 1. [Hint: Use the 
fact that D lnx = 1/x for x > 0.] 

8. Let I: [a, b] -+ JR be continuous on [a, b] and differentiable in (a, b). Show that if lim /' (x) = 
x-a 

A, then /'(a) exists and equals A. [Hint: Use the definition of /'(a) and the Mean Value 
Theorem.] 

9. Let f : R-+ R be defined by f(x) := 2x"' + x 4 sin(l/x) for x :F 0 and /(0) := 0. Show that 
f has an absolute minimum at x = 0, but that its derivative has both positive and negative values 
in every neighborhood of 0. 

10. Let g: JR-+ JR be defined by g(x) := x + 2x2 sin(l/x) for x :f: 0 and g(O) := 0. Show that 
g' (0) = 1, but in every neighborhood of 0 the derivative g' (x) takes on both positive and 
negative values. Thus g is not monotonic in any neighborhood of 0. 

11. Give an example of a uniformly continuous function on [0, 1] that is differentiable on (0, 1) but 
whose derivative is not bounded on (0, 1). 

12. Ifh(x) := Oforx < Oandh(x) := 1 forx ~ O,provetheredoesnotexistafunctionl: R-+ R 
such that I' (x) = h (x) for all x e JR. Give examples of two functions, not differing by a constant, 
whose derivatives equal h (x) for all x :f: 0. 

13. Let I be an interval and let I : I -+ R be differentiable on I. Show that if I' is positive on I, 
then I is strictly increasing on I. 

14. Let I be an interval and let f : I -+ R be differentiable on I. Show that if the derivative I' is 
never 0 on I, then either /'(x) > 0 for all x e I or /'(x) < 0 for all x e I. 
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15. Let I be an interval. Prove that iff is differentiable on I and if the derivative f' is bounded on 
I, then f satisfies a Lipschitz condition on I. (See Definition 5.4.4.) 

16. Let f: [0, oo)---+ 1R be differentiable on (0, oo) and assume that f'(x)---+ bas x ---+ oo. 

(a) Show that for any h > 0, we have lim (t<x +h)- f(x))! h =b. 
x-oo 

(b) Show that if f (x) ---+ a as x ---+ oo, then b = 0. 

(c) Show that lim (f(x)fx) =b. 
x-oo 

17. Let f, g be differentiable on 1R and suppose that f (0) = g (0) and f' (x) ~ g' (x) for all x ~ 0. 
Show that f(x) ~ g(x) for all x ~ 0. 

18. Let I :=[a, b) and let f: I ---+ 1R be differentiable at c e I. Show that for every£ > 0 there 
exists S > 0 such that if 0 < lx - y I < S and a ~ x ~ c ~ y ~ b, then 

I 
f(x)- f(y) - f'(c)l < £. 

x-y 

19. A differentiable function f : I ---+ 1R is said to be uniformly differentiable on I := [a, b] if for 
every e > 0 there exists S > 0 such that if 0 < lx - y I < S and x, y e I, then 

I 
f(x)- f(y) - f'(x)l < £. 

x-y 

Show that if f is uniformly differentiable on I, then f' is continuous on I. 

20. Suppose that f : [0, 2] ---+ 1R is continuous on [0, 2] and differentiable on (0, 2), and that 
/(0) = 0, j(l) = 1, /(2) = 1. 
(a) Show that there exists c1 e (0, 1) such that f'(c 1) = 1. 
(b) Show that there exists c2 e (1, 2) such that f' (c2) = 0. 
(c) Show that there exists c e (0. 2) such that f' (c) = 1/3. 

Section 6.3 L'Hospital's Rules 

The Marquis Guillame Fran~ois L' Hospital ( 1661-1704) was the author of the first calculus 
book, L 'Analyse des infiniment petits, published in 1696. He studied the then new differential 
calculus from Johann Bernoulli (1667-1748), first when Bernoulli visited L'Hospital's 
country estate and subsequently through a series of letters. The book was the result of 
L'Hospital's studies. The limit theorem that became known as L'Hospital's Rule first 
appeared in this book, though in fact it was discovered by Befl\oulli. 

The initial theorem was refined and extended, and the various results are collectively 
referred to as L'Hospital's (or L'Hopital's) Rules. In this section we establish the most basic 
of these results and indicate how others can be derived. 

Indeterminate Forms 

In the preceding chapters we have often been concerned with methods of evaluating limits. 
It was shown in Theorem 4.2.4(b) that if A:= lim f(x) and B :=lim g(x), and if B :1= 0, 

x~c x~c 

then 

lim f(x) =A. 
x~c g(x) B 

However, if B = 0, then no conclusion was deduced. It will be seen in Exercise 2 that if 
B = 0 and A :1= 0, then the limit is infinite (when it exists). 

The case A = 0, B = 0 has not been covered previously. In this case, the limit of the 
quotient f 1 g is said to be "indeterminate". We will see that in this case the limit may 
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not exist or may be any real value, depending on the particular functions f and g. The 
symbolism 0/0 is used to refer to this situation. For example, if a is any real number, and 
if we define f(x) :=ax and g(x) := x, then 

I
. /(x) 

1
. ax 

1
. 

1m--= 1m-= tma =a. 
x-+0 g(x) x-+0 X x-+0 

Thus the indeterminate form 0/0 can lead to any real number a as a limit. 
Other indeterminate forms are represented by the symbols oojoo, 0 · oo, 0°, 100

, oo0, 

and oo - oo. These notations correspond to the indicated limiting behavior and juxtaposi
tion of the functions f and g. Our attention will be focused on the indeterminate forms 0/0 
and oojoo. The other indeterminate cases are usually reduced to the form 0/0 or oojoo by 
taking logarithms, exponentials, or algebraic manipulations. 

A Preliminary Result ---------------------

To show that the use of differentiation in this context is a natural and not surprising 
development, we first establish an elementary result that is based simply on the definition 
of the derivative. 

6.3.1 Theorem Let f and g be defined on [a, b], let f(a) = g(a) = 0, and let g(x) '# 0 
for a < x < b. Iff and g are differentiable at a and if g' (a) '# 0, then the limit off I g at 
a exists and is equal to f'(a)/g'(a). Thus 

lim f(x) = /'(a). 
x-+a+ g(x) g'(a) 

Proof. Since f(a) = g(a) = 0, we can write the quotient f(x)/g(x) for a < x <bas 
follows: 

f(x)- f(a) 

f(x) = f(x)- f(a) _ __ x _-_a_ 
g(x) g(x)- g(a) g(x)- g(a) · 

x-a 

Applying Theorem 4.2.4(b ), we obtain 

f(x)- f(a) 

lim f(x) = x~~+ x- a = /'(a). 
x-+a+ g(x) lim g(x)- g(a) g'(a) 

Q.E.D. 

x-+a+ X- a 

Warning The hypothesis that /(a) = g(a) = 0 is essential here. For example, if f(x) := 
x + 17 and g(x) := 2x + 3 for x e 1R, then 

lim /(x) = 17 , while /'(O) - ! 
x-+0 g(x) 3 g'(O) - 2 · 

The preceding result enables us to deal with limits such as 

limx
2
+x =2·0+1 =!. 

'x-+O sin2x 2cos0 2 

To handle limits where f and g are not differentiable at the point a, we need a more general 
version of the Mean Value Theorem due to Cauchy. 
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6.3.2 Cauchy Mean Value Theorem Let f and g be continuous on [a, b] and differen
tiable on (a, b), and assume that g'(x) :1: 0 for all x in (a, b). Then there exists c in (a, b) 
such that 

f(b)- f(a) /'(c) 
=-,-. 

g(b) - g(a) g (c) 

Proof. As in the proof of the Mean Value Theorem, we introduce a function to which 
Rolle's Theorem will apply. First we note that since g'(x) :/: 0 for all x in (a, b), it follows 
from Rolle's Theorem that g(a) :/: g(b). For x in [a, b], we now define 

f(b)- f(a) 
h(x) := g(b) _ g(a) (g(x)- g(a)) - (f(x)- f(a) ). 

Then his continuous on [a, b], differentiable on (a, b), and h(a) = h(b) = 0. Therefore, 
it follows from Rolle's Theorem 6.2.3 that there exists a point c in (a, b) such that 

0 = h'(c) = f(b)- f(a) g'(c)- /'(c). 
g(b)- g(a) 

Since g'(c) :/; 0, we obtain the desired result by dividing by g'(c). Q.E.D. 

Remarks The preceding theorem has a geometric interpretation that is similar to that of 
the Mean Value Theorem 6.2.4. The functions f and g can be viewed as determining a curve 
in the plane by means of the parametric equations x = f(t), y = g(t) where a ~ t ~b. 
Then the conclusion of the theorem is that there exists a point (f(c), g(c)) on the curve for 
some c in (a, b) such that the slope g' (c) If' (c) of the line tangent to the curve at that point 
is equal to the slope of the line segment joining the endpoints of the curve. 

Note that if g(x) = x, then the Cauchy Mean Value Theorem reduces to the Mean 
Value Theorem 6.2.4. 

L'Hospital's Rule, I ----------------------

We will now establish the first of L'Hospital's Rules. For convenience, we will consider 
right-hand limits at a point a; left-hand limits, and two-sided limits are treated in exactly the 
same way. In fact, the theorem even allows the possibility that a= -oo. The reader should 
observe that, in contrast with Theorem 6.3.1, the following result does not assume the 
differentiability of the functions at the point a. The result asserts that the limiting behavior 
of f(x)fg(x) as x-+ a+ is the same as the limiting behavior of f'(x)/g'(x) as x -+a+, 
including the case where this limit is infinite. An important hypothesis here is that both f 
and g approach 0 as x -+ a+. 

6.3.3 L'Hospital's Rule, I Let -oo ~ a < b ~ oo and let f, g be differentiable on (a, b) 
such that g' (x) :1: 0 for all x e (a, b). Suppose that 

(1) lim f(x) = 0 = lim g(x). 
x-+a+ x-+a+ 

(a) If lim /'(x) = L e JR, then lim f(x) = L. 
x-+a+ g' (x) x-+a+ g (x) 

. f'(x) . f(x) 
(b) If lim -,- = L e {-oo, oo}, then lim - = L. 

x-+a+ g (x) x-+a+ g (x) 
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Proof. If a <a < f3 < b, then Rolle's Theorem implies that g(/3) :f:. g(a). Further, by 
the Cauchy Mean Value Theorem 6.3.2, there exists u e (a, /3) such that 

(2) 
/(/3)- f(a) f'(u) 

g(/3)- g(a) = g'(u) · 

Case (a): If L e IR and if e > 0 is given, there exists c e (a, b) such that 

f'(u) 
L - e < -- < L + e for u e (a, c), 

g'(u) 

whence it follows from (2) that 

(3) L f(/3)- /(a) L + -e < < e 
g(/3)- g(a) 

If we take the limit in (3) as a ~ a+, we have 

L- e < /(/3) < L + e 
- g(/3) -

Since e > 0 is arbitrary, the assertion follows. 

for a < a < f3 < c. 

for f3 e (a, c]. 

Case (b): If L = +oo and if M > 0 is given, there exists c e (a, b) such that 

f'(u) 
-->M 
g'(u) 

for u e (a, c), 

whence it follows from (2) that 

(4) /(/3)- /(a) > M 
g(/3)- g(a) 

for a < a < f3 < c. 

If we take the limit in (4) as a ~ a+, we have 

/(/3) > M 
g(/3) -

for f3 e (a, c). 

Since M > 0 is arbitrary, the assertion follows. 
If L = -oo, the argument is similar. 

6.3.4 Examples (a) We have 

li sinx lim [ cosx ] 1. r.: m -- = = 1m 2-vxcosx = 0. 
x-+0+ Jx x-+0+ 1/ (2-Ji) x-+0+ 

Q.E.D. 

Observe that the denominator is not differentiable at x = 0 so that Theorem 6.3.1 
cannot be applied. However f(x) := sinx and g(x) := Jx are differentiable on (0, oo) 
and both approach 0 as x ~ 0+. Moreover, g' (x) :f:. 0 on (0, oo ), so that 6.3.3 is applicable. 

. [ 1 - cos x ] . sin x 
(b) We have lim 2 = lim 2x . 

x-+0 x x-+0 

We need to consider both left and right hand limits here. The quotient in the second 
limit is again indeterminate in the form 0/0. However, the hypotheses of 6.3.3 are again 
satisfied so that a second application of L' Hospital's Rule is pennissible. Hence, we obtain 

lim [ 1- cosx] =lim sinx =lim cosx = !. 
x-+0 x 2 x-+0 2x x-+0 2 2 
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ex-1 ex 
(c) We have lim = lim - = 1. 

x-+0 X x-+0 1 
Again, both left- and right-hand limits need to be considered. Similarly, we have 

lim = lim = lim- = -. [

ex- 1- X] ex- 1 ex 1 

x-+0 x 2 x-+0 2x x-+0 2 2 

(d) We have lim [ lnx ] = lim (1/x) = 1. 
X-+ I X - 1 X-+ I 1 

0 

L'Hospital's Rule, D --------------------

This Rule is very similar to the first one, except that it treats the case where the denominator 
becomes infinite as x -+ a+. Again we will consider only right-hand limits, but it is possible 
that a= -oc. Left-hand limits and two-sided limits are handled similarly. 

6.3.5 L'Hospital's Rule, D Let -oo ~a < b ~ oo and let f, g be differentiable on 
(a, b) such that g'(x) =F 0 for all x e (a, b). Suppose that 

(5) lim g(x) = ±oo. 
x-+a+ •. 

. f'(x) . f(x) 
(a) If bm -,- = L e 1R, then bm -- = L. 

x-+a+ g (x) x-+a+ g(x) 

. f'(x) . f(x) 
(b) If bm -,- = L e {-oo, oo}, then bm -- = L. 

x-+a+ g (x) x-+a+ g (x) 

Proof. We will suppose that (5) holds with limit oo. 
As before, we have g(fJ) =F g(a) for a, fJ e (a, b), a < fJ. Further, equation (2) in the 

proof of 6.3.3 holds for some u e (a, fJ). 
Case (a): If L e 1R with L > 0 and E > 0 is given, there is c e (a, b) such that (3) in 

the proof of 6.3.3 holds when a <a < fJ ~c. Since g(x)-+ oo, we may also assume that 
g(c) > 0. Taking fJ = c in (3)~ we have 

(6) L - E < f (c) - I (a) < L + E for a e (a, c). 
g(c)- g(a) 

Since g(c)/g(a)-+ 0 as a-+ a+, we may assume that 0 < g(c)/g(a) < 1 for all a e 
(a, c), whence it follows that 

g(a)- g(c) = 
1 

_ g(c) > 
0 

g(a) g(a) 
for a e (a, c). 

If we multiply (6) by (g(a) - g(c))/ g(a) > 0, we have 

(7) (L- E) (1 - g(c)) < f(a) - f(c) < (L +E) (1 - g(c)) . 
g(a) g(a) g(a) g(a) 

Now,sinceg(c)/g(a)-+ Oandf(c)/g(a)-+ Oasa-+ a+,thenforany8with0 < 8 < 1 
there exists d e (a, c) such that 0 < g(c)/ g(a) < 8 and 1/(c)l/ g(a) < 8 for all a e (a, d), 
whence (7) gives 

(8) 
/(a) 

(L- E)(1 - 8)- 8 < g(a) < (L +e)+ 8. 

If we take 8 := min{1, e, e/(ILI + 1)}, it is an exercise to show that 

L - 2e < /(a) < L + 2e 
- g(a) -- . 
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Since E > 0 is arbitrary, this yields the assertion. The cases L = 0 and L < 0 are handled 
similarly. 

Case (b): HL = +oo,letM > 1 begivenandc e (a, b)besuchthatf'(u)lg'(u) > M 
for all u e (a, c). Then it follows as before that 

(9) /(fJ)- /(a) > M for a <a < fJ <c. 
g(fJ)- g(a) 

Since g(x)--+ oo as x --+a+, we may suppose that c also satisfies g(c) > 0, that 
1/(c)llg(a) < 4, and that 0 < g(c)lg(a) < 4 for all a e (a, c). H we take fJ = c in 
(9) and multiply by 1 - g(c)lg(a) > 4, we get 

/(a)- /(c) > M (1- g(c)) > lM 
g(a) g(a) 2 , 

so that 

/(a) > 1M+ f(c) > l(M- 1) 
g(a) 2 g(a) 2 

for a e (a, c). 

Since M > 1 is arbitrary, it follows that lim f(a)lg(a) = oo. 
a-.a+ 

If L = -oo, the argument is similar. Q.E.D. 

6.3.6 Examples (a) We consider lim lnx. 
x-.oo X 

Here /(x) := lnx and g(x) := x on the interval (0, oo). H we apply the left-hand 

. f 6 3 b . I. In x li 1 I x verston o . .5, we o tatn 1m - = m - = 0. 
x-.oo X x-.oo 1 

(b) We consider lim e-x x2. 
x-.oo 

Here we take f(x) := x2 and g(x) :=ex on IR. We obtain 

li x2 li 2x li 2 
m - = m - = m - = 0. 

x-.oo ex x-.oo ex x-.oo ex 

( .d li In sinx 
c) We const er m In . 

x-.0+ X 

Here we take f (x) := In sin x and g (x) := In x on (0, 1r ). H we apply 6.3.5, we obtain 

li 
In sin x li cos xI sin x 1. [ x ] 

m = m = 1m -- · [cosx]. 
x-.0+ In X x-.0+ 1 I X x-.0+ sin X 

Since lim [xI sin x] = 1 and lim cos x = 1, we conclude that the limit under considera-
x-+0+ x-.0+ 

tion equals 1. D 

Other lndetenninate Forms 

Indetenninate fonns such as oo - oo, 0 · oo, 100
, 0°, oo0 can be reduced to the previously 

considered cases by algebraic manipulations and the use of the logarithmic and exponential 
functions. Instead of formulating these variations as theorems, we illustrate the pertinent 
techniques by means of examples. 

6.3.7 Examples (a) Let I := (0, 1r 12) and consider 

lim (.!. - _1 ) 
x-.0+ X sin X ' 
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which has the indeterminate form oo - oo. We have 

1. ( 1 1 ) lim Sin X - X • COS X - 1 
1m - - -.- = . = bm -.-----

x~O+ X SmX x~O+ X SmX x~O+ SmX +X COSX 

= lim -sinx = ~ =O. 
x~O+ 2COSX- X SinX 2 

(b) Let I : = (0, oo) and consider lim x In x, which has the indeterminate form 0 · (-oo). 
x~O+ 

We have 

li In 1. lnx lim 11x . ) 0 m x x = 1m - = = lim (-x = . 
x~O+ x~O+ 1 I X x~O+ -11 x 2 x~O+ 

(c) Let I := (0, oo) and consider lim xx, which has the indeterminate form 0°. 
x~O+ 

We recall from calculus (see also Section 8.3) that xx = ex lnx. It follows from part (b) 
and the continuity of the function y ~ e' at y = 0 that lim xx = e0 = 1. 

x~O+ 

(d) Let I := ( 1, oo) and consider lim ( 1 + 11 x )x, which has the indeterminate form 100
• 

x~oo 

We note that 

(10) 

Moreover, we have 

1. 1 (1 11 
) 1. 

ln(1 + 11x) 
tmxn + x = tm----

x~oo x~oo 11x 

= lim (1 + 11x)-t ( -x-2) = lim 1 = 1. 
x~oo -x-2 x~oo 1 + 11x 

Since y ~ e' is continuous at y = 1, we infer that lim ( 1 + 11 x )x = e. 
x~oo 

(e) Let I := (0, oo) and consider lim (1 + 11x)x, which has the indeterminate form oo0 . 
x~O+ 

In view of formula ( 1 0), we consider 

1. 1 1 1 I ) 
1
. In( 1 + 1 I x) . 1 

1m x n( + x = 1m = hm = 0. 
x~O+ x~O+ 11x x~O+ 1 + 11x 

Therefore we have lim (1 + 11x)x = e0 = 1. 
x~O+ 

Exercises for Section 6.3 

0 

1. Suppose that I and g are continuous on [a, b], differentiable on (a, b), that c e [a, b] and that 
g(x) :1:0 for x e [a, b], x :1: c. Let A:= lim I and B :=lim g. H B = 0, and if lim l(x)/g(x) 

x~c x~c x~c 

exists in R, show that we must have A= 0. [Hint: l(x) = {l(x)/g(x)}g(x).] 

2. In addition to the suppositions of the preceding exercise, let g(x) > 0 for x e [a, b], x :1: c. 

H A> 0 and B = 0, prove that we must have lim l(x)jg(x) == oo. H A< 0 and B = 0, prove 
%~C 

that we must have lim l(x)/g(x) = -oo. 
%~C 

3. Let l(x) := x2 sin(l/x) for 0 < x ~ 1 and 1(0) := 0, and let g(x) := x 2 for x e [0, 1]. Then 
both I and g are differentiable on [0, 1] and g(x) > 0 for x :F 0. Show that lim l(x) = 0 = 

x~o 

lim g (x) and that lim I (x) I g (x) does not exist. 
x~o x~o 
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4. Let f(x) := x 2 for x rational, let /(x) := 0 for x irrational, and let g(x) := sinx for x e R. 
Use Theorem 6.3.1 to show that lim f(x)fg(x) = 0. Explain why Theorem 6.3.3 cannot be 

x-o 
used. 

5. Let f(x) := x 2 sin(l/x) for x :f= 0, let /(0) := 0, and let g(x) := sinx for x e R. Show that 
lim f(x)fg(x) = 0 but that lim f'(x)fg'(x) does not exist. 
x-o x-o 

6. Evaluate the following limits, where the domain of the quotient is as indicated. 

(a) lim In(~+ 1) (0, 7r/2), (b) lim tanx (0, 7r/2), 
x-0+ SID X x-0+ X 

(c) lim lncosx (0,7r/2), (d) lim tanx
3
-x (0,7r/2). 

x-0+ X x-0+ x 

7. Evaluate the following limits: 

1. Arctanx ) (a) 1m ( -oo, oo , 
x-o x 

(0, 00), 

8. Evaluate the following limits: 

li 
lnx 

0 (a) m -
2 

( , oo ), 
x-oo x 

(c) lim x In sinx (0, 1r), 
x-o 

9. Evaluate the following limits: 
(a) lim x2x (0, oo), 

x-0+ 

(c) lim (I+ 3/x)x (0, oo), 
x-oo 

10. Evaluate the following limits: 
(a) lim x lfx (0, oo), 

x-oo 

(b) lim 
1 

2 (0, 1), 
x-o x(lnx) 

3 

d li X 0 ( ) m - ( , oo). 
x-oo ex 

(b) lim In~ (0, 00), 
x-oo .yX 

(d) lim x + lnx (0, oo). 
x-oo X lnx 

(b) lim (I + 3/x)x (0, oo), 
x-o 

(d) lim (! - 1 
) (0, oo). 

x-0+ X Arctan X 

(b) lim (sinx)x (0, 1r), 
x-0+ 

(c) lim xsinx (0, oo), (d) lim (secx- tanx) (0, 7r/2). 
x-0+ x-~n-

11. Let f be differentiable on (0, oo) and suppose that lim {f(x) + f'(x)) = L. Show that 
x-oo 

lim /(x) =Land lim /'(x) = 0. [Hint: f(x) =ex f(x)fex .] 
x-oo x-oo 

tanx 
12. Try to use L'Hospital's Rule to find the limit of -- as x --+ (1r /2)-. Then evaluate directly 

secx 
by changing to sines and cosines. 

Section 6.4 Taylor's Theorem 

A very useful technique in the analysis of real functions is the approximation of functions 
by polynomials. In this section we will prove a fundamental theorem in this area which 
goes back to Brook Taylor (1685-1731), although the remainder term was not provided 
until much later by Joseph-Louis Lagrange (1736-1813). Taylor's Theorem is a powerful 
result that has many applications. We will illustrate the versatility of Taylor's Theorem by 
briefly discussing some of its applications to numerical estimation, inequalities, extreme 
values of a function, and convex functions. 

Taylor's Theorem can be regarded as an extension of the Mean Value Theorem to 
"higher order" derivatives. Whereas the Mean Value Theorem relates the values of a 
function and its first derivative, Taylor's Theorem provides a relation between the values 
of a function and its higher order derivatives. 
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Derivatives of order greater than one are obtained by a natural extension of the dif
ferentiation process. If the derivative / 1 (x) of a function f exists at every point x in an 
interval I containing a point c, then we can consider the existence of the derivative of the 
function / 1 at the point c. In case / 1 has a derivative at the point c, we refer to the resulting 
number as the second derivative of f at c, and we denote this number by /"(c) or by 
t<2>(c). In similar fashion we define the third derivative /"'(c) = t<3>(c), · · ·, and the nth 
derivative t<">(c), whenever these derivatives exist. It is noted that the existence of the nth 
derivative at c presumes the existence of the (n - 1 )st derivative in an interval containing c, 
but we do allow the possibility that c might be an endpoint of such an interval. 

If a function f has an nth derivative at a point x0 , it is not difficult to construct 
an nth degree polynomial P,. such that P,. (x0) = f (x0) and P~"> (x0) = t<"> (x0) for k = 
I, 2, · · ·, n. In fact, the polynomial 

(I) 
• 1 f"(xo> 2 

P,.(x) .= f(x0 ) + f (x0 )(x- x0) + 
2

! (x- x0) 

t<n>(x ) 
+ ... + o (x - Xo)" 

n! 
has the property that it and its derivatives up to order n agree with the function f and its 
derivatives up to order n, at the specified point x0 • This polynomial P,. is called the nth 
Taylor polynomial for fat x0 • It is natural to expect this polynomial to provide a reasonable 
approximation to f for points near x0 , but to gauge the quality of the approximation, it 
is necessary to have information concerning the remainder R,. := f- P,.. The following 
fundamental result provides such information. 

6.4.1 Taylor's Theorem Let n eN, let I :=[a, b], and let f : I--+ 1R be such that f 
and its derivatives / 1

, f", · · ·, t<n> are continuous on I and that t<n+l> exists on (a, b)./f 
x0 E I, then for any x in I there exists a point c between x and x0 such that 

1 !" <xo> 2 
(2) f(x) = f(x0 ) + f (x0 )(x- x0) + 

2
! (x- x0) 

+ ... + t<n>(xo) ( - )" + t<n+l>(c) ( - )n+l 
f X x0 } ) f X Xo • n. (n + . 

Proof. Let x0 and x be given and let J denote the closed interval with endpoints x0 and x. 
We define the function F on J by 

(x- t)" 
F(t) := /(x)- f(t) - (x - t)/1(1)- · · ·- f t<n>(t) 

for t e J. Then an easy calculation shows that we have 

F'(t) =- (x- t)" t<n+l>(t). 
n! 

If we define G on J by 

G(t) := F(t)- ( x t )n+l F(x
0

) 
X -x0 

n. 

fort e J, then G(x0 ) = G(x) = 0. An application of Rolle's Theorem 6.2.3 yields a point 
c between x and x0 such that 

1 1 (x- c)" 
0 = G (c) = F (c) + (n + 1) +I F(x0). 

(x- x0) 11 
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Hence, we obtain 

1 (x- X ) 11+1 

F(x)=--- ° F'(c) 0 n + 1 (x - c )11 

= _1_ (x- Xo)n+l (x -c)" t<n+l>(c) = t<n+l>(c) (x- x )"+I' 
n+l (x-c)" n! (n+1)! 0 

which implies the stated result. Q.E.D. 

We shall use the notation P,. for the nth Taylor polynomial (1) off, and R,. for the 
remainder. Thus we may write the conclusion of Taylor's Theorem as f(x) = P,.(x) + 
R,. (x) where R,. is given by 

(3) 
t<n+l>(c) 

R (x) := (x- x )11+1 

,. (n + 1)! o 

for some point c between x and x0• This formula for R,. is referred to as the Lagrange 
form (or the derivative form) of the remainder. Many other expressions for R,. are known; 
one is in terms of integration and will be given later. (See Theorem 7.3.18.) 

Applications of Taylor's Theorem 

The remainder term R,. in Taylor's Theorem can be used to estimate the error in approx
imating a function by its Taylor polynomial P,.. If the number n is prescribed~ then the 
question of the accuracy of the approximation arises. On the other hand, if a certain accuracy 
is specified, then the question of finding a suitable value of n is germane. The following 
examples illustrate how one responds to these questions. 

6.4.2 Examples (a) Use Taylor's Theorem with n = 2 to approximate V1 + x, 
X> -1. 

We take the function f (x) := ( 1 + x) I/3, the point x0 = 0, and n = 2. Since /' (x) = 
l<1 +x)-213 and /"(x) = l (-j) (1 +x)-513

, we have /'(0) =land /"(0) = -2/9. 
Thus we obtain 

f(x) = P2(x) + R2 (x) = 1 + lx- ~x2 + R2(x), 

where R2(x) = -Ji f"'(c)x 3 = f1 (1 + c)-8
'
3x 3 for some point c between 0 and x. 

For example, if we let x = 0.3, we get the approximation P2 (0.3) = 1.09 for Vf.3. 
Moreover, since c > 0 in this case, then ( 1 + c) -S/3 < 1 and so the error is at most 

5 ( 3 )
3 

1 R2(0.3) ~ 
81 10 

= 
600 

< 0.11 x 10-2 • 

Hence, we have 1Vf.3- 1.091 < 0.5 x 10-2, so that two decimal place accuracy is assured. 

(b) Approximate the number e with error less than 10-s. 
We shall consider the function g(x) := tr and take x0 = 0 and x = 1 in Taylor's 

Theorem. We need to determine n so that 1 R,. ( 1) 1 < 1 o-s. To do so, we shall use the fact 
that g' (X) = tr and the initial bound of tr < 3 for 0 < X < 1. 

Since g' (x) = ex, it follows that g<lc> (x) = ~ for all k e N, and therefore g<k> (0) = 1 
for all k e N. Consequently the nth Taylor polynomial is given by 

x2 x" 
P (x) := 1 + x +- + ... +-11 2! n! 
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and the remainder for x = 1 is given by Rn ( 1) = ec I (n + 1)! for some c satisfying 
0 < c < 1. Since ec < 3, we seek a value of n such that 3/(n + 1)! < lo-s. A calcu
lation reveals that 9! = 362, 880 > 3 x 1 OS so that the value n = 8 will provide the desired 
accuracy; moreover, since 8! = 40, 320, no smaller value of n will be certain to suffice. 
Thus, we obtain 

1 1 
e ~ P.8 ( 1) = 1 + 1 + - + · · · + - = 2. 718 28 

2! 8! 

with error less than 1 o-s. 0 

Taylor's Theorem can also be used to derive inequalities. 

6.4.3 Examples (a) 1 - 4x2 ::=: cosx for all x e lR. 
Use f(x) := cosx and x0 = 0 in Taylor's Theorem, to obtain 

1 
COSX = 1- 2x 2 + R2(x), 

where for some c between 0 and x we have· 

R ( ) _ !"' (c) 3 _ sin c 3 
2 X - 3! X - 6 X • 

If 0 ::=: x ::=: rr, then 0 ::=: c < rr; since c and x 3 are both positive, we have R2 (x) > 0. Also, 
if -rr ::=: x ::=: 0, then -rr ::=: c ::=: 0; since sine and x 3 are both negative, we again have 
R2(x) ~ 0. Therefore, we see that 1 - 4x2 < cosx for lxl ::=: 1r. If lxl ~ 1r, then we have 
1 - 4 x 2 < -3 ::=: cos x and the inequality is trivially valid. Hence, the inequality holds for 
all x e IR. 
(b) For any keN, and for all x > 0, we have 

1 2 1 2k 1 2 1 2k+ 1 
x - 2x + · · · - 2k x < ln(l + x) < x - 2x + · · · + 

2
k + 1 x . 

Using the fact that the derivative of ln(l + x) is 1/(1 + x) for x > 0, we see that the 
nth Taylor polynomial for ln(1 + x) with x0 = 0 is 

1 2 n 11 n 
P (x) = x- -x + · · · + (-1) - -x 

n 2 n 

and the remainder is given by 

R ( ) = (-l)ncn+1 n+l 
nx n+l X 

for some c satisfying 0 < c < x. Thus for any x > 0, if n = 2k is even, then we have 
R2k(x) > 0; and if n = 2k + 1 is odd, then we have R2k+1 (x) < 0. The stated inequality 
then follows immediately. 0 

Relative Extrema -----------------------

It was established in Theorem 6.2.1 that if a function f : I -+ 1R is differentiable at a point 
c interior to the interval I, then a necessary condition for f to have a relative extremum at 
c is that f' (c) = 0. One way to determine whether f has a relative maximum or relative 
minimum [or neither] at c, is to use the First Derivative Test 6.2.8. Higher order derivatives, 
if they exist, can also be used in this determination, as we now show. 
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6.4.4 Theorem Let I be an interval, let x0 be an interior point of I, and let n ~ 2. Suppose 
that the derivatives !', !", · · · , t<n> exist and are continuous in a neighborhood of x0 and 
that f'(x0 ) = · · · = t<n-1>(x0) = 0, but t<n>(x0 ) :1: 0. 

(i) If n is even and t<n> (x0) > 0, then f has a relative minimum at x0 • 

(U) If n is even and t<n> (x0) < 0, then f has a relative maximum at x0 • 

(ill) If n is odd, then f has neither a relative minimum nor relative maximum at x0• 

Proof. Applying Taylor's Theorem at x0 , we find that for x e I we have 

t<n>(c) 
f(x) = Pn_1 (x) + Rn_1 (x) = f(x0) + 

1 
(x- x0)n, 

n. 

where c is some point between x0 and x. Since t<n> is continuous, if t<n> (x0) :F 0, then 
there exists an interval U containing x0 such that t<n> (x) will have the same sign as t<n> (x0) 

for x e U. If x e U, then the point c also belongs to U and consequently t<n>(c) and 
t<n> (x0) will have the same sign. 

(i) Ifnisevenandj<n>(x0) > O,thenforx e Uwehavej<n>(c) > Oand(x -x
0
)n ~ 

0 so that Rn_1 (x) ~ 0. Hence, f(x) ~ f(x0) for x e U, and therefore f has a relative 
minimum at x0 • 

(ii) If n is even and t<n> (x0) < 0, then it follows that Rn_ 1 (x) ::: 0 for x e U, so that 
f (x) ::: f (x0) for x e U. Therefore, f has a relative maximum at x0 • 

(iii) If n is odd, then (x - x0)n is positive if x > x0 and negative if x < x0 . Conse
quently, if x e U, then Rn_1 (x) will have opposite signs to the left and to the right of x0• 

Therefore, f has neither a relative minimum nor a relative maximum at x0 • Q.E.D. 

Convex Functions 

The notion of convexity plays an important role in a number of areas, particularly in the 
modem theory of optimization. We shall briefly look at convex functions of one real variable 
and their relation to differentiation. The basic results, when appropriately modified, can be 
extended to higher dimensional spaces. 

6.4.5 Definition Let I c 1R be an interval. A function f : I -+ 1R is said to be convex 
on I if for any t satisfying 0 ::: t ::: 1 and any points x 1, x2 in I, we have 

f ( (1 - t)x1 + tx2) ::: (1 - t)f(x1) + tf(x2). 

Note that if x 1 < x2, then as t ranges from 0 to 1, the point ( 1 - t )x 1 + t x2 traverses 
the interval from x 1 to x2 • Thus if f is convex on I and if x 1 , x2 e I, then the chord joining 
any two points (x1, /(x1)) and (x2 , /(x2)) on the graph off lies above the graph of f. 
(See Figure 6.4.1.) 

A convex function need not be differentiable at every point, as the example f (x) := lx I, 
x e IR, reveals. However, it can be shown that if I is an open interval and if f : I -+ 
1R is convex on I, then the left and right derivatives of f exist at every point of I. 
As a consequence, it follows that a convex function on an open interval is necessarily 
continuous. We will not verify the preceding assertions, nor will we develop many other 
interesting properties of convex functions. Rather, we will restrict ourselves to establishing 
the connection between a convex function f and its second derivative /", assuming that 
!"exists. 
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Figure 6.4.1 A convex function. 

6.4.6 Theorem Let I be an open interval and let f : I --+ 1R have a second derivative 
on I. Then f is a convex function on I if and only if!" (x) ~ 0 for all x e I. 

Proof. ( =>) We will make use of the fact that the second derivative is given by the limit 

(4) !
"( ) _ 

1
. f(a +h)- 2/(a) + f(a- h) 

a - tm 2 h~o h 

for each a e I. (See Exercise I6.) Given a e I, let h be such that a + h and a - h belong 
to I. Then a = ! ((a + h) + (a - h)), and since f is convex on I, we have 

f(a) = f (!<a+ h)+ !<a- h)) < !f(a +h)+ !f(a- h). 

Therefore, we have f(a +h) - 2f(a) + f(a -h) ~ 0. Since h2 > 0 for all h :1= 0, we see 
that the limit in (4) must be nonnegative. Hence, we obtain f"(a) ~ 0 for any a e I. 

( <=) We will use Taylor's Theorem. Let x 1, x2 be any two points of I, let 0 < t < I, 
and let x0 :=(I - t)x1 + tx2• Applying Taylor's Theorem to fat x0 we obtain a point c1 
between x0 and x 1 such that 

f(x 1) = f(x0) + f'(x0 )(x1 - x0 ) + !f"(c1)(x1 - x0)
2

, 

and a point c2 between x0 and x2 such that 

/(x2) = f(x0) + f'(x0 )(x2 - x0 ) + !J"(c2)(x2 - x0)
2

• 

If /" is nonnegative on I, then the term 

R := !<I - t)/"(c1)(x1 - x0)
2 + !tf"(c2)(x2 - x0)

2 

is also nonnegative. Thus we obtain 

(I- t)f(x1) + tf(x2) = f(x0 ) + f'(x0 ) (<I- t)x1 + tx2 - x0) 

+!<1 - t)f"(c1)(x1 - x0)
2 + !tf"(c2)(x2 - x0)

2 

= f(x0) + R 

> f(x0) = f( (1 - t)x1 + tx2). 

Hence, f is a convex function on I. Q.E.D. 
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Ne~n's~ethod ------------------------------------------------

It is often desirable to estimate a solution of an equation with a high degree of accuracy. The 
Bisection Method, used in the proof of the Location of Roots Theorem 5.3.5, provides one 
estimation procedure, but it has the disadvantage of converging to a solution rather slowly. 
A method that often results in much more rapid convergence is based on the geometric 
idea of successively approximating a curve by tangent lines. The method is named after its 
discoverer, Isaac Newton. 

Let f be a differentiable function that has a zero at r and let x 1 be an initial estimate of r. 
The line tangent to the graph at (x.,f(x1)) has the equation y = f(x 1) + f'(x 1)(x- x 1), 

and crosses the x -axis at the point 

/(xl) 
x2 := xl - /'(xl). 

(See Figure 6.4.2.) If we replace x 1 by the second estimate x2 , then we obtain a point x3, 

and so on. At the nth iteration we get the point x,.+1 from the point x,. by the formula 

f(x,.) 
x,.+l := x,. - !' (x,.). 

Under suitable hypotheses, the sequence (x,.) will converge rapidly to a root of the equation 
f (x) = 0, as we now show. The key tool in establishing the rapid rate of convergence is 
Taylor's Theorem. 

Figure 6.4.2 Newton's Method 

6.4.7 Newton's Method Let I:= [a, b] and let f: I~ 1R be twice differentiable on I. 
Suppose that f(a)f(b) < 0 and that there are constants m, M such that 1/'(x)l ~ m > 0 
and 1/"(x)l ~ M for all x e I and let K := M/2m. Then there exists a subinterval/* 
containing a zero r off such that for any x 1 e /* the sequence (x,.) defined by 

·- f(x,.) 
(5) x,.+1 .- x,. .- , for all n e N, 

f (x,.) 

belongs to I* and (x,.) converges to r. Moreover 

(6) for aU n eN. 



190 CHAPTER 6 DIFFERENTIATION 

Proof. Since f(a)f(b) < 0, the numbers f(a) and /(b) have opposite signs; hence by 
Theorem 5.3.5 there exists r e I such that f(r) = 0. Since f' is never zero on I, it follows 
from Rolle's Theorem 6.2.3 that f does not vanish at any other point of I. 

We now let x' e I be arbitrary; by Taylor's Theorem there exists a point c' between x' 
and r such that 

0 = f(r) = f(x') + / 1
(X

1)(r- X
1

) + ~f"(c1)(r- X
1

)
2

, 

from which it follows that 

- f (x') = !' (x 1)(r - x 1
) + ~ !" (c1)(r - x')2

• 

If x" is the number defined from x' by "the Newton procedure": 

, 1 f(x') 
X := X - / 1 (x 1), 

then an elementary calculation shows that 

" ' ( I) 1 /" ( c') ( 1)2 x=x+r-x+- r-x 
2 / 1(X 1

) ' 

whence it follows that 

II- _ !f"(cl) ( 1- )2 
x r - 2 ! 1(x') x r . 

Since c' e I, the assumed bounds on f' and /" hold and, setting K := M /2m, we obtain 
the inequality 

(7) 

We now choose~ > 0 so small that~ < 1/ K and that the interval I* := [r - ~' r + ~] 
is contained in /. If x,. e I*, then lx,. - rl ~ ~ and it follows from (7) that lx,.+1 - rl ~ 
Klx,.- rl2 ~ K~2 <~;hence x,. e I* implies that x,.+1 e I*. Therefore if x 1 e I*, we 
infer that x,. e I* for all n e N. Also if x 1 e I*, then an elementary induction argument 
using (7) shows that lxn+t - rl < (K~)"Ix 1 - rl for n eN. But since K~ < 1 this proves 
that lim(x,.) = r. Q.E.D. 

6.4.8 Example We will illustrate Newton's Method by using it to approximate -v'2. 
If we let f(x) := x 2

- 2 for x e IR, then we seek the positive root of the equation 
f (x) = 0. Since / 1 (x) = 2x, the iteration formula is 

f(x,.) 
xn+l = x,. - !' (x,.) 

x;- 2 1 ( 2) 
= x,. - 2x,. = 2 x,. + x,. . 

If we take x1 := 1 as our initial estimate, we obtain the successive values x2 = 3/2 = 1.5, 
x3 = 17/12= 1.416666···, x4 =577/408= 1.414215···, andxs =665857/470832 
= 1.414 213 562 374 · · ·, which is correct to eleven places. 0 

Remarks (a) If we let e,. := x,.- r be the error in approximating r, then inequality 
(6) can be written in the form IKe,.+tl ~ 1Ke,.l2• Consequently, if IKe,.l < to-m then 
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1Ke,.+11 <10-2m so that the number of significant digits in Ke,. has been doubled. Be
cause of this doubling, the sequence generated by Newton's Method is said to converge 
"quadratically". 
(b) In practice, when Newton's Method is programmed for a computer, one often makes an 
initial guess x 1 and lets the computer run. H x 1 is poorly chosen, or if the root is too near the 
endpoint of I, the procedure may not converge to a zero of f. Two possible difficulties are 
illustrated in Figures 6.4.3 and 6.4.4. One familiar strategy is to use the Bisection Method 
to arrive at a fairly close estimate of the root and then to switch to Newton's Method for 
the coup de grice. 

Figure 6.4.3 xn ~ 00. 

Exercises for Section 6.4 

Figure 6.4.4 x n oscillates 
between x 1 and x2• 

1. Let f(x) :=cos ax for x e R where a::/= 0. Find t<">(x) for n eN, x e R. 

2. Let g(x) := lx31 for x e R. Find g'(x) and g"(x) for x e R, and g"'(x) for x ::/= 0. Show that 
g"' (0) does not exist. 

3. Use Induction to prove Leibniz's rule for the nth derivative of a product: 

(/g)<n>(x) = t (n)t<n-k>(x)g<">(x). 
k=O k 

4. Show that if x > O,.then 1 + !x - ix2 ~ .J1 + ~ ~ 1 + !x. 

5. Use the preceding exercise to approximate v'G and .Ji. What is the best accuracy you can be 
sure of, using this inequality? 

6. Use Taylor's Theorem with n = 2 to obtain more accurate approximations for v'G and ,Ji.. 

7. H x > 0 show that 1(1 + x) 113
- (1 + ix - ~x2)1 ~ (5/81)x3

• Use this inequality to approxi

mate Vf.2 and V2. 
8. H f(x) := r, show that the remainder term in Taylor's Theorem converges to zero as n ~ oo, 

for each fixed x0 and x. [Hint: See Theorem 3.2.11.] 

9. H g(x) := sin x, show that the remainder term in Taylor's Theorem converges to zero as n ~ oo 
for each fixed x0 and x. 

10. Let h(x) := e-l/x
2 

for x :/:. 0 and h(O) := 0. Show that h<11>(0) = 0 for all n eN. Conclude that 

the remainder term in Taylor's Theorem for x0 = 0 does not converge to zero as n ~ oo for 

x ::1= 0. [Hint: By L'Hospital's Rule, lim h(x)fx" = 0 for any k e N. Use Exercise 3 to calculate 
x-.o 

h<">(x) for x ::/= 0.] 
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11. If x e [0, 1] and n e .N, show that 

l
ln(l +x)- (x- x2 + x3 + ... + (-l)n-lx,.)l < xn+l. 

2 3 n n+1 

Use this to approximate In 1.5 with an error less than 0.01. Less than 0.001. 

12. We wish to approximate sin by a polynomial on [-1, 1] so that the error is less than 0.001. 
Show that we have 

lsinx- (x- x: + ;;o)l < 5~ for lxl ~ 1. 

13. Calculate e correct to 7 decimal places. 

14. Determine whether or not x = 0 is a point of relative extremum of the following functions: 
(a) l(x) := x 3 + 2, (b) g(x) := sinx - x, 

(c) h(x) := sinx + tx 3
, (d) k(x) := cosx- 1 + !x2

• 

15. Let I be continuous on [a, b] and assume the second derivative I" exists on (a, b). Suppose 
that the graph of I and the line segment joining the points (a, l(a)) and (b, l(b)) intersect 
at a point (x0 , l(x0 )) where a < x0 <b. Show that there exists a point c e (a, b) such that 
l"(c) = 0. 

16. Let I ~ R be an open interval, let I : I --+ R be differentiable on I, and suppose I" (a) exists 
at a e /. Show that 

I
"( ) _ 

1
. l(a +h) - 21(a) + l(a -h) 

a - tm 2 • 
h-+0 h 

Give an example where this limit exists, but the function does not have a second derivative at a. 

17. Suppose that I ~ R is an open interval and that I" (x) ~ 0 for all x e /. If c e I, show that the 
part of the graph of I on I is never below the tangent line to the graph at ( c, I (c)). 

18. Let I ~ R be an interval and let c e /. Suppose that I and g are defined on I and that 
the derivatives 1<n>, g<n> exist and are continuous on/. If l<lc>(c) = 0 and g<k>(c) = 0 for 
k = 0, 1, · · ·, n- 1, but g<n>(c) :f: 0, show that 

. l(x) l<n>(c) 
hm--= . 
x-+c g(x) g<11>(c) 

19. Show that the function l(x) := x 3
- 2x- 5 has a zero r in the interval/ := [2, 2.2]. If x 1 := 

2 and if we define the sequence (x,.) using the Newton procedure, show that lx,.+ 1 - rl ~ 
(0.7)1x,. - rl2

• Show that x4 is accurate to within six decimal places. 

20. Approximate the real zeros of g(x) := x 4
- x- 3. 

21. Approximate the real zeros of h(x) := x 3 
- x - 1. Apply Newton's Method starting with the 

initial choices (a) x 1 := 2, (b) x1 := 0, (c) x1 := -2. Explain what happens. 

22. The equation In x = x - 2 has two solutions. Approximate them using Newton's Method. What 
happens if x 1 := ! is the initial point? 

23. The function l(x) = 8x3
- 8x2 + 1 has two zeros in [0, 1]. Approximate them, using Newton's 

Method, with the starting points (a) x1 := ~. (b) x1 := ~· Explain what happens. 

24. Approximate the solution of the equation x = cos x, accurate to within six decimals. 
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CHAPTER 7 

THE RIEMANN INTEGRAL 

We have already mentioned the developments, during the 1630s, by Fermat and Descartes 
leading to analytic geometry and the theory of the derivative. However, the subject we 
know as calculus did not begin to take shape until the late 1660s when Isaac Newton 
created his theory of "fluxions" and invented the method of "inverse tangents" to find areas 
under curves. The reversal of the process for finding tangent lines to find areas was also 
discovered in the 1680s by Gottfried Leibniz, who was unaware of Newton's unpublished 
work and who arrived at the discovery by a very different route. Leibniz introduced the 
terminology "calculus differentialis" and "calculus integralis", since finding tangent lines 
involved differences and finding areas involved summations. Thus, they had discovered that 
integration, being a process of summation, was inverse to the operation of differentiation. 

During a century and a half of development and refinement of techniques, calculus 
consisted of these paired operations and their applications, primarily to physical problems. 
In the 1850s, Bernhard Riemann adopted a new and different viewpoint. He separated the 
concept of integration from its companion, differentiation, and examined the motivating 
summation and limit process of finding areas by itself. He broadened the scope by consid
ering all functions on an interval for which this process of "integration" could be defined: 
the class of "integrable" functions. The Fundamental Theorem of Calculus became a result 
that held only for a restricted set of integrable functions. The viewpoint of Riemann led 
others to invent other integration theories, the most significant being Lebesgue's theory of 
integration. But there have been some advances made in more recent times that extend even 

Bernard Riemann 
(Georg Friedrich) Bernard Riemann ( 1826-1866), the son of a poor Lutheran 
minister, was born near Hanover, Germany. To please his father, he enrolled 
( 1846) at the U Diversity of Gottingen as a student of theology and philosophy, 
but soon switched to mathemtics. He interrupted his studies at Gottingen to 
study at Berlin under C. G. J. Jacobi, P. G. J. Dirichlet, and F. G. Eisenstein, 
but returned to Gottingen in 1849 to complete his thesis under Gauss. His 
thesis dealt with what are now called "Riemann surfaces". Gauss was so 
enthusiastic about Riemann's work that he arranged for him to become a 
privatdozent at Gottingen in 1854. On admission as a privatdozent, Riemann was required to 
prove himself by delivering a probationary lecture before the entire faculty. As tradition dictated, 
he submitted three topics, the first two of which he was well prepared to discuss. To Riemann's 
surprise, Gauss chose that he should lecture on the third topic: "On the hypotheses that underlie 
the foundations of geometry". After its publication, this lecture had a profound effect on modem 

geometry. 
Despite the fact that Riemann contracted tuberculosis and died at the age of 39, he made 

major contributions in many areas: the foundations of geometry, number theory, real and complex 
analysis, topology, and mathematical physics. 
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the Lebesgue theory to a considerable extent. We will give a brief introduction to these 
results in Chapter 10. 

We begin by defining the concept of Riemann integrability of real-valued functions 
defined on a closed bounded interval of 1R, using the Riemann sums familiar to the reader 
from calculus. This method has the advantage that it extends immediately to the case of 
functions whose values are complex numbers, or vectors in the space 1R". In Section 7 .2, 
we will establish the Riemann integrability of several important classes of functions: step 
functions, continuous functions, and monotone functions. However, we will also see that 
there are functions that are not Riemann integrable. The Fundamental Theorem of Calculus 
is the principal result in Section 7.3. We will present it in a form that is slightly more 
general than is customary and does not require the function to be a derivative at every 
point of the interval. A number of important consequences of the Fundamental Theorem 
are also given. In Section 7.3 we also give a statement of the definitive Lebesgue Criterion 
for Riemann integrability. This famous result is usually not given in books at this level, 
since its proof (given in Appendix C) is somewhat complicated. However, its statement is 
well within the reach of students, who will also comprehend the power of this result. The 
final section presents several methods of approximating integrals, a subject that has become 
increasingly important during this era of high-speed computers. While the proofs of these 
results are not particularly difficult, we defer them to Appendix D. · · 

An interesting history of integration theory, including a chapter on the Riemann inte
gral, is given in the book by Hawkins cited in the References. 

Section 7.1 Riemann Integral 

We will follow the procedure commonly used in calculus courses and define the Riemann 
integral as a kind of limit of the Riemann sums as the norm of the partitions tend to 0. 
Since we assume that the reader is familiar-at least informally-with the integral from a 
calculus course, we will not provide a motivation of the integral, or disuss its interpretation 
as the "area under the graph", or its many applications to physics, engineering, economics, 
etc. Instead, we will focus on the purely mathematical aspects of the integral. 

However, we first recall some basic terms that will be frequently used. 

Partitions and Tagged Partitions 

If I := [a, b] is a closed bounded interval in 1R, then a partition of I is a finite, ordered set 
'P := (x0 , xl' · · ·, xn-t, xn) of points in I such that 

(See Figure 7.1.1.) The points of 'P are used to divide I = [a, b] into non-overlapping 
subintervals 

x,._ 1 x,. = b 

Figure 7.1.1 A partition of [a, b]. 
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Often we will denote the partition 'P by the notation 'P = { [x;_1, X;]} ;=1. We define the 
norm (or mesh) of 'P to be the number 

(I) 

Thus the norm of a partition is merely the length of the largest subinterval into which the 
partition divides [a, b]. Clearly, many partitions have the same norm, so the partition is not 
a function of the norm. 

If a point t; has been selected from each subinterval/; = [x;_1, X;], fori = I, 2, · · ·, n, 
then the points are called tags of the subintervals I;. A set of ordered pairs 

p := { ([x;-1, X;], t;}} ;=1 

of subintervals and corresponding tags is called a tagged partition of I; see Figure 7 .1.2. 
(The dot over the 'P indicates that a tag has been chosen for each subinterval.) The tags 
can be chosen in a wholly arbitrary fashion; for example, we can choose the tags to be the 
left endpoints, or the right endpoints, or the midpoints of the subintervals, etc. Note that an 
endpoint of a subinterval can be used as a tag for two consecutive subintervals. Since each 
tag can be chosen in infinitely many ways, each partition can be tagged in infinitely many 
ways. The _qorm of a tagged partition is defined as for an ordinary partition and does not 
depend on the choice of tags. 

,1 12 13 In 

I I I 
'• I I I \ • • • • • 

a= x0 Xl x2 x3 Xn-1 Xn = b 

Figure 7.1.2 A tagged partition of [a, b] 

If P is the tagged partition given above, we define the Riemann sum of a function 
f : [a, b] ~ 1R corresponding toP to be the number 

II 

(2) S(f; P) := L f(t;)(x; - X;_ 1). 

i=1 

We will also use this notation when P denotes a subset of a partition, and not the entire 
partition. 

The reader will perceive that if the function f is positive on [a, b], then the Riemann 
sum (2) is the sum of the areas of n rectangles whose bases are the subintervals I; = 
[x;_1, X;] and whose heights are /(t;)· (See Figure 7.1.3.) 

Figure 7.1.3 A Riemann sum. 
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Definition of the Riemann Integral -----------------

We now define the Riemann integral of a function f on an interval [a, b]. 

7.1.1 Definition A function f : [a, b] ~ 1R is said to be Riemann integrable on [a, b] 
if there exists a number L e 1R such that for every e > 0 there exists & e > 0 such that if P 
is any tagged partition of [a, bJ with nPn < &e, then 

IS(/; P) - Ll < e. 

The set of all Riemann integrable functions on [a, b] will be denoted by 'R[a, b]. 

Remark It is sometimes said that the integral L is "the limit" of the Riemann sums 
S(f; P) as the norm nPu ~ 0. However, since S(f; P> is not a function of nPn, this limit 
is not of the type that we have studied before. 

First we will show that iff e 'R[a, b], then the number Lis uniquely determined. It 
will be called the Riemann integral off over [a, b]. Instead of L, we will usually write 

L = lb f or lb f(x)dx. 

It should be understood that any letter other than x can be used in the latter expression, so 
long as it does not cause any ambiguity. 

7.1.2 Theorem Iff e 'R.[a, b], then the value of the integral is uniquely determined. 

Proof. Assume that L' and L" both satisfy the definition and let e > 0. Then there exists 
&~/2 > 0 such that if pI is any tagged partion with nP ·" < &~/2' then 

IS(/; P1)- L'l < e/2. 

Also there exists 8;/2 > 0 such that ifP2 is any tagged partition with uP211 < &:/2' then 

IS(/; P2)- L"l < ef2. 

Now let 8e := min{8~12 , 8;12 } > 0 and let P be a tagged partition with 11P11 < ~e· Since 
both 11P11 < 8~12 and 11P11 < 8;12 , then 

IS(/; P)- L'l < e/2 and IS(/; P)- L"l < e/2, 

whence it follows from the Triangle Inequality that 

IL' - L"l = IL' - S(f; P> + S(f; P> - L"l 
~ IL'- S(f; P>l +IS(/; P>- L"l 

< e /2 + e /2 = e. 

Since e > 0 is arbitrary, it follows that L' = L". Q.E.D. 

SomeExmnpl~ -----------------------------------

If we use only the definition, in order to show that a function f is Riemann integrable 
we must (i) know (or guess correctly) the value L of the integral, and (ii) construct a 
8 e that will suffice for an arbitrary e > 0. The determination of L is sometimes done by 
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calculating Riemann sums and guessing what L must be. The determination of 8£ is likely 

to be difficult. 
In actual practice, we usually show that f e 'R.[a, b] by making use of some of the 

theorems that will be given later. 

7.1.3 Examples (a) Every constant function on [a, b] is in 'R.[a, b]. 

Let f(x) := k for all x e [a, b]. HP := {([x;_1, X;], t;)}7=1 is any tagged partition of 

[a, b], then it is clear that 
n 

S(f; P) = L k(x; - X;_ 1) = k(b -a). 
i=1 

Hence, for any£ > 0, we can choose 8£ := 1 so that if nPn < 8£, then 

IS(f; P)- k(b- a)l = o < e. 

Since e > 0 is arbitrary, we conclude that f e R[a, b] and J: f = k(b- a). 

(b) Letg: [0, 3] ~ Rbedefinedby g(x) := 2for0 ~ x ~ 1,andg(x) := 3for 1 < x ~ 

3. A preliminary investigation, based on the graph of g (see Figure 7.1.4), suggests that we 
3 • 

might expect that fo g = 8. 

• 

1 2 3 

Figure 7.1.4 Graph of g. 

Let P be a tagged partition of [0, 3] with norm< 8; we will show how to determine 

8 in order to ensure that IS (g; P) - 81 < e. Let P 1 be the subset of P having its tags in 

[0, 1] where g(x) = 2, and let P 2 be the subset of P with its tags in ( 1, 3] where g(x) = 3. 

It is obvious that we have · 

(3) S(g; P) = S(g; P1) + S(g; P2). 

Since nPn < 8, if u E [0, 1 - 8] and u E [xi-1' X;], then xi-1 ~ 1 - 8 so that X; < xi-1 + 
8 ~ 1, whence the tag t; e [0, 1]. Therefore, the interval [0, 1 - 8] is contained in the union 

of all subintervals in P with tags t; e [0, 1]. Similarly, this union is contained in [0, 1 + 8]. 

(Why?) Since g(t;) = 2 for these tags, we have 

2(1- 8) < S(g; P1) < 2(1 + 8). 

A similar argument shows that the union of all subintervals with tags t; e ( 1, 3] contains the 

interval [1 + 8, 3] of length 2- 8, and is contained in [1 - 8, 3] of length 2 + 8. Therefore, 

3(2- 8) < S(g; P2) < 3(2 + 8). 

Adding these inequalities and using equation (3), we have 

8-58 ~ S(g; P) = S(g; P1) + S(g; P2) ~ 8 +58, 
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whence it follows that 

IS(g; P> - 81 ~ 5&. 

To have this final term < e, we are led to take & e < e I 5. 
Making such a choice (for example, if we take & e := e I 1 0), we can retrace the argument 

and see that IS(g; P>- 81 <£when IIPII <&E. Since£> 0 is arbitrary, we have proved 
that g e 'R.[O, 3] and that J: g = 8, as predicted. 

(c) Let h(x) := x for x e [0, 1]; we will show that h e 'R.[O, 1]. 
We will employ a "trick" that enables us to guess the value of the integral by considering 

a particular choice of the tag points. Indeed, if {I; }?=1 is any partition of [0, 1] and we 
choose the tag of the interval I; = [x;_p X;] to be the midpoint q; := 4<x;_1 +X;), then 
the contribution of this term to the Riemann sum corresponding to the tagged partition 
Q : = { (I; , q;) } ; = 1 is 

h(q;)(X; - X;_ 1) = 4<x; + X;_ 1)(X; - X;_ 1) = 4<xl- Xf_ 1). 

If we add these terms and note that the sum telescopes, we obtain 
,. 

S(h; Q) = L 4<xl- Xf_ 1) = 4<1 2
- ol) = 4· 

i=1 

Now let p := { (/;, t;) 1:=1 be an arbitrary tagged partition of [0, 1] with IIPII < & so 
that x; - x; _1 < & for i = 1, · · · , n. Also let Q have the same partition points, but where 
we choose the tag q; to be the midpoint of the interval I;. Since both t; and q; belong to 
this interval, we have It; - q; I < &. Using the Triangle Inequality, we deduce 

IS(h; P)- S(h; Q)l = ltt;(X;- X;_ 1)- tq;(X;- X;_ 1)1 
i=1 i-1 ,. ,. 

~ LIt; - q; l(x; - X;_ 1) < & L<x; - X;_ 1) = &(x,.- x0) = &. 
i=1 i=1 

Since S(h; Q) = 4, we infer that ifP is any tagged partition with IIPII <&,then 

• • 1 
IS(h, 'P)- 2l < &. 

Therefore we are led to take &e ~e. If we choose &
6 

:=£,we can retrace the argument to 

conclude that h e 'R.[O, 1] and f0
1 

h = f0
1 

x dx = 4. 
(d) Let F(x) := 1 for x = !, j, i' ~'and F(x) := 0 elsewhere on [0, 1]. We will show 

that F e 'R.[O, 1] and that fd F = 0. 
Here there are four points where F is not 0, each of which can belong to two subin

tervals in a given tagged partition P. Only these terms will make a nonzero contribution to 
S(F; P). Therefore we choose &

6 
:= el8. 

. . . 1 2 3 4 
If II 'P II < & 

6
, let 'P 0 be the subset of 'P with tags different from s, s, s, s, and 

let P 1 be the subset of P with tags at these points. Since S(F; P 0) = 0, it is seen 
that S(F; P) = S(F; P 0) + S(F; P 1) = S(F; P 1). Since there are at most 8 tenns in 
S(F; P 1) and each tennis< 1 · &

6
, weconcludethatO ~ S(F; P) = S(F; P 1) < 8&e =e. 

Thus F e R.[O, 1] and f0
1 F = 0. 

(e) Let G(x) := 11n for x = 11n (n eN), and G(x) := 0 elsewhere on [0, 1]. 
Given e > 0, let E

6 
be the (finite) set of points where G(x) ~£,let n

6 
be the number 

of points in EE, and let&£ := el(2n£). Let p be a tagged partition such that nPn < &E. Let 
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P 0 be the subset of 'P with tags outside of E e and let P 1 be the subset of P with tags in 

Ee. As in (d), we have 

0 ~ S(G; P) = S(G; P1) < (2ne)c5e =e. 

Since e > 0 is arbitrary, we conclude that G e 'R[O, 1] and / 0
1 G = 0. 0 

Some Properties of the Integral -----------------

The difficulties involved in determining the value of the integral and of c5 e suggest that 

it would be very useful to have some general theorems. The first result in this direction 

enables us to form certain algebraic combinations of integrable functions. 

7.1.4 Theorem Suppose that f and g are in 'R[a, b]. Then: 

(a) If k e R, the function kf is in 'R[a, b] and 

lb kf = k lb f. 
(b) The function f + g is in 'R[a, b] and 

lb(f+g)= { !+ {g. 
(c) If f(x) ~ g(x) for all x e [a, b], then 

lb f::: lb g. 

Proof. IfP = { ([x;_ 1, X;], t;) J;=t is a tagged partition of [a, b], then it is an easy exercise 

to show that 

S(kf; P> = kS(f; P), S(f + g; P> = S(f; P> + S(g; P>, 

S(f; P> ~ S(g; P). 

We leave it to the reader to show that the assertion (a) follows from the first equality. 

As an example, we will complete the proofs of (b) and (c). 
Given e > 0, we can use the argument in the proof of the Uniqueness Theorem 7 .1.2 

to construct a number c5 E > 0 such that if p is any tagged partition with II p II < c5 E' then 

both 

(4) lsu; P>- { 11 < e/2 and 

To prove (b), we note that 

ls<f+g;P>-(lb !+ 1bg)l=lsu;P>+s(g;P>-1b 1-lbgl 

::: ls<f; P> - {!I + ls<g; P> -1b gl 
< ef2+e/2 =e. 

Since e > 0 is arbitrary, we conclude that f + g e R[a, b] and that its integral is the sum 

of the integrals of f and g. 
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To prove (c), we note that the Triangle Inequality applied to ( 4) implies 

1b f - e/2 < S(f; P> and S(g; P> < 1b g + e/2. 

H we use the fact that S(f; P) < S(g; P), we have 

1b f ::: 1b g + e. 

But, since e > 0 is arbitrary, we conclude that J: f ~ J: g. Q.E.D. 

Roundedness Theorem --------------------

We now show that an unbounded function cannot be Riemann integrable. 

7.1.5 Theorem Iff e 'R[a, b], then f is bounded on [a, b]. 

Proof. Assume that f is an unbounded function in 'R[a, b] with integral L. Then there 
exists 8 > o such that if P is any tagged partition of £a, bJ with 11P11 < 8, then we have 
IS(/; P)- Ll < 1, which implies that 

(5) IS(/; P>l < ILl+ 1. 

Now let Q = {£x;_1, x;J}:=t beapartitionof[a, b) with IIQII < 8.Since 1/1 is not bounded 
on [a, b], then there exists at least one subinterval in Q, say [xJc-t, xJc], on which 1/1 is not 
bounded-for, if 1/1 is bounded on each subinterval [x;_1, X;] by M;, then it is bounded on 
[a, b] by max{M., · · ·, Mn}. 

We will now pick tags for Q that will provide a contradiction to (5). We tag Q by 
t; :=X; fori ::f: k and we pick tic e [xJc-t, xlc] such that 

lt<t~c)(xlc- xJc-t>l > ILl+ 1 + IL f(t;)(x;- X;_ 1),. 

i# 

From the Triangle Inequality (in the form lA + Bl ~ lA I- IBI), we have 

IS(.f; Q)l ~ lf(tlc)(xlc- xlc-t)l -IL f(t;)(x;- X;_ 1)1 > ILl+ 1, 
i# 

which contradicts (5). Q.E.D. 

We will close this section with an example of a function that is discontinuous at every 
rational number and is not monotone, but is Riemann integrable nevertheless. 

7.1.6 Example We consider Thomae's function h : [0, 1] ~ lR defined, as in Example 
5.1.5(h), by h(x) := 0 if x e [0, 1] is irrational, h(O) := 1 and by h(x) := 1/n if x e [0, 1] 
is the rational number x = m 1 n where m, n e N have no common integer factors except 1. 
It was seen in 5.1.5(h) that h is continuous at every irrational number and discontinuous at 
every rational number in [0, 1]. We will now show that h e 'R[O, 1]. 

Let e > 0; then the set Ee := {x e [0, 1] : h(x) ::: t/2} is a finite set. We let n
1 

be the 
number of elements in E

1 
and let 86 := ef(4n6 ). IfP is a tagged partition with 11P11 < 8e, 

let P 1 be the subset of P having tags in E e and P 2 be the subset of P having tags elsewhere 
in [0, 1]. We observe that P1 has at most 2ne intervals whose total length is< 2n

1
8

1 
= e/2 
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and that 0 < h (t;) ~ 1 for every tag in P 1• Also the total lengths of the subintervals in P 2 
is ~ 1 and h (t;) < £/2 for every tag in P 2. Therefore we have 

IS(h; P)l = S(h; P1) + S(h; P2 ) < 1 · 2ne~e + (e/2) · 1 = £. 

Since £ > 0 is arbitrary, we infer that h e 'R[O, 1] with integral 0. 0 

Exercises for Section 7.1 

1. If I := [0, 4 ], calculate the norms of the following partitions: 
(a) 'P1 := (0, 1. 2, 4), (b) P 2 := (0, 2, 3, 4), 
(c) P 3 := (0, 1, 1.5, 2. 3.4, 4), (d) P 4 := (0, .5, 2.5, 3.5, 4). 

2. If f(x) := x 2 for x e [0. 4], calculate the following Riemann sums, where P; has the same 
partition points as in Exercise 1, and the tags are selected as indicated. 
(a) 'P 1 with the tags at the left endpoints of the subintervals. 
(b) 'P 1 with the tags at the right endpoints of the subintervals. 
(c) 'P 2 with the tags at the left endpoints of the subintervals. 
(d) P 2 with the tags at the right endpoints of the subintervals. 

3. Show that f : [a, b] ~ R is Riemann integrable on [a. b] if and only if there exists L e R 
such that for every £ > 0 there exists BE > 0 such that if P is any tagged partition with norm 

11P11 ~Be' then IS(/; P>- Ll ~ £. 

4. Let P be a tagged parition of [0, 3]. 
(a) Show that the union U1 of all subintervals in P with tags in [0. 1] satisfies [0, 1 - 11P111 ~ 

U1 ~ [0, 1 + 11P111. 
(b) Show that the union U 2 of all subintervals in P with tags in [ 1 , 2] satisfies [ 1 + II P II, 

2- 11P111 ~ U2 ~ [1 - 11P11. 2 + 11P111. 

5. ~t P := ((/;, t;)l?= 1 be a tagged partition of [a. b) and let c1 < c2" 

<a>, ·If u belo~ to a subinterval/; whose tag satisfies c1 ~ t; ~ c2, show that c1 - 11P11 ~ u ~ 
c

2
+ 11P11. ', 

(b) If v E [a~ b) and satisfies c. + IIPII ~ v ~ c2 - nPn, then the tag t; of any subinterval/; 
that contains v satisfies t; e [c 1, c2]. 

6. (a) Let f(x) := 2 if 0 ~ x < 1 and /(x) := 1 if 1 ~ x ~ 2. Show that f e 'R[O, 2] and 
evaluate its integral. 

(b) Let h(x) := 2 ifO ~ x < 1, h(l) := 3 and h(x) := 1 if 1 < x ~ 2. Show that he 'R[O, 2] 
and evaluat~ its integral. 

7. Use Mathematical ID'duction and Theorem 7.1.4 to show that if / 1, ···,In are in 'R.[a, b) 
and if k1, • ~ R, then the linear combination f = I:7=1 k;f; belongs to 'R[a, b] and 

J: f = L7=1 k; fa·/;· \ 

8. Iff e 'R[a, b) and 1/(x)l ~ M for all x e [a, b), show that I J: /I ~ M(b- a). 

9. If IE 'R[a, b) and if <Pn> is any sequence of tagged partitions of [a, b) such that 11Pn11 ~ 0, 
b • 

prove that fa f =limn S(f; Pn>· 

10. Let g(x) := 0 if x e [0, 1] is rational and g(x) := 1/x if x e [0, 1] is irrational. Explain why 
g ;. 'R[O, 1]. However, show that there exists a sequence (P ) of tagged partitions of [a, b] such • n 
that II'Pn II ~ 0 and limn S(g; 'Pn) exists. 

11. Suppose that f is bounded on [a, b) and that there exists two sequences of tagged partitions of 
[a, b] such that nPII ~ 0 and IIQnll ~ 0, but such that limn S(f; Pn> :1: limn S(f; Qn>· Show 
that f is not in 'R.[a, b). 
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12. Consider the Dirichlet function, introduced in Example 5.1.5(g), defined by f(x) := 1 fo1 x E [0, 1] rational and f(x) := 0 for x E [0, 1] irrational. Use the preceding exercise to show that f is not Riemann integrable on [0, 1]. 

13. Suppose that f : [a, b] --+ R and that f (x) = 0 except for a finite number of points c 1 , · · · , en 
in [a, b]. Prove that f E 'R.[a, b] and that I: f = 0. 

14. If g E 'R.[a, b] and if f(x) = g(x) except for a finite number of points in [a, b], prove that f E R[a, b] and that I: f =I: g. 

15. Suppose that c ~dare points in [a, b]. If q;: [a, b]--+ R satisfies q;(x) =a> 0 for x E [c,dJ; 
andq;(x) = Oelsewherein [a, b],provethatq; E R[a, b] and that I: q; = a(d- c). [Hint: Given: 
e > 0 let 8€ := e/4a and show--that if IIPII < 8€ then we have a(d- c- 28€) ~ S(q;; P)~ a(d- c + 28e).] 

16. Let 0 ~a < b, let Q(x) := x 2 for x E [a, b] and let P := {[xi-l, x;J}7=t be a partition of[a, b]. For each i, let qi be the positive square root of 

1 ( 2 2 ) 3 X; + xixi-l + X;-I · 

(a) Show that qi satisfies 0 ~ xi-I ~ qi ~xi. 
(b) Show that Q(q)(x; - X;_ 1) = 1<xi- xi_1). 
(c) If Q is the tagged partition with the same subintervals as P and the tags q;, show tha~ 

S(Q; Q) = 1Ch3- a3). 
' (d) Use the argument in Example 7.1.3(c) to show that Q E 'R.[a, b] and 

1b Q = 1b x2 dx = ~(bJ- aJ). 

17. Let 0 ~a < b and m EN, let M(x) := xm for x E [a, b] and let P := {[xi-l, x;]}7=J be a, partition of [a, b ]. For each i, let qi be the positive mth root of 

1 m m-l m-1 m m + 1 (xi +X; Xi-l + ... + X;Xi-l + X;_I). 

(a) Show that qi satisfies 0 ~ xi-I ~ qi ~xi. 
(b) Show that M(q)(xi - xi_ 1) = m~I (x;n+l - x~1 1 ). 
(c) If Q is the tagged partition with the same subintervals as P and the tags q;, show thaq S(M; Q) = _1_1 (bm+l- am+l). , m+ 
(d) Use the argument in Example 7.1.3(c) to show that ME R[a, b] and 

1b M = 1b xm dx = _1_(bm+l- am+l). 
a a m+l · 

18. If f E R[a, b] and c E R, we define g on [a+ c, b + c] by g(y) := f(y- c). Prove thad 
g E 'R.[a + c, b + c] and that I::: g =I: f. The function g is called the c-translate of f. , 

Section 7.2 Riemann Integrable Functions 

We begin with a proof of the important Cauchy Criterion. We will then prove the Squeeze' Theorem, which will be used to establish the Riemann integrability of several classes of' functions (step functions, continuous functions, and monotone functions). Finally we will establish the Additivity Theorem. 
We have already noted that direct use of the definition requires that we know the value, of the integral. The Cauchy Criterion removes this need, but at the cost of considering two Riemann sums, instead of just one. 
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7 .2.1 Cauchy Criterion A function f : [a, b] --+ R belongs to 'R.[a, b] if and only if for 
every E > 0 there exists 'le > 0 such that if P and Q are any tagged partitions of [a, b] 

with 11P11 < 'le and IH211 < '~e' then 

IS(/; P) - S(f; Q)l < E. 

Proof. (=>)Iff e 'R.[a, b] with integral L, let 'le := {)ef2 > 0 be such that ifP, Q are 
tagged partitions such that 11P11 < '~e and II Qll < '~e' then 

IS(/; P)- Ll < E/2 and IS(f; Q)- Ll < E/2. 

Therefore we have 

IS(/; P)- S(f; Q)l ::: IS(/; P) - L + L- S(f; Q)l 

::: IS(/; P) - Ll + IL- S(f; Q)l 

<E/2+E/2=E. 

( ¢:) For each n e N, let {)n > 0 be such that if P and Q are tagged partitions with 
norms < {) n, then 

IS(f; P) - S(f; Q)l <."1/n. 

Evidently we may assume that {)n ~ {)n+l for n eN; otherwise, we replace {)n by {)~ := 
min{{)l' ... ' {)n }. 

For each n E N, let P, be a tagged partition with uP, II < {)n· Clearly, if m > n then 
both P and P have norms < {)n, so that m n 

(1) for m > n. 

Consequently, the sequence (S(f; Pm))~=I is a Cauchy sequence in R. Therefore (by 
Theorem 3.5.5) this sequence converges in Rand we let A:= limm S(f; Pm>· 

Passing to the limit in (1) as m --+ oo, we have 

IS(/; P,>- AI ::: 1/n for all n eN. 

To see that A is the Riemann integral of f, given E > 0, let K e N satisfy K > 2/ E. If Q 
is any tagged partition with II Q II < {) K, then 

IS(f; q)- AI ::: IS(/; Q)- S(f; PK)I + IS(f; PK)- AI 

::: 1/ K + 1/ K < E. 

Since E > 0 is arbitrary, then f e 'R.[a, b] with integral A. 

We will now give two examples of the use of the Cauchy Criterion. 

Q.E.D. 

7.2.2 Examples (a) Letg: [0, 3]--+ RbethefunctionconsideredinExample7.1.3(b). 
1n that example we saw that ifP is a tagged partition of £0, 31 with norm 11P11 <{),then 

8 - 5{) ::: S(g; P> ::: 8 + 5{). 

Hence if Q is another tagged partition with II Q II < {), then 

8 - 58 ::: s (g; Q) ~ 8 + 58. 

If we subtract these two inequalities, we obtain 

IS(g; P) - S(g; Q)l ::: 10{). 
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In order to make this final term < E, we are led to employ the Cauchy Criterion with 
'It := E/20. (We leave the details to the reader.) 

(b) The Cauchy Criterion can be used to show that a function f: [a, b] ~ R is not 
Riemann integrable. To do this we need to show that: There exists E0 > 0 such that for 
any 11 > o there exists tagged partitions P and Q with uPu < 11 and II Qll < 11 such that 
IS(/; P)- S(f; Q)l ~ E0• 

We will apply these remarks to the Dirichlet function, considered in 5.1.5(g), defined 
by /(x) := 1 if x e [0, 1] is rational and /(x) := 0 if x e [0, 1] is irrational. 

Here we take Eo := ! . H P is any partition all of whose tags are rational numbers then 
S (/; P) = 1, while if Q is any tagged partition all of whose tags are irrational numbers 
then S(f; Q) = 0. Since we are able to take such tagged partitions with arbitrarily small 
norms, we conclude that the Dirichlet function is not Riemann integrable. 0 

The Squeeze Theorem ---------------------

The next result will be used to establish the Riemann integrability of some important classes 
of functions. 

'7:2.3 Squeeze Theorem Let f: [a, b] ~ R. Then f e 'R.[a, b] if and only if for every 
E > 0 there exist functions at and wt in 'R[a, b] with 

(2) for all x e [a, b], 

and such that b 

(3) 1 (w, - a,) < e. 

Proof. (=})Take at =wE = f for all E > 0. 
(<=)Let E > 0. Since at and wt belong to 'R.[a, b], there exists ~t > 0 such that ifP 

is any tagged partition with 11P11 < tSt then 

ls(a,; P> -lb a, I < e and IS(w,; P> -lb w,l <e. 

It follows from these inequalities that 

and 

In view of inequality (2), we have S(at; P> ~ S(f; P) ~ S(wt; P}, whence 

lb a, - e < S(f; P> < lb w, +e. 

H Q is another tagged partition with II Q II < ~ t, then we also have 

lb a, - e < S(f; Q) < lb w, +e. 

H we subtract these two inequalities and use (3 ), we conclude that 

IS(f; P> - S(f; Q)l < lb w, -lb a, + 2e 

= lb (w, - a,) + 2e < 3e. 

Since E > 0 is arbitrary, the Cauchy Criterion implies that f e R[a, b]. Q.E.D. 



T 

L_ 

7.2 RIEMANN INTEGRABLE FUNCTIONS 205 

Classes of Riemann Integrable Functions 

The Squeeze Theorem is often used in connection with the class of step functions. It will be 
recalled from Definition 5.4.9 that a function rp : [a, b] ~ 1R is a step function if it has only 
a finite number of distinct values, each value being assumed on one or more subintervals 
of [a, b]. For illustrations of step functions, see Figures 5.4.3 or 7.1.4. 

7.2.4 Lemma H J is a subinterval of [a, b] having endpoints c < d and if rp1 (x) := 1 
for x e J and rp 1 (x) := 0 elsewhere in [a, b], then rp1 e 'R[a, b] and J: rp 1 = d- c. 

Proof. If J = [c, d] with c ~ d, this is Exercise 7.1.15 and we can choose ~e := ej4. 
A similar proof can be given for the three other subintervals having these endpoints. 
Alternatively, we observe that we can write 

(/)[c,d) = (/)[c,d] - 'P[d,d]' 'P(c,d] = 'P[c,d] - 'P[c,c] and 'P(c,d) = 'P[c,d) - 'P[c,c)" 

Since J: 'P[c,c] = 0, all four of these functions have integral equal to d- c. Q.E.D. 

It is an important fact that any step function is Riemann integrable. -

7 .2.5 Theorem If rp : [a, b] ~ 1R is a step function, then rp e 'R[ a, b]. 

Proof. Step functions of the type appearing in 7 .2.4 are called "elementary step functions". 
In Exercise 5 it is shown that an arbitrary step function rp can be expressed as a linear 
combination of such elementary step functions: 

(4) 

where Ji has endpoints ci < dr The lemma and Theorem 7.1.4(a,b) imply that rp e 'R[a, b] 
and that 

(5) Q.E.D. 

We will now use the Squeeze Theorem to show that an arbitrary continuous function 
is Riemann integrable. · · 

7.2.6 Theorem H f: [a, b] ~ 1R is continuous on [a, b], then f e 'R[a, b]. 

Proof. It follows from Theorem 5.4.3 that f is uniformly continuous on [a, b]. Therefore, 
given e > 0 there exists ~s > 0 such that if u, v e [a, b] and lu- vi < ~e' then we have 
1/(u)- f(v)l < ej(b- a). 

Let P = {I; l?=t be a partition such that liP II < 8
6

, let u; e I; be a point where f attains 
its minimum value on I;, and let V; e I; be a point where f attains its maximum value on I;. 

Let a
6 

be the step function defined by ae(x) := f(u;) for x e [x;_1, x;) (i = 1, · · ·, 
n- I) and a

6
(x) := /(un) for x e [xn-l, xnl· Let (J)e be defined similarly using the points 

v. instead of the u .. Then one has 
I I 

for all x e [a, b]. 
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Moreover, it is clear that 

Therefore it follows from the Squeeze Theorem that f e ~[a, b]. Q.E.D. 

Monotone functions are not necessarily continuous at every point, but they are also 
Riemann integrable. 

7.2.7 Theorem Iff : [a, b] ~ 1R is monotone on [a, b], then f e JR[a, b]. 

Proof. Suppose that f is increasing on the interval [a, b], a <b. If e > 0 is given, we let 
q eN be such that 

h := /(b)- f(a) < _e __ 
q b-a· 

Let yk := f(a) + kh for k = 0, 1, · · ·, q and consider sets Ak := f- 1([yk-l' yA:)) for 
k = I,···, q - I and Aq := /-1 ([yq-l, YqD· The sets {A A:} are pairwise disjoint and have 
union [a, b]. The Characterization Theorem 2.5.1 implies that each Ak is either (i) empty, 
(ii) contains a single point, or (iii) is a nondegenerate interval (not necessarily closed) 
in [a, b]. We discard the sets for which (i) holds and relabel the remaining ones. If we 
adjoin the endpoints to the remaining intervals {AA:}, we obtain closed intervals {/A:}. It 
is an exercise to show that the relabeled intervals {AA:}:=l are pairwise disjoint, satisfy 
[a, b] = u:=l Ak and that f(x) E [YA:-1' yA:] for x E Ak. 

We now define step functions as and we on [a, b] by setting 

as(x) := YA:-t and we(x) := yk for x e Ak. 

It is clear that as(x) ~ f(x) ~ we(x) for all x e [a, b] and that 

l b (w, -a,) = t<Yt - Yt-l)(xk - xk-1> 
a k=l 

q 

= L h · (xk - xA:_ 1) = h · (b- a) < e. 
A:= I 

Since e > 0 is arbitrary, the Squeeze Theorem implies that f e 'R.[a, b]. Q.E.D. 

The Additivity Theorem 

We now return to arbitrary Riemann integrable functions. Our next result shows that the 
integral is an "additive function" of the interval over which the function is integrated. This 
property is no surprise, but its proof is a bit delicate and may be omitted on a first reading. 

7.2.8 Additivity Theorem Let f: [a, b] ~ 1R and let c e (a, b). Then f e ~[a, b] if 
and only if its restrictions to [a, c] and [c, b] are both Riemann integrable. In this case 

(6) lb != [ f+ lb f. 
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Proof. ( <=) Suppose that the restriction / 1 of f to [a, c ], and the restriction / 2 of f to 
[c, b] are Riemann integrable to L 1 and L2, respectively. Then, given E > 0 there exists 8' > 
OsuchthatifP1 isataggedpartitionof[a, c] with uP.u < cS', then IS(ft; P1)- Ltl < E/3. 
Also there exists cS" > o such that if P 2 is a tagged partition of £c, b 1 with uP 2 11 < 8" then 
IS(/2; P 2)- L 21 < ej3. If M is a bound for 1/1, we define 8e := min{cS', cS", ej6M} and 
let P be a tagged partition of [a, b] with II Qll < cS. We will prove that 

(7) 

(i) If c is a partition point of Q, we split Q into a partition Q1 of [a, c] and a partition 
Q2 of [c, b]. Since S(f; Q) = S(f; Q1) + S(f; Q2), and since Q1 has norm< cS' and Q2 
has norm < cS", the inequality (7) is clear. 

(ii) If cis not a partition point in Q = {(/k, tk)}i=1, there exists k < m such that 
c E (xk_ 1, xk). We let Q1 be the tagged partition of [a, c] defined by 

Q1 := {(/1' 11), · · ·' (/k-1' 1k-1), ([xk-l' c], c)}, 

and Q2 be the tagged partition of [ c, b] defined by 

Q2 := { ([c, xk], c), (lk+1.'k+1 ), · · ·' (1m' 1m)}. 

A straightforward calculation shows that 

S(f; Q)- S(f; Qt)- S(f; Q2) = f(tk)(xk- xk-1)- f(c)(xk- xk-1) 

= (f(tk) -/(c))· (xk - xk-1), 

whence it follows that 

IS(/; Q)- S(f; Q1)- S(f; Q2)1 < 2M(xk- xk_ 1) < E/3. 

But since II Q1 11 < cS ~ cS' and II Q2 11 < cS ~ cS", it follows that 

and 

from which we obtain (7). Since E > 0 is arbitrary, we infer that f e 'R.[a, b] and that (6) 
holds. 

(~) We suppose that f e 'R[a, b] and, given E > 0, we let Tie > 0 satisfy the Cauchy 
Criterion 7 .2.1. Let / 1 be the restriction of f to [a, c] and let P 1, Q1 be tagged partitions 
of [a, c] with uP .n < Tie and II Qlll < Tie· By adding additional partition points and tags 
from [c, b], we can extend P1 and Q1 to tagged partitions P and Q of [a, b] that satisfy 
II P II < TJ e and II Q II < TJ e. If we use the same additional points and tags in [ c, b] for both P 
and Q, then 

S(fl; p 1)- S(/1; Q1) = S(f; P>- S(f; Q). 

Since both P and Q have norm < TJe, then IS(/1; P1)- S(/1; Q1)1 <E. Therefore the 
Cauchy Condition shows that the restriction / 1 off to [a, c] is in 'R[a, c]. In the same way, 
we see that the restriction / 2 of f to [ c, b] is in 'R[ c, d]. 

The equality (6) now follows from the first part of the theorem. Q.E.D. 

7.2.9 Coronary Iff e 'R[a, b], and if[c, d] c [a, b], then the restriction off to [c, d] 
is in 'R[c, d]. 
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Proof. Since f e 'R[a, b] and c e [a, b], it follows from the theorem that its restriction 
to [c, b] is in 'R[c, b]. But if d e [c, b], then another application of the theorem shows that 
the restriction off to [c, d] is in 'R[c, d]. Q.E.D. 

7.2.10 Corollary H f e 'R[a, b] and if a= c0 < c1 < · · · <em= b, then the restric
tions off to each of the subintervals [c;_1, c;] are Riemann integrable and 

1b m lc. 
a / = ~ <i~l f. 

Until now, we have considered the Riemann integral over an interval [a, b] where 
a <b. It is convenient to have the integral defined more generally. 

7.2.11 Definition H f e 'R[a, b] and if a, fJ e [a, b] with a < fJ, we define 

and 

7.2.12 Theorem H f e 'R[a, b] and if a, fJ, yare any numbers in [a, b], then 

(8) 1/J I = 1r I + 1/J f, 
in the sense that the existence of any two of these integrals implies the existence of the third 
integral and the equality (8). 

Proof. H any two of the numbers a, fJ, y are equal, then (8) holds. Thus we may suppose 
that all three of these numbers are distinct. 

For the sake of symmetry, we introduce the expression 

L(a,p,y) := 1/J /+ iy /+ la f. 
It is clear that (8) holds if and only if L(a, fJ, y) = 0. Therefore, to establish the assertion, 
we need to show that L = 0 for all six permutations of the arguments a, fJ and y. 

WenotethattheAdditivityTheorem7.2.8impliesthatL(a, fJ, y) = Owhena < y < 
fJ. But it is easily seen that both L(fJ, y, a) and L(y, a, fJ) equal L(a, fJ, y). Moreover, the 
numbers 

L(fJ, a, y), L(a, y, fJ), and L(y,fJ,a) 

are all equal to -L(a, fJ, y). Therefore, L vanishes for all possible configurations of these 
three points. Q.E.D. 

Exercises for Section 7.2 

1. Let f : [a, b] ~ 1R. Show that f ' 'R.[a, b] if and only if there exists £0 > 0 such that for every 
n E N there exist tagged partitions p II and Q,. with uP ,.II < 1 In and II Q,.ll < 1 In such that 
IS(f; p ,.) - S(f; Q,.)l ~ t 0• 

2. Consider the function h defined by h(x) := x + 1 for x e [0, 1] rational, and h(x) := 0 for 
x e [0, 1] irrational. Show that his not Riemann integrable. 
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3. Let H(x) := k for x = 1/ k (keN) and H(x) := 0 elsewhere on [0, 1]. Use Exercise 1, or the 

argument in 7 .2.2(b ), to show that H is not Riemann integrable. 

4. If a(x) := -x and w(x) := x and if a(x) ~ f(x) ~ w(x) for all x e [0, 1], does it follow from 

the Squeeze Theorem 7.2.3 that f e 'R[O, 1]? 

5. If J is any subinterval of [a, b] and if fP 1 (x) := 1 for x e J and fP 1 (x) := 0 elsewhere on [a, b ], 

we say that fP 1 is an elementary step function on [a, b ]. Show that every step function is a linear 

combination of elementary step functions. 

6. If 1/1 : [a, b] ~ 1R. takes on only a finite number of distinct values, is 1/1 a step function? 

7. If S(f; P> is any Riemann sum of f: [a, b] ~ R, show that there exists a step function 

fP: [a, b] ~ R such that I: fP = S(f; P>. 

8. Suppose that f is continuous on [a, b], that f(x) ~ 0 for all x e [a, b] and that I: f = 0. Prove 

that /(x) = 0 for all x e [a, b]. 

9. Show that the continuity hypothesis in the preceding exercise cannot be dropped. 

10. Iff and g are continuous on [a, b] and if I: f =I: g, prove that there exists c e [a, b) such 

that /(c) = g(c). 

11. If f is bounded by M on [a, b] and if the restriction of f to every interval [ c, b] where c e (a, b) 

is Riemann integrable, show that f e.'R[a, b] and that I: f ~I: f as c ~a+. [Hint: Let 

ac(x) := -M andwc(x) := M for x e [a, c) andac(x) := wc(x) := f(x) for x e [c, b]. Apply 

the Squeeze Theorem 7.2.3 for c sufficiently near a.] 

12. Show that g(x) := sin(l/x) for x e (0, 1] and g(O) := 0 belongs to 'R[O, 1]. 

13. Give an example of a function f : [a, b] ~ lR that is in 'R[c, b) for every c e (a, b) but which 

is not in 'R.[a, b]. 

14. Suppose that f: [a, b)~ IR, that a= c0 < c1 < · · · <em =band that the restrictions off to 

[c;_ 1, c;] belong to 'R[c;_ 1, c;l fori = 1, · · ·, m. Prove that f e 'R.[a, b) and that the formula 

in Corollary 7 .2.1 0 holds. 

15. Iff is bounded and there is a finite set E such that f is continuous at every point of [a, b]\E, 

show that f e 'R[a, b). 

16. Iff is continuous on [a, b), a < b, show that there exists c e [a, b) such that we have I: f = 

f(c)(b- a). This result is sometimes called the Mean Value Theorem for Integrals. 

17. If f and g are continuous on [a, b] and g(x) > 0 for all x e [a, b), show that there exists 

c e [a, b] such that I: fg =/(c) I: g. Show that this conclusion fails if we do not have 

g(x) > 0. (Note that this result is an extension of the preceding exercise.) 

18. Let f be continuous on [a, b], let /(x) ~ 0 for x e [a, b), and let M,. := (I: f") l/n. Show 

that lim(M,.) = sup{f(x) : x e [a, b]}. 

19. Suppose that a> Oandthatf e 'R[-a,a]. 

(a) Iff is even (that is, if /(-x) = f(x) for all x e [0, a]), show that I~a f = 2 foa f. 

(b) Iff is odd (that is, if/( -x) = - f(x) for all x e [0, a]), show that I~a f = 0. 

20. Suppose that f : [a, b) ~ 1R and that n eN. Let 'P,. be the partition of [a, b) into n subintervals 

bavingequallengtbs,_sothatx; := ~ + i(b- a)/n fori= 0, 1, · · ·, n.LetL,.~/) := S(f; P,..1) 

and R,.(/) := S(f; 'P,.,,), where 'P,.,, has its tags at the left endpoints, and 'P,.,, bas its tags at 

the right endpoints of the subintervals [x; _1 , x;]. 

(a) Iff is increasing on [a, b ], show that L,. (/) ~ R,. (/) and that 

0 =::: R.(f)- L.(f) = (f(b)- j(a)) o (b: a) 0 

(b) Show that f(a)(b- a)~ L,.(/) ~I: f ~ R,.(/) ~ f(b)(b- a). 

(c) Iff is decreasing on [a, b), obtain an inequality similar to that in (a). 
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(d) Iff e 'R[a, b] is not monotone, show that J: f is not necessarily between L,.(/) and 
R,.(f). 

21. Iff is continuous on [-a, a], show that f~a f(x 2
) dx = 2 J; f(x 2

) dx. 

22. If/iscontinuouson[-1, l],showthatf0-r12 f(cosx)dx = J;12 f(sinx)dx = 4 J; f(sinx)dx. 
[Hint: Examine certain Riemann sums.] 

Section 7.3 The Fundamental Theorem 

We will now explore the connection between the notions of the derivative and the integral. 
In fact, there are two theorems relating to this problem: one has to do with integrating a 
derivative, and the other with differentiating an integral. These theorems, taken together, 
are called the Fundamental Theorem of Calculus. Roughly stated, they imply that the 
operations of differentiation and integration are inverse to each other. However, there are 
some subleties that should not be overlooked. 

The Fundamental Theorem (First Form) 

The First Form of the Fundamental Theorem provides a theoretical basis for the method 
of calculating an integral that the reader learned in calculus. It asserts that if a function 
f is the derivative of a function F, and iff belongs to R[a, b], then the integral J: f 

can be calculated by means of the evaluation F 1!:= F(b)- F(a). A function F such that 
F'(x) = f(x) for all x e [a, b] is called an antiderivative or a primitive off on [a, b]. 
Thus, when f has an antiderivative, it is a very simple matter to calculate its integral. 

In practice, it is convenient to allow some exceptional points c where F' (c) does not 
exist in JR, or where it does not equal /(c). It turns out that we can permit afinite number 
of such exceptional points. 

7 .3.1 Fundamental Theorem of Calculus (First Form) Suppose there is a linite set E 
in [a, b] and functions f, F : [a, b] ~ 1R such that: 

(a) F is continuous on [a, b], 

(b) F'(x) = f(x) for all x e [a, b]\E, 

(c) f belongs to R[a, b]. 

Then we have 

(1) lb f = F(b) - F(a). 

Proof. We will prove the theorem in the case where E :={a, b}. The general case can 
be obtained by breaking the interval into the union of a finite number of intervals (see 
Exercise 1). 

Let e > 0 be given. Since f e R[a, b] by assumption (c), there exists 8£ > 0 such that 
if Pis any tagged partition with uPu < 8£, then 

(2) 
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If the subintervals in Pare [x;_1, X;], then the Mean Value Theorem 6.2.4 applied to F on 
[x;_1, X;] implies that there exists u; e (x;_ 1, x;) such that 

F(x;)- F(x;_ 1) = F'(u;) · (x;- X;_ 1) for i = 1, ... , n. 

If we add these terms, note the telescoping of the sum, and use the fact that F' ( u;) = f ( u;), 
we obtain 

n n 

F(b)- F(a) = L (F(x;)- F(x;_1)) = L f(u;}(x;- X;_ 1). 

i=l i=l 

Now let P u := {([x; _1, X;], u;) }~=I, so the sum on the right equals S(/; P u>· If we substi

tute F(b) - F(a) = S(f; P u> into (2), we conclude that 

IF(b)- F(a) -lb 11 < e. 

But, since e > 0 is arbitrary, we infer that equation ( 1) holds. Q.E.D. 

Remark If the function F is differentiable at every point of [a, b], then (by Theorem 
6.1.2) hypothesis (a) is automatically satisfied. If f is not defined for some point c e E, 
we take f(c) := 0. Even ifF is differentiable at every point of [a, b], condition (c) is not 

automatically satisfied, since there exist functions F such that F' is not Riemann integrable. 
(See Example 7.3.2(e).) 

7.3.2 Examples (a) If F(x) := ~x2 forallx e [a, b], then F'(x) = x forallx e [a, b]. 
Further, f = F' is continuous so it is in 'R[a, b]. Therefore the Fundamental Theorem (with 
E = f2J) implies that 

lb x dx = F(b)- F(a) = !<b2 - a2
). 

(b) If G(x) :=Arctan x for x e [a, b], then G'(x) = 1/(x2 + 1) for all x e [a, b]; also 
G' is continuous, so it is in 'R[a, b]. Therefore the Fundamental Theorem (with E = f2J) 

implies that 

lb 
2 

1 
dx = Arctanb- Arctan a. 

a X + 1 
• 0 

(c) If A(x) := lxl for x e [-10, 10], then A'(x) = -1 if x e [-10, 0) and A'(x) = +1 
for x e (0, 10]. Recalling the definition of the signum function (in 4.1.10(b)), we have 
A'(x) = sgn(x) for all x e [-10, 10]\{0}. Since the signum function is a step function, it 
belongs to 'R.[ -10, 10]. Therefore the Fundamental Theorem (with E = {0}) implies that 

1
10 

sgn(x) dx = A(10)- A( -10) = 10- 10 = 0. 
-10 

(d) If H(x) := 2.../i for x e [0, b], then His continuous on [0, b] and H'(x) = 1/ ...[X for 
x e (0, b ]. Since h := H' is not bounded on (0, b ], it does not belong to 'R[O, b] no matter 
how we define h(O). Therefore, the Fundamental Theorem 7.3.1 does not apply. (However, 
we will see in Example 10.1.10(a) that his generalized Riemann integrable on [0, b].) 

(e) Let K (x) := x 2 cos(1/x2
) for x e (0, 1] and let K (0) := 0. It follows from the Product 

Rule 6.1.3( c) and the Chain Rule 6.1.6 that 

K'(x) = 2x cos(1/x2
) + (2/x) sin(1fx2) for x e (0, 1]. 
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Further, as in Example 6.1. 7 (d), we have K_' (0) = 0. Thus K is continuous and differentiable 
at every point of [0, 1]. Since the first term in K' is continuous on [0, 1], it belongs to 
R[O, 1]. However, the second term inK' is not bounded, so it does not belong to R[O, 1]. 
Consequently K' rt R[O, 1], and the Fundamental Theorem 7.3.1 does not apply to K'. 
(However, we will see in Example lO.l.lO(b) that K' is generalized Riemann integrable.) 

0 

The Fundamental Theorem (Secon~ Form) 

\Ve now tum to the Fundamental Thedrem (Second Form) in which we wish to differentiate 
an integral involving a variable upper limit. 

7.3.3 Definition Iff E R[a, b ], then the function defined by 

(3) F(z) := lz f for z E [a, b], 

is called the indefinite integral off with basepoint a. (Sometimes a point other than a is 
used as a basepoint; see Exercise 6.) 

We will first show that iff E R[a, b ], then its indefinite integral F satisfies a Lipschitz 
condition; hence F is continuous on [a, b]. 

7.3.4 Theorem The indefinite integral F defined by (3) is continuous on [a, b ]. In fact, 
if lf(x)l ~ M for all x E [a, b], then IF(z)- F(w)l ~ Mlz- wl for all z, wE [a, b]. 

Proof. The Additivity Theorem 7.2.8 implies that if z, w E [a, b] and w ~ z, then 

F(z) = [ f = lw f + f f = F(w) + f f, 

whence we have 

F(z) - F(w) = f f. 

Now if -M ~ f(x) ~ M for all x E [a, b], then Theorem 7.1.4(c) implies that 

-M(z- w).:::: iz f.:::: M(z- w), 

whence it follows that 

/F(z)- F(w)/.:::: liz /1.:::: M/z- w/, 

as asserted. Q.E.D. 

We will now show that the indefinite integral F is differentiable at any point where f 
is continuous. 

7 .3.5 Fundamental Theorem of Calculus (Second Form) Let f E 'R[a, b] and let f be 
continuous at a pointe E [a, b]. Then the indefinite integral, defined by (3), is differentiable 
at c and F' (c) = f(c). 
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Proof. We will suppose that c E. [a, b) and consider the right-hand derivative ofF at c. 
Since f is continuous at c, given B > 0 there exists rJ 

8 
> 0 such that if c ~ x < c + rJ 

8
, 

then 

(4) f(c) - B < f(x) < f(c) +B. 

Let h satisfy 0 < h < rJ 
8

• The Additivity Theorem 7 .2.8 implies that f is integrable on the 
intervals [a, c], [a, c + h] and [c, c + h] and that 

~ 1c+h 
F(c +h) - F(c) = c f. 

Now on the interval [ c, c + h] the function f satisfies inequality ( 4 ), so that (by Theorem 
7.1.4(c)) we have 

1
c+h 

(f(c) -B) · h < F(c +h) - F(c) = c f ~ (f(c) +B) ·h. 

If we divide by h > 0 and subtract f (c), we obtain 

I F(c + h~ - F(c) - f(c)l :S e. 

But, since B > 0 is arbitrary, we conclude that the right-hand limit is given by 

1
. F(c +h) - F(c) _ f( ) Im - c. h--+0+ h 

It is proved in the same way that the left-hand limit of this difference quotient also equals 
f(c) whencE (a, b], whence the assertion follows. Q.E.D. 

Iff is continuous on all of [a, b], we obtain the following result. 

', 7.3.6 Theorem Iff is continuous on [a, b], then the indefinite integral F, defined by 
(3),isdifferentiableon [a,b] and F'(x) = f(x) forallx E [a,b]. 

Theorem 7.3.6 can be summarized: Iff is continuous on [a, b], then its indefinite 
i~tegral is an antiderivative off. We will now see that, in general, the indefinite integral 
need not be an antiderivative (either because the derivative of the indefinite integral does 
not exist or does not equal f(x)). 

7.3.7 Examples (a) Iff (x) := sgn x on [ -1, 1], then f E R[ -1, 1] and has the indef
·,inite integral F(x) := lxl- 1 with the basepoint -1. However, since F'(O) does not exist, 
1 F is not an antiderivative of f on [ -1, 1]. 
!(b) If h denotes Thomae's function, considered in 7.1.6, then its indefinite integral 
';H(x) := J; h is identically 0 on [0, 1]. Here, the derivative of this indefinite integral 
exists at every point and H' (x) = 0. But H' (x) # h(x) whenever x E Q n [0, 1], so that 

, H is not an antiderivative of h on [0, 1]. 0 
I 

\substitution Theorem 

jThe next theorem provides the justification for the "change of variable" method that is often 
used to evaluate integrals. This theorem is employed (usually implicitly) in the evaluation by 

1 means of procedures that involve the manipulation of "differentials", common in elementary 
(courses. 
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7.3.8 Substitution Theorem Let J :=[a, p] and let ({): J ~ R have a continuous 
derivative on J. If I : I ~ R is continuous on an interval I containing ({J(J), then 

1
/J 1(/)(fJ) 

I(({J(t)) · q/(t) dt = l(x) dx. 
a ({)~) 

(5) 

The proof of this theorem is based on the Chain Rule 6.1.6, and will be outlined in 
Exercise 15. The hypotheses that I and (()1 are continuous are restrictive, but are used to 
ensure the existence of the Riemann integral on the left side of (5). 

7.3.9 Examples (a) Consider the integral [
4 

srn: dt. 

Here we substitute ({J(t) := ...[i fort e [1, 4] so that ((J
1(t) = 1/(2.../i) is continuous 

on [1, 4]. If we let l(x) := 2sinx, then the integrand has the form (I o ({J) • ({)1 and the 
Substitution Theorem 7.3.8 implies that the integral equals f1

2 2 sinx dx = -2cosxli = 
2(cos 1 -cos 2). . 14 

sin.../i (b) Consider the tntegral 
0 

...[i d t. 

Since ({J(t) := ...[i does not have a continuous derivative on [0, 4], the Substitution 
Theorem 7.3.8 is not applicable, at least with this substitution. (In fact, it is not obvious 
that this integral exists; however, we can apply Exercise 7 .2.11 to obtain this conclusion. 
We could then apply the Fundamental Theorem 7.3.1 to F(t) := -2cos .../i withE:= {0} 
to evaluate this integral.) 0 

We will give a more powerful Substitution Theorem for the generalized Riemann 
integral in Section 1 0.1. 

Lebesgue's Integrability Criterion -----------------

We will now present a statement of the definitive theorem due to Henri Lebesgue (1875-
1941) giving a necessary and sufficient condition for a function to be Riemann integrable, 
and will give some applications of this theorem. In order to state this result, we need to 
introduce the important notion of a null set. 

Warning Some people use the term "null set" as a synonym for the terms "empty set" 
or "void set" referring to 0 (=the set that has no elements). However, we will always use 
the term "null set" in conformity with our next definition, as is customary in the theory of 
integration. 

7.3.10 Definition (a) A set Z c R is said to be a null set if for every e > 0 there exists 
a countable collection { (ak, bk)} :. of open intervals such that 

00 

(6) Z c U<ak, bk) 
k=l 

and 
00 

L<bk- ak) <e. 
k=l 

(b) If Q(x) is a statement about the point x e I, we say that Q(x) holds almost every
where on I (or for almost every x e I), if there exists a null set Z c I such that 
Q(x) holds for all x e I\Z.In this case we may write 

Q(x) for a.e. x e I. 

It is trivial that any subset of a null set is also a null set, and it is easy to see that the 
union of two null sets is a null set. We will now give an example that may be very surprising. 
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7.3.11 Example The Q 1 of rational numbers in [0, 1] is a null set. 
We enumerate Q 1 = {r1, r2 , • • ·}. Given e > 0, note that the open interval 11 := 

(r1 - ej4, r 1 + ej4) contains r 1 and has length £/2; also the open interval 12 := (r2 -

s/8, r2 + e/8) contains r2 and has length £/4. In general, the open interval 

Jk := (rk- 2:+1' rk + 2*:1) 
contains the point ric and has length £/21c. Therefore, the union u~1 Jlc of these open 
intervals contains every point of Q 1 ; moreover, the sum of the lengths is L~ 1 ( e /21c) = e. 
Since e > 0 is arbitrary, Q 1 is a null set. 0 

The argument just given can be modified to show that: Every countable set is a null 
set. However, it can be shown that there exist uncountable null sets in 1R; for example, the 
Cantor set that will be introduced in Definition 11.1.1 0. 

We now state Lebesgue's Integrability Criterion. It asserts that a bounded function on 
an interval is Riemann integrable if and only if its points of discontinuity form a null set. 

7.3.12 Lebesgue's Integrability Criterion A bounded function f : [a, b] --+ 1R is Rie
mann integrable if and only if it is continuous almost everywhere on [a, b ]. 

A proof of this result will be given in Appendix C. However, we will apply Legesgue's 
Theorem here to some specific functions, and show that some of our previous results follow 
immediately from it. We shall also use this theorem to obtain the important Composition 
and Product Theorems. 

7 .3.13 Examples (a) The step function g in Example 7 .1.3(b) is continuous at every 
point except the point x = 1. Therefore it follows from the Lebesgue Integrability Criterion 
that g is Riemann integrable. 

In fact, since every step function has at most a finite set of points of discontinuity, 
then: Every step function on [a, b] is Riemann integrable. 

(b) Since it was seen in Theorem 5.5 .4 that the set of points of discontinuity of a monotone 
function is countable, we conclude that: Every monotone function on [a, b] is Riemann 
integrable. 

(c) The function G in Example 7.1.3(e) is discontinuous precisely at the points D := 
{ 1, 1/2, · · · , 1 In, · · ·}. Since this is a countable set, it is a null set and Lebesgue's Criterion 
implies that G is Riemann integrable. 

(d) The Dirichlet function was shown in Example 7 .2.2(b) not to be Riemann integrable. 
Note that it is discontinuous at every point of [0, 1]. Since it can be shown that the 

interval [0, 1] is not a null set, Lebesgue's Criterion yields the same conclusion. 

(e) Let h : [0, 1] __. 1R be Thomae's function, defined in Examples 5.1.4(h) and 7.1.6. 
In Example 5.1.4(h), we saw that h is continuous at every irrational number and is 

discontinuous at every rational number in [0, 1]. By Example 7.3.11, it is discontinuous on 
a null set, so Lebesgue's Criterion implies that Thomae's function is Riemann integrable 
on (0, 1], as we saw in Example 7.1.6. 0 

We now obtain a result that will enable us to take other combinations of Riemann 
integrable functions. 
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7.3.14 Composition Theorem Let f e 'R[a, b] with f([a, b]) c [c, d] and letqJ: [c, d] 
--+ 1R be continuous. Then the composition qJ of belongs to 'R[a, b]. 

Proof. Iff is continuous at a point u e [a, b], then qJ of is also continuous at u. Since 
the set D of points discontinuity of f is a null set, it follows that the set D 1 c D of points 
of discontinuity of qJ o f is also a null set. Therefore the composition qJ o f also belongs 
to 'R[a, b]. Q.E.D. 

It will be seen in Exercise 22 that the hypothesis that qJ is continuous cannot be dropped. 
The next result is a corollary of the Composition Theorem. 

7.3.15 Corollary Suppose that f e 'R[a, b]. Then its absolute value 1/1 is in 'R[a, b], 
and 

ilb II < { Ill :: M(b- a), 

where 1/(x)l ~ M for all x e [a, b]. 

Proof. We have seen in Theorem 7 .1.5 that if f is integrable, then there exists M such 
that 1/(x)l ~ M for all x e [a, b]. Let q;(t) := It I fort e [ -M, M]; then the Composition 
Theorem implies that Ill = q; of e 'R[a, b]. The first inequality follows from the fact that 
-Ill ~ f ::: 1/1 and 7.1.4(c), and the second from the fact that 1/(x)l ::: M. Q.E.D. 

7.3.16 The Product Theorem Iff and g belong to'R[a, b], then the product fg belongs 
to 'R[a, b]. 

Proof. If q;(t) := t2 fort e [ -M, M], it follows from the Composition Theorem that 
j 2 = q; of belongs to 'R[a, b]. Similarly, (/ + g)2 and g2 belong to 'R[a, b]. But since 
we can write the product as 

it follows that fg e 'R[a, b]. Q.E.D. 

Integration by Parts 

We will conclude this section with a rather general form of Integration by Parts for the 
Riemann integral, and Taylor's Theorem with the Remainder. 

7.3.17 Integration by Parts Let F, G be differentiable on [a, b] and let f := F' and 
g := G' belong to 'R[a, b]. Then 

(7) lb b lb 
a JG = FG L - a Fg. 

Proof. By Theorem 6.1.3(c), the derivative (FG)' exists on [a, b] and 

(FG)' = F'G + FG' = fG + Fg. 

Since F, G are continuous and f, g belong to 'R[a, b], the Product Theorem 7.3.16 implies 
that f G and F g are integrable. Therefore the Fundamental Theorem 7 .3.1 implies that 

FG 1: = lb (FG)' = lb fG + lb Fg, 

from which (7) follows. Q.E.D. 
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A special, but useful, case of this theorem is when 1 and g are continuous on [a, b] 
and F, G are their indefinite integrals F(x) := J: I and G(x) := J: g. 

We close this section with a version of Taylor's Theorem for the Riemann Integral. 

7.3.18 Taylor's Theorem with the Remainder Suppose that 1', · · ·, 1<n>, 1<"+1> exist 
on [a, b] and that 1<"+1> e R[a, b]. Then we have 

l'(a) 1<">(a) 
(8) l(b) = l(a) + -1!-(b- a)+···+ n! (b- a)"+ R,., 

where the remainder is given by 

1 lb R,. = t /(n+1>(t) · (b- t)" dt. 
n. a 

(9) 

Proof. Apply Integration by Parts to equation (9), with F(t) := l<">(t) and G(t) := 
(b- t)" /n!, so that g(t) = -(b- t)"-1 /(n- 1)!, to get 

1 lt=b 1 lb R,. = - t<">(t) · (b- t)" + l<">(t) · (b- a)"-1 dt 
n! r=a (n-1)! a 

=- t<n>(a) . (b- a)"+ I lb t<">(t). (b- t)n-1 dt. 
n! (n- I)! a 

If we continue to integrate by parts in this way, we obtain (8). Q.E.D. 

Exercises for Section 7.3 

1. Extend the proof of the Fundamental Theorem 7 .3.1 to the case of an arbitrary finite set E. 

2. If n eN and Hn(x) := xn+l /(n + 1) for x e [a, b], show that the Fundamental Theorem 7.3.1 
implies that I: xn dx = (bn+l - an+l)/(n + 1). What is the set E here? 

3. H g(x) := x for lxl ~ 1 and g(x) := -x for lxl < 1 and if G(x) := ~lx2 - 11, show that 
I~2 g(x) dx = G(3) - G( -2) = 5/2. 

4. Let B(x) := -~x2 for x < 0 and B(x) := ~x2 for x::: 0. Show that I: lxl dx = B(b)- B(a). 

5. Let I : [a, b] ~ R and let C e .R. _ 
(a) H 4> : [a, b] -+ R is an antiderivative of I on [a, b], show that 4>c(x) := cl>(x) +Cis also 

an antiderivative of I on [a, b]. 
(b) H 4> 1 and 4> 2 are antiderivatives of I on [a, b], show that 4> 1 - 4> 2 is a constant function 

on [a, b]. 

6. HI e R[a, b] and if c e [a, b), the function defined by Fc(z) := fcz I for z e [a, b] is called the 
indefinite integral of I with basepoint c. Find a relation between Fa and Fe. 

7. We have seen in Example 7 .1.6 that Thomae 's function is in 'R[O, 1] with integral equal to 0. Can 
the Fundamental Theorem 7 .3.1 be used to obtain this conclusion? Explain your answer. 

8. Let F(x) be defined for x ::: 0 by F(x) := (n- l)x- (n- 1)n/2 for x e [n- 1, n), n eN. 
Show that F is continuous and evaluate F' (x) at points where this derivative exists. Use this 
result to evaluate I:lxl dx forO~ a < b, where (x) denotes the greatest integer in x, as defined 
in Exercise 5.1.4. 

9. Let 1 e R[a, b] and define F(x) := J,_JC I for x e [a, b]. 
JC a 

(a) Evaluate G(x) := fc I in terms ofF, where c e [a, b]. 
(b) Evaluate H(x) :=I: I in terms of F. 

rsmx I. (c) Evaluate S(x) := Jr tn terms of F. 
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10. Let f : [a, b] ~ 1R be continuous on [a, b] and let v : [c, d] ~ R be differentiable on [c, d] 
with v([c, d]) ~ [a, b]. If we define G(x) := fav<x> f, show that G'(x) = f(v(x)) · v'(x) for all 
X E (c, d]. 

11. Find F'(x) when F is defined on [0, 1] by: 
rx2 

3 -1 (a) F(x) := Jo (1 + t ) dt. 

12. Let f : [0, 3] ~ 1R be defined by f(x) := x for 0 ~ x < 1, f(x) := 1 for 1 ~ x < 2 and 
f(x) := x for 2 ~ x ~ 3. Obtain formulas for F(x) := J; f and sketch the graphs off and F. 
Where is F differentiable? Evaluate F' (x) at all such points. 

13. Iff: 1R ~ 1R is continuous and c > 0, define g: 1R ~ 1R by g(x) := J:~cc f(t) dt. Show that 
g is differentiable on R and find g' (x ). 

14. Iff : [0, 1] ~ 1R is continuous and J; f = fx1 
f for all x e [0, 1], show that f(x) = 0 for all 

X E [0, 1]. 

15. Use the following argument to prove the Substitution Theorem 7.3 .8. Define F (u) : = J;ca > f (x )d x 
for u e /,and H(t) := F(({J(t)) forte J. Show that H'(t) = /(({J(t))qJ'(t) forte J and that 

11P<f3> f(x) dx = F(qJ(fJ)) = H (fJ) = 1/3 /(({J(t))qJ' (t) dt. 
f/J~) a 

16. Use the Substitution Theorem 7.3.8"to evaluate the following integrals. 

(a) 11 

1..fl+i'i d1, (b) 12 

1
2 (! + 13

)-
112 d1 = 4/3, 

r4J1+~d {4cos~d 2. 2 . 1 
(C) ]I ~ t, (d) ]I ~ t = (SID - SID ). 

17. Sometimes the Substitution Theorem 7.3.8 cannot be applied but the following result, called 
the "Second Substitution Theorem" is useful. In addition to the hypotheses of 7.3.8, assume 
that ({) 1 

( t) #- 0 for all t e J, so the function 1/1 : ({) ( J) ~ R inverse to ({) exists and has derivative 
1/1' (({J(t)) = 1/qJ' (t). Then 

1
{3 11/)({3) 

/(({J(t)) dt = f(x)l/t'(x) dx. 
a I{J(a) 

To prove this, let G(t) := J~ f(qJ(s))ds for t e J, so that G'(t) = /(({J(t)). Note that 
K(x) := G(l/t(x)) is differentiable on the interval qJ(J) and that K'(x) = G'(l/l(x))l/l'(x) = 
/(({) o 1/t(x))l/J'(x) = f(x)l/J'(x). Calculate G({J) = K(qJ({J)) in two ways to obtain the for
mula. 

18. Apply the Second Substition Theorem to evaluate the following integrals. 

1
9 

dt 13 
dt 

(a) ~· (b) .Jt+T = ln(3 + 2v'2) -In 3, 
I 2+ t I t t+l 

1
4 ~dt 14 

dt (c) ~· (d) ,Jt =Arctan(!)- Arctan{l/2). 
1 1 + t 1 t(t + 4) 

19. Explain why Theorem 7.3.8 and/or Exercise 7.3.17 cannot be applied to evaluate the following 
integrals, using the indicated substitution. 

1
4 ,Jidt 

(a) ,Jt ({J(t) = v'i, 
0 1 + 

[
4 cos ,Jt dt 

(b) lo .Jt ({J(t) = v'i, 

(c) L: ,/1 + 2111 d1 q:>(1) = 111. (d) 11 

dt ({J(t) =Arcsin t. 
0~ 

20. (a) If z1 and z2 are null sets, show that z1 u z2 is a null set. 
(b) More generally, if zn is a null set for each n EN, show that u:. zn is a null set. [Hint: 

Given e > 0 and n e N, let { 1: : k e N} be a countable collection of open intervals whose 
union contains Zn and the sum of whose lengths is~ ej2n. Now consider the countable 
collection {Jk : n, k e N}.] 
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21. Let f, g e 'R[a, b]. 
(a) If t e R, show that I:<rf ± g)2 ~ 0. 

(b) Use (a) to show that 21 I: fgl ~ t I: / 2 +(1ft) I: g2 fort > 0. 

(c) If I: / 2 = 0, show that I: fg = 0. 

(d) Now prove that I I: fg r ~<I: lfgl)2 ~<I: / 2
). <I: g2

). This inequality is called the 
Caucby-Bunyakovsky-Schwarz Inequality (or simply the Schwarz Inequality). 

22. Let h : [0, 1]--+ R be Thomae's function and let sgn be the signum function. Show that the 
composite function sgn o his not Riemann integrable on [0, 1]. 

Section 7.4 Approximate Integration 

The Fundamental Theorem of Calculus 7.3.1 yields an effective method of evaluating 
the integral J: f provided we can find an antiderivative F such that F'(x) = f(x) when 
x e [a, b]. However, when we cannot find such an F, we may not be able to use the Funda
mental Theorem. Nevertheless, when f is continuous, there are a number of techniques for 
approximating the Riemann integral J: f by using sums that resemble the Riemann sums. 

One very elementary procedure to obtain quick estimates of J: f, based on Theorem 
7.1.4(c), is to note that if g(x) ~ f(x) ~ h(x) for all x e [a, b], then 

lb g :::: lb f :::: lb h. 

If the integrals of g and h can be calculated, then we have bounds for J: f. Often these 
bounds are accurate enough for our needs. 

For example, suppose we wish to estimate the value of J0
1 

e -x
2 

dx. It is easy to show 
2 

that e-x ~ e-x ~ I for x e [0, 1], so that 

11 

e-x dx :::; 11 

e-x
2 
dx :::; 11 

1 dx. 

Consequently, we have 1 - 1/e ~ f0
1 e-x

2 
dx ~ 1. If we use the mean of the bracketing 

values, we obtain the estimate 1 - 1j2e ~ 0.816 for the integral with an error less than 
1 f2e < 0.184. This estimate is crude, but it is obtained rapidly and may be quite satis
factory for our needs. If a better approximation is desired, we can attempt to find closer 
approximating functions g and h. 

2 
Taylor's Theorem 6.4.1 can be used to approximate e-x by a polynomial. In using 

Taylor's Theorem, we must get bounds on the remainder term for our calculations to have 
significance. For example, if we apply Taylor's Theorem to e-Y for 0 ~ y ~ 1, we get 

e-Y = 1 - y + 4Y2- !Y3 + R3, 

where R
3 

= y4 e -c /24 where c is some number with 0 ~ c ~ 1. Since we have no better 
information as to the location of c, we must be content with the estimate 0 ~ R3 ~ y

4 /24. 
Hence we have 
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where 0 =:: R3 =:: x 8 /24, for x E [0, 1]. Therefore, we obtain 

11 2 11 11 
0 

e-x dx = 
0 

(1-x2 + !x4 -1x6 )dx + 
0 

R3 dx 

= 1 - ! + 1~ - 4~ + { R3 dx. 

Since we have 0 =:: f0
1 

R3 dx =:: 9.~ = 2~6 < 0.005, it follows that 

11 2 

0 
e-x dx ~ ~~ (~ 0.7429), 

with an error less than 0.005. 

EqualPartitions -----------------------------------------------------------------------

If f : [a, b] --+ 1R is continuous, we know that its Riemann integral exists. To find an 
approximate value for this integral with the minimum amount of calculation, it is convenient 
to consider partitions 'P n of [a, b] into n equal subintervals having length h" := (b - a) In. 
Hence 'Pn is the partition: 

a < a + hn < a + 2hn < · · · < a + nhn = b. 

If we pick our tag points to be the left endpoints and the right endpoints of the subintervals, 
we obtain the nth left approximation given by 

n-1 

Ln(f) := hn L f(a + khn), 
k=O 

and the nth right approximation given by 
n 

Rn(f) := hn LJ(a +khn). 
k=1 

It should be noted that it is almost as easy to evaluate both of these approximations as only 
one of them, since they differ only by the terms f(a) and f(b). 

Unless we have reason to believe that one of L" (f) or R" (/) is closer to the actual 
value of the integral than the other one, we generally take their mean: 

! {Ln(/) + Rn(/}}' 

which is readily seen to equal 
n-1 

(1) Tn (/) := hn <! f(a) + L f(a + khn) + ! /(b)), 
k=1 

as a reasonable approximation to J: f. 
However, we note that iff is increasing on [a, b], then it is clear from a sketch of the 

graph of f that 

(2) 

In this case, we readily see that 

llb I- T.(/)1 ::5 ~ (R.(/)- L.<f>) 

= ~h. (/(b) - /(a)) = (/(b) - f(a)) . (b ~a). 



a 

7.4 APPROXIMATE INTEGRATION 221 

An error estimate such as this is useful, since it gives an upper bound for the error of the 
approximation in terms of quantities that are known at the outset. In particular, it can be 
used to determine how large we should choose n in order to have an approximation that 
will be correct to within a specified error B > 0. 

The above discussion was valid for the case that f is increasing on [a, b]. Iff is 
decreasing, then the inequalities in (2) should be reversed. We can summarize both cases 
in the following statement. 

7.4.1 Theorem Iff: [a, b]--+ R is monotone and ifTn(f) is given by (1), then 

(3) 11b f- Tn(f)l :S lf(b)- f(a)l· (b ~a). 

2 
7.4.2 Example If f (x) := e-x on [0, 1], then f is decreasing. It follows from (3) 
that if n = 8, then I J0

1 e-x
2 
dx- T8(f)l :::;: (1 - e-1)/16 < 0.04, and if n = 16, then 

1 J0
1 e-x

2 
dx ...... T16 (f)l < (1 - e-1)/32 < 0.02. Actually, the approximation is consider

able better, as we wi~l see in Example 7.4.5. 0 

The Trapezoidal Rule 

The method of numerical integration called the "Trapezoidal Rule" is based on approximat
ing the continuous function f : [a, b]--+ R by a piecewise linear continuous function. Let 
n E N and, as before, let h n : = ( b - a)/ n and consider the partition P n. We approximate f 
by the piecewise linear function gn that passes through the points (a+ khn, f(a + khn)), 

where k = 0, 1, · · ·, n. It seems reasonable that the integral J: f will be "approximately 

equal to" the integral J: gn when n is sufficiently large (provided that f is reasonably 
smooth). 

Since the area of a trapezoid with horizontal base h and vertical sides 11 and 12 is known 
to be 4h(11 + 12), we have 

1
a+(k+1)hn 

gn = 4hn · [f(a + khn) + f(a + (k + 1)hn)], 
a+khn 

fork= 0, 1, · · ·, n- 1. Summing these terms and noting that each partition point in Pn 
except a and b belongs to two adjacent subintervals, we obtain 

{ gn = hn( V(a) + f(a + hn) + · · · + f(a + (k- I)hn) + V(b)). 

But the term on the right is precisely Tn(f), found in (1) as the mean of Ln(f) and Rn(f). 
We call Tn (f) the nth Trapezoidal Approximation of f. 

In Theorem 7 .4.1 we obtained an error estimate in the case where f is monotone; we 
now state one without this restriction on f, but in terms of the second derivative f" of f. 

7.4.3 Theorem Let f, f' and f" be continuous on [a, b] and let Tn (f) be the nth 
Trapezoidal Approximation (1). Then there exists c E [a, b] such that 

(4) Tn (f) - { f = (b ~;)h~ · f" (c). 

A proof of this result will be given in Appendix D; it depends on a number of results 
we have obtained in Chapters 5 and 6. 
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The equality ( 4) is interesting in that it can give both an upper bound and a lower bound 
forthedifferenceTn(f)- J: f.Forexample,if/"(x) ~A> Oforallx e [a,b],then(4) 
implies that this difference always exceeds A A (b - a )h;. H we only have /" (x) ~ 0 for 
x e [a, b], which is the case when f is convex(= concave upward), then the Trapezoidal 
Approximation is always too large. The reader should draw a figure to visualize this. 

However, it is usually the upper bound that is of greater interest. 

7.4.4 Corollary Let f, f' and f" be continuous, and let 1/"(x)l < B2 for all x e [a, b]. 
Then 

(5) I
T(f)-1b tl < (b-a)h; ·B = (b-a)3 ·B 

n a - 12 2 12n2 2 

When an upper bound B2 can be found, (5) can be used to determine how large n must 
be chosen in order to be certain of a desired accuracy. 

2 
7.4.5 Example If f(x) :=e-x on [0, 1], then a calculation shows that f"(x) = 

2 
2e-x (2x2 - 1), so that we can take B2 = 2. Thus, if n = 8, then 

r• 2 1 
ITs(/)- }

0 
11 ::; 12 · 64 = 384 < 0·003· 

On the other hand, if n = 16, then we have 

r• 2 1 I T16 {f) - }
0 

f I ::; 12 · 256 = 1 536 < O.OOO 66· 

Thus, the accuracy in this case is considerably better than predicted in Example 7 .4.2 0 

The Midpoint Rule 

One obvious method of approximating the integral of f is to take the Riemann sums 
evaluated at the midpoints of the subintervals. Thus, if 'P n is the equally spaced partition 
given before, the Midpoint Approximation of f is given by 

Mn(f) := hn (f(a + ~hn) + f (a+ ~hn} + · · · + f (a (n- ~) hn}) 
n 

(6) = hn L f (a+ (k- ~) hn}. 
k=l 

Another method might be to use piecewise linear functions that are tangent to the 
graph of f at the midpoints of these subintervals. At first glance, it seems as if we would 
need to know the slope of the tangent line to the graph of f at each of the midpoints 
a+ (k- ~hn) (k = 1, 2, · · ·, n). However, it is an exercise in geometry to show that the 
area of the trapezoid whose top is this tangent line at the midpoint a + (k - ~ )hn is equal 
to the area of the rectangle whose height is f(a + (k- 4>hn>· (See Figure 7.4.1.) Thus, 
this area is given by ( 6), and the "Tangent Trapezoid Rule" turns out to be the same as 
the "Midpoint Rule". We now state a theorem showing that the Midpoint Rule gives better 
accuracy than the Trapezoidal Rule by a factor of 2. 
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a + (k- l)k 1 a+ (k- -)h 
2 

a+ kh 

Figure 7.4.1 The tangent trapezoid. 

.. 

7.4.6 Theorem Let f, f', and !" be continuous on [a, b] and let Mn(f) be the nth 
Midpoint Approximation ( 6). Then there exists y E [a, b] such that 

(7) l b (b a)h2 

a J- Mn(f) = 24 n . J"(y). 

The proof of this result is in Appendix D. 
As in the case with Theorem 7 .4.3, formula (7) can be used to give both an upper 

bound and a lower bound for the difference J: f - Mn (f), although it is an upper bound 
that is usually of greater interest. In contrast with the Trapezoidal Rule, if the function is 
convex, then the Midpoint Approximation is always too small. 

The next result is parallel to Corollary 7 .4.4. 

1.4.1 Corollary Letf,f',andf" becontinuous,andletlf"(x)l :S B2 forallx E [a,b]. 
Then 

~) 
I

Mn(f) -1b fl < (b- a)h~ . B = (b- a)3 . B 
24 2 24n2 2 • 

Simpson's Rule 

The final approximation procedure that we will consider usually gives a better approxi
imation than either the Trapezoidal or the Midpoint Rule and requires essentially no extra 
.calculation. However, the convexity (or the concavity) off does not give any information 
'about the error for this method. 

Whereas the Trapezoidal and Midpoint Rules were based on the approximation of f 
~y piecewise linear functions, Simpson's Rule approximates the graph of f by parabolic 
arcs. To help motivate the formula, the reader may show that if three points 

( -h, y0 ), (0, y1), and (h, y2 ) 

~are given, then the quadratic function q(x) := Ax2 + Bx + C that passes through these 
points has the property that 

l h q = ~h(Yo + 4yl + Yz). 
-h 
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Now let f be a continuous function on [a, b] and let n eN be even, and let hn := 
(b- a)fn. On each "double subinterval" 

we approximate f by n /2 quadratic functions that agree with f at the points 

Yn :=/(b). 

These considerations lead to the nth Simpson Approximation, defined by 

Sn(f) := !hn(f(a) + 4f(a + hn) + 2f(a + 2hn) + 4f(a + 3hn) 

(9) +2f(a + 4hn) + · · · + 2f(b- 2hn) + 4f(b- hn) + f(b) ). 

Note that the coefficients of the values of f at the n + 1 partition points follow the pattern 
1' 4, 2, 4, 2, ... ' 4, 2, 4, 1. 

We now state a theorem that gives an estimate about the accuracy of the Simpson 
approximation; it involves the fourth derivative of f. 

7.4.8 Theorem Let f, J;, f", t<3> and t<4
> be continuous on [a, b] and let n eN be 

even. If Sn(f) is the nth Simpson Approximation (9), then there exists c e [a, b] such 
that 

(10) 

A proof of this result is given in Appendix D. 
The next result is parallel to Corollaries 7 .4.4 and 7 .4. 7. 

7 .4.9 Corollary Let f, f', f", t<3> and t<4> be continuous on [a, b] and let I t<4> (x) I ::: 
B4 for all x E [a, b]. Then 

(11) Is (/) -1h tl < (b- a)h! . B = (b- a)s . B . 
n a - 180 4 180n4 4 

Successful use of the estimate ( 11) depends on being able to find an upper bound for 
the fourth derivative. 

7.4.10 Example If f(x) := 4e-x
2 

on [0, 1] then a calculation shows that 

J<4>(x) = 4e-x
2 
(4x4 - 12x2 + 3), 

whence it follows that l/<4>(x)l ::: 20 for x e [0, 1], so we can take B4 = 20. It follows 
from (11) that if n = 8 then 

I 
rl I 1 1 

Ss(f)- Jo f =:: 180. 84 . 20 = 36,864 < 0.00003 

and that if n = 16 then 

ls,6(f) -1' tl ~ 589~824 < o.ooooot7. 0 
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Remark The nth Midpoint Approximation M,. (/) can be used to "step up" to the (2n )th 
Trapezoidal and Simpson Approximations by using the formulas 

and 

that are given in the Exercises. Thus once the initial Trapezoidal Approximation T1 = T1 (/) 

has been calculated, only the Midpoint Approximations M,. = M,. (/) need be found. That 
is, we employ the following sequence of calculations: 

T1 = !<b- a)(f(a) +/(b)}; 

M 1 = (b-a)f(!<a+b)}, 

Exercises for Section 7.4 

T2 = !Mt + !Tt, 

T4 = !M2 + !T2, 

T8 = !M4 + !T4 , 

S2 = j M t + l Tl; 

S4 = jM2 + iT2; 

Ss = jM4 + iT4; 

I. Use the Trapezoidal Approximation with n = 4 to evaluate In 2 = I 1
2
(1/x) dx. Show that 

0.6866 ::: In 2 ::: 0.6958 and that 

I I 
0.0013 < 

768 
::: T4 -In 2 ::: 

96 
< 0.0105. 

2. Use the Simpson Approximation with n = 4 to evaluate In 2 = I 1
2 (1 I x) dx. Show that 0.6927 ::: 

In 2 ::: 0.6933 and that 

I I I 
0000016 <- · -- < S -ln2 < -- < 0.000521. 

. 25 1920 - 4 - 1920 

3. Let f (x) := (I + x 2
)-

1 for x e [0, 1]. Show that /"(x) = 2(3x2
- 1)(1 + x2

)-
3 and that 

l/"(x)l ::: 2 for x e [0, 1]. Use the Trapezoidal Approximation with n = 4 to evaluate 1C/4 = 
I0

1 
f (x) dx. Show that IT4(/)- (1C/4)1 ::: 1/96 < 0.0105. 

4. If the Trapezoidal Approximation T,. (/) is used to approximate 1C /4 as in Exercise 3, show that 
we must take n ~ 409 in order to be sure that the error is less than 1 o-6 • 

5. Let f be as in Exercise 3. Show that t<4>(x) = 24(5x4
- 10x2 + 1)(1 + x 2)-s and that 

lt<4>(x)l ::: 96 for x e [0, 1]. Use Simpson's Approximation with n = 4 to evaluate 7r/4. Show 
that IS4(/)- (1C/4)1 ::: 1/480 < 0.0021. 

6. If the Simpson ApproximationS,.(/) is used to approximate 1C/4 as in Exercise 5, show that we 
must take n ~ 28 in order to be sure that the error is less than 1 o-6 . 

7. If pis a polynomial of degree at most 3, show that the Simpson Approximations are exact. 

8. Show that if f"(x) ~ 0 on [a, b] (that is, iff is convex on [a, b]), then for any natural numbers 
m, n we have M,.(/) :::I: f(x) dx ::: Tm(f). If /"(x) ::: Oon [a, b], this inequality is reversed. 

9. Show that T2n(/) = ~[M,.(/) + T,.(/)]. 

10. Show that S2n (/) = j M,. (/) + j T,. (/). 

11. Show that one has the estimate IS,.(/)- I: f(x)dxl::: [<b-a)2/18n2]B2, where B2 ~ 
l/"(x)l for all x e [a, b]. 
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12. Note that / 0
1 (1 - x2

) 112 dx = 1r /4. Explain why the error estimates given by formulas (4), (7), 
and (10) cannot be used. Show that if h(x) = (1 - x2) 112 for x in [0, 1], then Tn (h) ~ 1r /4 ~ 
Mn(h). Calculate M 8(h) and T8(h). 

13. If his as in Exercise 12, explain why K := J0
11..ti h(x)dx = 1r/8 + 1/4. Show that lh"(x)l ~ 

2312 and that lh<4>(x)l ~ 9 · 2712 for x e [0, 1/.Ji]. Show that IK- Tn(h)l ~ 1/12n2 and that 
IK- Sn(h)l ~ 1/10n4

• Use these results to calculate 1r. 

In Exercises 14-20, approximate the indicated integrals, giving estimates for the error. Use a calculator 
to obtain a high degree of precision. 

14. 1\1 +x4
)

112 dx. 15. 12 

(4 +x3
)

112 
dx. 16. r·~. 

Jo 1 +x 

17. (1r sinx dx. 
Jo x 11r/2 dx 

18. . 
0 1 + sinx 

(1r/2 
19. Jo v'Siilx dx. 

20. 11 

cos (x2
) dx. 
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CHAPTERS 

SEQUENCES OF FUNCTIONS 

In previous chapters we have often made use of sequences of real numbers. In this chapter 
we shall consider sequences whose terms are functions rather than real numbers. Sequences 
of functions arise naturally in real analysis and are especially useful in obtaining approxi
mations to a given function and defining new functions from known ones. 

In Section 8.1 we will introduce two different notions of convergence for a sequence of 
functions: pointwise convergence and uniform convergence. The latter type of convergence 
is very important, and will be the main focus of our attention. The reason for this focus is 
the fact that, as is shown in Section 8.2, uniform convergence "preserves" certain properties 
in the ~ense that if each term of a uniformly convergent sequence of functions possesses 
these properties, then the limit function also possesses the properties. 

In Section 8.3 we will apply the concept of uniform convergence to define and derive 
the basic properties of the exponential and logarithmic functions. Section 8.4 is devoted to 
a similar treatment of the trigonometric functions. 

Section 8.1 Pointwise and Uniform Convergence 

Let A c 1R be given and suppose that for each n e N there is a function In : A --+ 1R; we 
shall say that <In> is a sequence of functions on A to 1R. Clearly, for each x e A, such a 
sequence gives rise to a sequence of real numbers, namely the sequence 

(I) 

obtained by evaluating each of the functions at the point x. For certain values of x e A 
the sequence ( 1) may converge, and for other values of x e A this sequence may diverge. 
For each x e A for which the sequence ( 1) converges, there is a uniquely determined real 
number lim(ln(x)). In general, the value of this limit, when it exists, will depend on the 
choice of the point x e A. Thus, there arises in this way a function whose domain consists 
of all numbers x e A for which the sequence ( 1) converges. 

8.1.1 Definition Let <In> be a sequence of functions on A c 1R to 1R, let A0 c A, and let 
I: A0 --+ 1R. We say that the sequence <In> converges on A0 to I if, for each x e A0 , the 
sequence <In (x)) converges to I (x) in 1R. In this case we call I the limit on A0 of the 
sequence <In>· When such a function I exists, we say that the sequence <In> is convergent 
on A0 , or that <In> converges pointwise on A0• 

It follows from Theorem 3.1.4 that, except for a possible modification of the domain 
A0 , the limit function is uniquely determined. Ordinarily we choose A0 to be the largest 
set possible; that is, we take A0 to be the set of all x e A for which the sequence ( 1) is 
convergent in 1R. 
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In order to symbolize that the sequence (/,.) converges on A0 to f, we sometimes 
write 

on A0 , or 

Sometimes, when /,. and f are given by formulas, we write 

f(x) =lim /,.(x) or for x e A0 • 

8.1.2 Examples (a) lim(x In) = 0 for x e JR. 
For n eN, let f,.(x) := xln and let f(x) := 0 for x e JR. By Example 3.1.6(a), we 

have lim( 1 In) = 0. Hence it follows from Theorem 3.2.3 that 

lim(f,.(x)) = Iim(xln) = x lim(11n) = x · 0 = 0 

for all x e IR. (See Figure 8.1.1.) 

(1 ,g{l)} 

Figure 8.1.1 /,.(x) = xfn. Figure 8.1.2 g,.(x) = x". 

(b) lim(x"). 
Let g,.(x) := x 11 for x e JR, n eN. (See Figure 8.1.2.) Clearly, if x = 1, then the 

sequence (g,. (1)) = (1) converges to 1. It follows from Example 3.1.11(b) that lim(x") = 0 
for 0 ~ x < 1 and it is readily seen that this is also true for -1 < x < 0. If x = -1, then 
g,. ( -1) = ( -1)11

, and it was seen in Example 3.2.8(b) that the sequence is divergent. 
Similarly, if lxl > 1, then the sequence (x 11

) is not bounded, and so it is not convergent 
in JR. We conclude that if 

g(x) := {~ for - 1 < x < 1, 
for x = 1, 

then the sequence (g,.) converges to g on the set ( -1, 1]. 

(c) lim ((x2 + nx)fn) = x for x e 1R. 
Let h,.(x) := (x2 + nx)ln for x e JR, n eN, and let h(x) := x for x e R. (See Fig

ure 8.1.3.) Since we have h,.(x) = (x21n) + x, it follows from Example 3.1.6(a) and 
Theorem 3.2.3 that h,.(x) ~ x = h(x) for all x e R. 
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Figure 8.1.3 h" (x) = (x 2 + nx)fn, Figure 8.1.4 F" (x) = sin(nx + n)fn. 

(d) lim( (1/n) sin(nx + n)) = 0 for x e 1R. 
Let F,.(x) := (1/n) sin(nx + n) for x e 1R, n eN, and let F(x) := 0 for x e R. (See 

Figure 8.1.4.) Since I sin yl ::: 1 for ally e 1R we have 

(2) jF"(x)- F(x)j = ~~ sin(nx + n)l :::;.; 

for all x e 1R. Therefore it follows that lim(F,.(x)) = 0 = F(x) for all x e R. The reader 
should note that, given any e > 0, if n is sufficiently large, then IF,. (x) - F (x) I < e for all 
values of x simultaneously! 0 

Partly to reinforce Definition 8.1.1 and partly to prepare the way for the important 
notion of uniform convergence, we reformulate Definition 8.1.1 as follows. 

8.1.3 Lemma A sequence (I,.) of functions on A c 1R to 1R converges to a function 
I : A0 --+ 1R on A0 if and only if for each e > 0 and each x e A0 there is a natural number 
K(e, x) such that ifn ~ K(e, x), then 

(3) ll,.(x)- l(x)l <e. 

We leave it to the reader to show that this is equivalent to Definition 8.1.1. We wish to 
emphasize that the value of K(e, x) will depend, in general, on both e > 0 andx e A0• The 
reader should confirm the fact that in Examples 8.1.2(a-c), the value of K(e, x) required 
to obtain an inequality such as ·(3) does depend on both e > 0 and x e A0• The intuitive 
reason for this is that the convergence of the sequence is "significantly faster" at some 
points than it is at others. However, in Example 8.1.2( d), as we have seen in inequality (2), 
if we choose n sufficiently large, we can make IF,. (x) - F (x) I < e for all values of x e 1R. 
It is precisely this rather subtle difference that distinguishes between the notion of the 
"pointwise convergence" of a sequence of functions (as defined in Definition 8.1.1) and the 
notion of ''uniform convergence". 

Uniform Convergence 

v r IJ : V 
8.1.4 Definition A sequence(/,.) of functions on A c R toR converges uniformly 
on A0 c A to a function I : A0 --+ 1R if for each e > 0 there is a natural number K (e) 
(depending one but not on x e A0) such that if n > K(e), then 

(4) ll,.(x)- l(x)l < e for all x e A0• 

. / . ' 
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In this case we say that the sequence <In> is uniformly convergent on A0 • Sometimes we 
write 

or for x e A0 • 

It is an immediate consequence of the definitions that if the sequence <In) is uniformly 
convergent on A0 to f, then this sequence also converges pointwise on A0 to f in the sense 
of Definition 8.1.1. That the converse is not always true is seen by a careful examination of 
Examples 8.1.2(a--c); other examples will be given below. 

It is sometimes useful to have the following necessary and sufficient condition for a 
sequence (/n) to fail to converge uniformly on A0 to f. 

8.1.5 Lenu)a A sequence (fn> of functions on A c 1R to 1R does not converge unifonnly 
on A0 c A to a function f : A0 ---+ 1R if and only if for some Eo > 0 there is a subsequence 
(fn ) of(fn) and a sequence (xk) in A0 such that 

k 

(5) ltnk (xk)- f(xk)' ~ E0 for all keN . 

. 
The proof of this result requires only that the reader negate Definition 8.1.4; we leave 

this to the reader as an important exercise. We now show how this result can be used. 

8.1.6 Examples (a) Consider Example 8.1.2(a). If we let nk := k and xk := k, then 
fn (xk) = I so that 1/n (xk) - f(xk)l = II - 01 = 1. Therefore the sequence (fn) does not 

k k 
converge uniformly on 1R to f. 
(b) Consider Example 8.1.2(b). If nk := k and xk := (4) t/k, then 

lgnk (xk)- g(xk)' = 14-01 = 4· 
Therefore the sequence (gn) does not converge uniformly on ( -1, 1] to g. 

(c) Consider Example 8.1.2(c). If nk := k and xk := -k, then hn (xk) = 0 and h(xk) = 
k 

-k so that lhn (xk)- h(xk)l = k. Therefore the sequence (hn) does not converge uniformly 
k 

on 1R to h. D 

The Uniform Norm -----------------------

In discussing uniform convergence, it is often convenient to use the notion of the uniform 
norm on a set of bounded functions. 

8.1.7 Definition H A c 1R and({): A ---+ 1R is a function, we say that({) is bounded on A 
if the set ({)(A) is a bounded subset of 1R. H ({) is bounded we define the uniform norm of 
({)on A by 

(6) II({JIIA := sup{I({J(x)l : x e A}. 

Note that it follows that if E > 0, then 

(7) lfJ(X) I ::s E for all X EA. 

8.1.8 Lemma A sequence (fn> of bounded functions on A c 1R converges unifonnly on 
A to f if and only ifllfn- filA---+ 0. 
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Proof. (::}) If <In) converges uniformly on A to f, then by Definition 8.1.4, given any 
e > 0 there exists K(e) such that if n 2: K(e) and x e A then 

lfn(x)- /(x)l ~e. 

From the definition of supremum, it follows that II In - f II A ~ e whenever n > K (e). Since 
e > 0 is arbitrary this implies that II In - f II A ~ 0. 

( <=) If II In - f II A ~ 0, then given e > 0 there is a natural number H (e) such that if 
n 2: H(e)then 11/n- filA~ e.Itfollowsfrom(7)thatlfn<x)- /(x)l ~ eforalln > H(e) 
and x eA. Therefore (/n) converges uniformly on A to f. Q.E.D. 

We now illustrate the use of Lemma 8.1.8 as a tool in examining a sequence of bounded 
functions for uniform convergence. 

8.1.9 Examples (a) We cannot apply Lemma 8.1.8 to the sequence in Example 8.1.2(a) 
since the function In (x) - f (x) = xI n is not bounded on 1R. 

For the sake of illustration, let A := [0, 1]. Although the sequence (xln) did not 
converge uniformly on 1R to the zero function, we shall show that the convergence is 
uniform on A. To see this, we observe that 

1 
11/n- filA =sup {lxln- 01 : 0 ~ x ~ I}=

n 

so that II In - f II A ~ 0. Therefore (/n) is uniformly convergent on A to f. 
(b) Let gn(x) := xn for x e A := [0, 1] and n eN, and let g(x) := 0 for 0 ~ x < 1 and 
g(l) := 1. The functions gn(x)- g(x) are bounded on A and 

{
xn 

llgn-giiA=sup 0 for 0 ~ x < 1} = 1 
for x = 1 

for any n eN. Since llgn -gilA does not converge to 0, we infer that the sequence (gn) 
does not converge uniformly on A to g. 

(c) We cannot apply Lemma 8.1.8 to the sequence in Example 8.1.2(c) since the function 
hn(x)- h(x) = x 2 In is not bounded on 1R. 

Instead, let A := [0, 8] and consider 

llhn- hilA= sup{x2 In: 0 ~ x ~ 8} = 641n. 

Therefore, the sequence (hn) converges uniformly on A to h. 

(d) If we refer to Example 8.1.2(d}, we see from (2) that IIFn- Fila~ 11n. Hence (Fn) 
converges uniformly on 1R to F. 

(e) Let G(x) := xn(1 - x) for x e A := [0, 1]. Then the sequence (Gn(x)) converges to 
G(x) := 0 for each x eA. To calculate the uniform norm of Gn- G = Gn on A, we find 
the derivative and solve 

G~(x) = xn-t(n- (n + 1)x) = 0 

to obtain the point xn := nl(n + 1). This is an interior point of [0, 1], and it is easily 
verified by using the First Derivative Test 6.2.8 that G n attains a maximum on [0, 1] at xn. 
Therefore, we obtain 

1 
IIGniiA = Gn (xn) = (1 + lln)-n · -

1
, 

n+ 
which converges to ( 1 I e) · 0 = 0. Thus we see that convergence is uniform on A. 0 
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By making use of the uniform norm, we can obtain a necessary and sufficient condition 
for uniform convergence that is often useful. 

8.1.10 Cauchy Criterion for Uniform Convergence Let <In> be a sequence of bounded 
functions on A c JR. Then this sequence converges unifonnly on A to a bounded function 
1 if and only if for each e > 0 there is a number H (e) in N such that for all m, n ::: H (e), 
then II 1m- In IIA ~e. 

Proof. ( =>) If In ~ I on A, then given e > 0 there exists a natural number K (!e) such 
that if n ::: K (!e) then II In - I II A ~ ! e. Hence, if both m, n ::: K (!e), then we conclude 
that 

llm(x)- ln(x)l ~ lfm(x)- f(x)l + lfn(x)- l(x)l ~ !e + !e = e 
for all x EA. Therefore 111m- In IIA ~ e, form, n::: K(!e) =: H(e). 

(~)Conversely, suppose that fore > 0 there is H(e) such that if m, n ::: H(e), then 
II 1m - In II A ~ e. Therefore, for each x E A we have 

(8) llm(x)- ln(x)l ~111m- lniiA ~ e for m,n::: H_(e). 

It follows that <ln(x)) is a Cauchy sequence in IR; therefore, by Theorem 3.5.5, it is a 
convergent sequence. We define I : A ~ 1R by 

l(x) := lim(ln(x)) for x eA. 

If we let n ~ oo in (8), it follows from Theorem 3.2.6 that for each x E A we have 

for m ::: H(e). 

Therefore the sequence <In) converges uniformly on A to f. Q.E.D. 

Exercises for Section 8.1 

1. Show that lim(x/(x + n)) = 0 for all x e R, x ~ 0. 

2. Show that lim(nx/(1 + n2x 2
)) = 0 for all x e R. 

3. Evalua~e lim(nx/(1 + nx)) for x e ~' x ~ 0. 

4. Evaluate lim(xn I ( 1 + xn)) for X e R, X ~ 0. 

5. Evaluate lim((sinnx)/(1 + nx)) for x e R, x ~ 0. 

6. Show that lim(Arctan nx) = (1r /2)sgn x for x e R. 

7. Evaluate lim(e-nx) for X e R, X ~ 0. 

8. Show that 1im(xe-nx) = 0 for x e R, x ~ 0. 

9. Show that 1im(x2e-nx) = 0 and that lim(n2x 2e-nx) = 0 for x e R, x ~ 0. 

10. Show that lim ((cos 1r x)2n) exists for all x e R. What is its limit? 

11. Show that if a > 0, then the convergence of the sequence in Exercise 1 is uniform on the interval 
[0, a], but is not uniform on the interval [0, oo). 

12. Show that if a > 0, then the convergence of the sequence in Exercise 2 is uniform on the interval 
[a, oo), but is not uniform on the interval [0, oo). 

13. Show that if a > 0, then the convergence of the sequence in Exercise 3 is uniform on the interval 
[a, oo), but is not uniform on the interval [0, oo). 
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14. Show that if 0 < b < 1, then the convergence of the sequence in Exercise 4 is uniform on the 
interval [0, b), but is not uniform on the interval [0, 1]. 

15. Show that if a > 0, then the convergence of the sequence in Exercise 5 is uniform on the interval 
[a, oo), but is not uniform on the interval [0, oo). 

16. Show that if a > 0, then the convergence of the sequence in Exercise 6 is uniform on the interval 
[a, oo), but is not uniform on the interval (0, oo). 

17. Show that if a > 0, then the convergence of the sequence in Exercise 7 is uniform on the interval 
[a, oo), but is not uniform on the interval [0, oo). 

18. Show that the convergence of the sequence in Exercise 8 is uniform on [0, oo). 

19. Show that the sequence (x2e-nx) converges uniformly on [0, oo). 

20. Show that if a > 0, then the sequence (n 2x 2e-nx) converges uniformly on the interval [a, oo), 
but that it does not converge uniformly on the interval [0, oo). 

21. Show that if <In>' (gn) converge uniformly on the set A to I, g, respectively, then <In + gn) 
converges uniformly on A to I+ g. 

22. Show that if ln(x) := x + 1/n and l(x) := x for x e 1R, then <In> converges uniformly on 1R 
to I, but the sequence (I;) does not converge uniformly on JR. (Thus the product of uniformly 
convergent sequences of functions may not converge uniformly.) 

23. Let <In>' (gn) be sequences of bounded functions on A that converge uniformly on A to I, g, 
respectively. Show that <lngn) converges uniformly on A to I g. 

24. Let <In> be a sequence of functions that converges uniformly to I on A and that satisfies 
I In (x) I ~ M for all n e N and all x e A. If g is continuous on the interval [-M, M], show that 
the sequence (go In> converges uniformly togo I on A. 

Section 8.2 Interchange of Limits 

It is often useful to know whether the limit of a sequence of functions is a continuous 
function, a differentiable function, or a Riemann integrable function. Unfortunately, it 
is not always the case that the limit of a sequence of functions possesses these useful 
properties. 

8.2.1 Example (a) Let gn(x) := x" for x e [0, 1] and n eN. Then, as we have noted 
in Example 8.1.2(b), the sequence (gn) converges pointwise to the function 

{ 
0 for 0 < x < 1, 

g(x) := 1 
for x = 1. 

Although all of the functions g n are continuous at x = 1, the limit function g is not 
continuous at x = 1. Recall that it was shown in Example 8.1.6(b) that this sequence does 
not converge unifonnly tog on [0, 1]. 

(b) Each of the functions gn(x) = x" in part (a) has a continuous derivative on [0, 1]. 
However, the limit function g does not have a derivative at x = 1, since it is not continuous 
at that point. 
(c) Let/,. : [0, 1] ~ 1R be defined for n > 2 by 

for 0::; x < lfn, 
for 1/n ::; x < 2/n, 
for 2/ n ~ x ~ 1. 



(See Figure 8.2.1.) It is clear that each of the functions /, is continuous on [0, 1]; hence 
it is Riemann integrable. Either by means of a direct calculation, or by referring to the 
significance of the integral as an area, we obtain 

11 

fn(x)dx = 1 for n > 2. 

The reader may show that /, (x) ~ 0 for all x e [0, 1]; hence the limit function f vanishes 

identically and is continuous (and hence integrable), and / 0
1 f(x) dx = 0. Therefore we 

have the uncomfortable situation that: 

11 

f(x)dx = 0 =F 1 =lim [ fn(x)dx. 

0 1 2 1 
n n 

Figure 8.2.1 Example 8.2.l(c). 

(d) Those who consider the functions/, in part (c) to be "artificial" may prefer to consider 

the sequence (h,) defined by h,(x) := 2nxe-"x
2 

for x e [0, 1], n eN. Since h, = H~, 
2 

where H,(x) := -e-nx , the Fundamental Theorem 7.3.1 gives 

11 

hn(x)dx = Hn(I)- Hn(O) = 1-e-n. 

It is an exercise to show that h(x) := lim(h,(x)) = 0 for all x e [0, 1]; hence 

11 

h(x)dx =F lim 11 

hn(x)dx. D 

Although the extent of the discontinuity of the limit function in Example 8.2.1(a) is 
not very great, it is evident that more complicated examples can be constructed that will 
produce more extensive discontinuity. In any case, we must abandon the hope that the limit 
of a convergent sequence of continuous [respectively, differentiable, integrable] functions 
will be continuous [respectively, differentiable, integrable]. 

It will now be seen that the additional hypothesis of uniform convergence is sufficient 
to guarantee that the limit of a sequence of continuous functions is continuous. Similar 
results will also be established for sequences of differentiable and integrable functions. 

Interchange of Limit and Continuity -----------------

8.2.2 Theorem Let(/,) be a sequence of continuous functions on a set A c R and 
suppose that(/,) converges uniformly on A to a function f : A ~ R. Then f is continuous 
on A. 
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Proof. By hypothesis, given e > 0 there exists a natural number H := H(!e) such that 

if n =::: H then 1/n(x)- /(x)l < !e for all x eA. Let c e A be arbitrary; we will show 
that f is continuous at c. By the Triangle Inequality we have 

1/(x)- f(c)l ~ lf(x)- /H(x)l + I!H(x)- /H(c)l + I!H(c)- /(c)l 

~ le + I!H(x)- /H(c)l +!e. 
Since / 8 is continuous at c, there exists a number 8 := 8(!e, c, f 8 ) > 0 such that if 

lx - cl < 8 and x e A, then 1/ 8 (x) - f 8 (c)l < !e. Therefore, if lx - cl < 8 and x e A, 
then we have 1/(x)- f(c)l <e. Since e > 0 is arbitrary, this establishes the continuity of 
f at the arbitrary point c e A. (See Figure 8.2.2.) Q.E.D. 

(x,fH (x)) 

!+ £13 

f-£13 

Figure 8.2.2 1/(x)- /(c)l <E. 

Remark Although the uniform convergence of the sequence of continuous functions 
is sufficient to guarantee the continuity of the limit function, it is not necessary. (See 
Exercise 2.) 

Interchange of Limit and Derivative ----------------

We mentioned in Section 6.1 that Weierstrass showed that the function defined by the series 

00 

f(x) := L2-k cos(3kx) 
k=O 

is continuous at every point but does not have a derivative at any point in 1R. By considering 
the partial sums of this series, we obtain a sequence of functions (/n) that possess a 
derivative at every point and are uniformly convergent to f. Thus, even though the sequence 
of differentiable functions (/n) is uniformly convergent, it does not follow that the limit 
function is differentiable. 

We now show that if the sequence of derivatives (/~) is uniformly convergent, then 
all is well. H one adds the hypothesis that the derivatives are continuous, then it is possible 
to give a short proof, based on the integral. (See Exercise 11.) However, if the derivatives 
are not assumed to be continuous, a somewhat more delicate argument is required. 

8.2.3 Theorem Let J c 1R be a bounded interval and let (/n) be a sequence of functions 
on J to 1R. Suppose that there exists x0 e J such that (fn (x0)) converges, and that the 
sequence (/~) of derivatives exists on J and convet:ges uniformly on J to a function g. 

Then the sequence (fn> converges uniformly on J to a function f that has a derivative 
at eve.ry point of J and !' = g. 
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Proof. Let a < b be the endpoints of J and let x e J be arbitrary. If m, n eN, we apply 
the Mean Value Theorem 6.2.4 to the difference fm- fn on the interval with endpoints x0 , 

x. We conclude that there exists a point y (depending on m, n) such that 

fm(x)- fn(x) = fm<xo)- fn<xo) + (x- Xo){/~(y)- /~(y)}. 

Hence we have 

(1) 

From Theorem 8.1.1 0, it follows from ( 1) and the hypotheses that (fn (x0)) is convergent and 
that (/~) is uniformly convergent on J, that (fn) is uniformly convergent on J. We denote 
the limit of the sequence (/n) by f. Since the fn are all continuous and the convergence is 
uniform, it follows from Theorem 8.2.2 that f is continuous on J. 

To establish the existence of the derivative of f at a point c e J, we apply the Mean 
Value Theorem 6.2.4 to fm - fn on an interval with end points c, x. We conclude that there 
exists a point z (depending on m, n) such that 

{fm(x)- fn(x)}- {fm(c)- fn(c)} = (x- c) {/~(z)- /~(z)}. 

Hence, if x ::f:. c, we have 

I 
fm(x)- fm(c) _ fn(x)- fn(c) I ~ IIi,' _/,'II . 

x-c x-c m n} 

Since (/~) converges uniformly on J, if e > 0 is given there exists H (e) such that if 
m, n ~ H(e) and x ::f:. c, then 

(2) I fm(x)- fm(c) _ fn(x)- fn(c) I <E. 
x-c x-c 

If we take the limit in (2) with respect tom and use Theorem 3.2.6, we have 

I 
f(x)- f(c) _ fn(x)- fn(c) I ~e. 

x-c x-c 

provided that x ::f:. c, n ~ H(e). Since g(c) = lim(/~(c)), there exists N(e) such that if 
n ~ N(e), then 1/~(c)- g(c)l <e. Now let K := sup{H(e), N(e)}. Since f~(c) exists, 
there exists cSK(e) > 0 such that ifO < lx- cl < cSK(e), then 

I 
tK<x>- tK<c> !' < >I - K c <e. 

x-c 

Combining these inequalities, we conclude that if 0 < lx - c I < cS K (e), then 

I 
f(x)- f(c) ( >I 3 -----gc <e. 

x-c 

Since e > 0 is arbitrary, this shows that f' (c) exists and equals g (c). Since c e J is arbitrary, 
we conclude that f' = g on J. Q.E.D. 

Interchange of Limit and Integral ----------------

We have seen in Example 8.2.1(c) that if (/n) is a sequence 'R.[a, b] that converges on [a, b] 
to a function fin 'R.[a, b], then it need not happen that 

(3) lb lb f =lim a n-t-oo a fn. 
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We will now show that uniform convergence of the sequence is sufficient to guarantee that 

this equality holds. 

8.2.4 Theorem Let (/n) be a sequence of functions in 'R[a, b] and suppose that (/n) 

converges uniformly on [a, b] to f. Then f e 'R[a, b] and (3) holds. 

Proof. It follows from the Cauchy Criterion 8.1.10 that, given e > 0 there exists H(e) 

such that if m > n ~ H(e) then 

for x e [a.b ]. 

Theorem 7 .1.4 implies that 

-e(b -a) !: 1b /,. -1b fn !: e(b -a). 

Since e > 0 is arbitrary, the sequence <J: fm) is a Cauchy sequence in IR and therefore 

converges to some number, say A e 1R. 
We now show f e 'R [a, b] with integral A. If e > 0 is given, let K(e) be such that 

if m > K(e}, then 1/m(x)- f(x)l < e for all x e [a, b]. If P := {([x;_ 1, X;], t;)l7=1 is any 

tagged partition of [a, b] and if m > K(e), then 

IS<f,; P>- S(f; P>l = It {/,.(1;)- f(t;)} (X; -X;_.), 
n 

~ L lfm(t;)- /(I;) I (X;- Xi-1) 

i=1 

n 

~ L e(x; - X;_ 1) = e(b- a). 
i=1 

We now choose r ~ K (e) such that I J: fr - A I < e and we let lJ r,e > 0 be such that 
b • • 

I fa fr- S(fr; P)l < e whenever liP II < llr,e· Then we have 

IS<f; P>- AI !: IS<f; P>- s(f,; P>l + Is(/,; P>- { t,l + 11b /, -AI 

~ e(b -a) + e + e = e(b -a + 2). 

But since e > 0 is arbitrary, it follows that f e 'R [a, b] and J: f =A. Q.E.D. 

The hypothesis of uniform convergence is a very stringent one and restricts the utility 

of this result. In Section 10.4 we will obtain some far-reaching generalizations of Theorem 

8.2.4. For the present, we will state a result that does not require the uniformity of the 

convergence, but does require that the limit function be Riemann integrable. The proof is 

omitted. 

8.2.5 Bounded Convergence Theorem Let (/n) be a sequence in 'R[a, b] that con

verges on [a, b] to a function f e R,[a, b]. Suppose also that there exists B > 0 such that 

1/n(x)l ~ B for all x e [a, b], n eN. Then equation (3) holds. 
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Dini 's Theorem 

We will end this section with a famous theorem due to Ulisse Dini (1845-1918) which 
gives a partial converse to Theorem 8.2.2 when the sequence is monotone. We will present 
a proof using nonconstant gauges (see Section 5.5). 

8.2.6 Dini 's Theorem Suppose that (fn) is a monotone sequence of continuous functions 
on I :=[a, b] that converges on I to a continuous function f. Then the convergence of the 
sequence is uniform. 

Proof. We suppose that the sequence (fn) is decreasing and let gm := fm- f. Then (gm) 
is a decreasing sequence of continuous functions converging on I to the 0-function. We 
will show that the convergence is uniform on I. 

Given e > 0, t e I, there exists me, eN such that 0 ~ gm (t) < s/2. Since gm is 
' £,t £,t 

continuous at t, there exists o E ( t) > 0 such that 0 ~ g m (x) < e for all x e I satisfying 
£,t 

lx- tl ~ oE(t). Thus, oE is a gauge on I, and ifP = {(Ii' t;)}?=t is a os-fine partition, we 
set ME := max{mE 

1 
, ···,mE, }. If m 2:: ME and x e I, then (by Lemma 5.5.3) there exists 

• I • n 
an indeX i With IX- I; I~ OE(t;) and henCe . 

0 ~ gm(x) ~ gm,t. (x) <e. 
I 

Therefore, the sequence (gm) converges uniformly to the 0-function. Q.E.D. 

It will be seen in the exercises that we cannot drop any one of the three hypotheses: (i) 
the functions fn are continuous, (ii) the limit function f is continuous, (iii) I is a closed 
bounded interval. 

Exercises for Section 8.2 

1. Show that the sequence ( (xn I ( 1 + xn)) does not converge uniformly on [0, 2] by showing that 
the limit function is not continuous on [0, 2]. 

2. Prove that the sequence in Example 8.2.1 (c) is an example of a sequence of continuous functions 
that converges nonuniformly to a continuous limit. 

3. Construct a sequence of functions on [0, 1] each of which is discontinuous at every point of [0, 1] 
and which converges uniformly to a function that is continuous at every point. 

4. Suppose <In> is a sequence of continuous functions on an interval/ that converges uniformly on 
I to a function f. If (xn) ~ I converges to x0 e /,show that lim(fn(xn)) = f(x0 ). 

5. Let I: 1R ~ 1R be uniformly continuous on 1R and let fn(x) := f(x + 1/n) for x e R. Show 
that <In) converges uniformly on 1R to f. 

6. Let In (x) := 1/(1 + x)n for x e [0, 1]. Find the pointwise limit f of the sequence <In> on [0, 1]. 
Does (/n) converge unifonnly to f on [0, 1]? 

7. Suppose the sequence (/n) converges uniformly to I on the set A, and suppose that each fn is 
bounded on A. (That is, for each n there is a constant Mn such that I In (x) I ~ Mn for all x e A.) 
Show that the function f is bounded on A. 

8. Let fn(x) := nxf(l + nx2
) for x e A:= [0, oo), Show that each In is bounded on A, but the 

pointwise limit f of the sequence is not bounded on A. Does (/n) converge unifonnly to f on A? 
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9. Let /n(x) := xn fn for x e [0, 1]. Show that the sequence (/n) of differentiable functions con
verges uniformly to a differentiable function f on [0, 1], and that the sequence(/~) converges 
on [0, 1] to a function g, but that g(l) :f= /'(1). 

10. Let gn(x) := e-nx fn for x ::: 0, n eN. Examine the relation between lim(gn) and lim(g~). 

11. Let I :=[a, b) and let (/n) be a sequence of functions on I -+ R that converges on I to f. 
Suppose that each derivative /~ is continuous on I and that the sequence (/~) is uniformly 
convergent tog on I. Prove that /(x) - /(a) = J: g(t) dt and that f' (x) = g(x) for all x e I. 

12. Show that lim J1
2 

e-nx
2 

dx = 0. 

13. If a > 0, show that limJ: (sinnx)/(nx) dx = 0. What happens if a= 0? 

14. Let fn(x) := nxf(l + nx) for x e [0, 1]. Show that (/n) converges nonuniformly to an inte

grable function f and that / 0
1 

f (x) dx = lim / 0
1 

In (x) dx. 

15. Let gn(x) := nx(l- x)n for x e [0, 1], n eN. Discuss the convergence of(gn) and (/0
1 

gn dx). 

16. Let {r1, r2 , • • ·, rn · · ·} be an enumeration of the rational numbers in I := [0, 1], and let fn : 
I -+ 1R be defined to be 1 if x = r 1, • • • , r n and equal to 0 otherwise. Show that In is Riemann 
integrableforeachn e N,that/1(x) ~ / 2 (x) ~ · · · ~ fn(x) ~ ···andthatf(x) := lim(/n(x)) 
is the Dirichlet function, which is not Riemann integrable on [0, 1]. 

17. Let In (x) := 1 for x e (0, 1/n) and In (x) := 0 elsewhere in [0, 1]. Show that (/n) is a decreas
ing sequence of discontinuous functions that converges to a continuous limit function, but the 
convergence is not uniform on [0, 1]. 

18. Let fn(x) := xn for x e [0, 1], n eN. Show that (/n) is a decreasing sequence of continuous 
functions that converges to a function that is not continuous, but the convergence is not uniform 
on [0, 1]. 

19. Let/n(x) :=x/nforx e [O,oo),n e N.Showthat(/n)isadecreasingsequenceofcontinuous 
functions that converges to a continuous limit function, but the convergence is not uniform on 
[0, oo). 

20. Give an example of a decreasing sequence <In) of continuous functions on [0, 1) that converges 
to a continuous limit function, but the convergence is not uniform on [0, 1 ). 

Section 8.3 The Exponential and Logarithmic Functions 

We will now introduce the exponential and logarithmic functions and will derive some of 
their most important properties. In earlier sections of this book we assumed some familiarity 
with these functions for the purpose of discussing examples. However, it is necessary at 
some point to place these important functions on a firm foundation in order to establish 
their existence and determine their basic properties. We will do that here. There are several 
alternative approaches one can take to accomplish this goal. We will proceed by first proving 
the existence of a function that has itself as derivative. From this basic result, we obtain 
the main properties of the exponential function. The logarithm function is then introduced 
as the inverse of the exponential function, and this inverse relation is used to derive the 
properties of the logarithm function. 

The Exponential Function 

We begin by establishing the key existence result for the exponential function. 
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8.3.1 Theorem There exists a function E : 1R --+ 1R such that: 

(i) E'(x) = E(x) for all x e IR. 
(ii) E (0) = 1. 

Proof. We inductively define a sequence (En) of continuous functions as follows: 

( 1) E 1 (x) : = 1 + x, 

(2) En+1(x): = 1 + f' En(t)dt, 

for all n eN, x e 1R. Clearly E 1 is continuous on 1R and hence is integrable over any 
bounded interval. If En has been defined and is continuous on 1R, then it is integrable over 
any bounded interval, so that En+ 1 is well-defined by the above formula. Moreover, it 
follows from the Fundamental Theorem (Second Form) 7.3.5 that En+1 is differentiable at 
any point x e 1R and that 

(3) for n eN. 

An induction argument (which we leave to the reader) shows that 

x x 2 xn 
(4) E (x) = 1 + - + - + · · · +- for x E lR. 

n I! 2! n! 

Let A > 0 be given; then if lx I ::: A and m > n > 2A, we have 

(5) 
xn+l xm 

IE (x)- E (x)l = + · · · +-
m n (n + 1)! m! 

< 1+-+···+ -An+l [ A (A)m-n-1] 
- (n + 1)! n n 

An+l 
< 2. 

(n + 1)! 

Since lim( A" /n !) = 0, it follows that the sequence (En) converges uniformly on the interval 
[-A, A] where A> 0 is arbitrary. In particular this means that (En(x)) converges for each 
x e JR. We define E : 1R --+ 1R by 

E(x) :=lim En(x) for x e JR. 

Since each x e 1R is contained inside some interval [-A, A], it follows from Theorem 8.2.2 
that E is continuous at x. Moreover, it is clear from ( 1) and (2) that En (0) = 1 for all n e N. 
Therefore E (0) = 1, which proves (ii). 

On any interval [-A, A] we have the uniform convergence of the sequence (En). In 
view of (3), we also have the uniform convergence of the sequence (E~) of derivatives. It 
therefore follows from Theorem 8.2.3 that the limit function E is differentiable on [-A, A] 
and that 

E'(x) = lim(E~(x)) = lim(En-l (x)) = E(x) 

for all x e [-A, A]. Since A > 0 is arbitrary, statement (i) is established. Q.E.D. 

8.3.2 Corollary The function E has a derivative of every order and E<n> (x) = E (x) for 
all n e N, x e lR. 
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Proof. If n = 1, the statement is merely property (i). It follows for arbitrary n e N by 
Induction. Q.E.D. 

8.3.3 Corollary Ifx > 0, then 1 + x < E(x). 

Proof. It is clear from (4) that if x > 0, then the sequence (E,.(x)) is strictly increasing. 
Hence E 1 (x) < E (x) for all x > 0. Q.E.D. 

It is next shown that the function E, whose existence was established in Theorem 8.3.1, 
is unique. 

8.3.4 Theorem The function E: JR ~ 1R that satisfies (i) and (ii) of Theorem 8.3.1 is 
un1que. 

Proof. Let E1 and E2 be two functions on 1R to 1R that satisfy properties (i) and (ii) of 
Theorem 8.3.1 and let F := E1 - E2• Then 

F'(x) = E~ (x)- E~(x) = E 1 (x)- E2(x) = F(x) 

for all x e JR ~d 

F(O) = E 1(0)- E2(0) =I- I= 0. 

It is clear (by Induction) that F has derivatives of all orders and indeed that p<n>(x) = F(x) 
for n e N, x e JR. 

Let x e 1R be arbitrary, and let lx be the closed interval with endpoints 0, x. Since F 
is continuous on lx, there exists K > 0 such that IF(t)l ~ K for all t e lx. H we apply 
Taylor's Theorem 6.4.1 to F on the intervallx and use the fact that F<k>(O) = F(O) = 0 
for all k e N, it follows that for each n eN there is a point c,. e Ix such that 

F' (0) p<n-l) F(n) (c } 
F(x) = F(O) + --x + · · · + xn-l + " x" 

1! (n-1)! n! 
F (c,.) ,. 

= X. 
n! 

Therefore we have 

IF (x)l :::: K I~ I" 
n. 

for all n eN. 

But since lim(lxl" /n!) = 0, we conclude that F(x) = 0. Since x e JR. is arbitrary, we infer 
that E 1 (x)- E2(x) = F(x) = 0 for all x E JR. Q.E.D. 

The standard terminology and notation for the function E (which we now know exists 
and is unique) is given in the following definition. 

8.3.5 Definition The unique function E : 1R ~ R such that E' (x) = E (x) for all x e 1R 
and E(O) = 1, is called the exponential function. The number e := E(1) is called Euler's 
number. We will frequently write 

exp(x) := E(x) or for x e JR. 

The number e can be obtained as a limit, and thereby approximated, in several different 
ways. [See Exercises 1 and 10, and Example 3.3.6.] 

The use of the notation r for E(x) is justified by property (v) in the next theorem, 
where it is noted that if r is a rational number, then E (r) and er coincide. (Rational exponents 
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were discussed in Section 5.6.) Thus, the function E can be viewed as extending the idea 
of exponentiation from rational numbers to arbitrary real numbers. For a definition of ax 
for a > 0 and arbitrary x e IR, see Definition 8.3.10. 

8.3.6 Theorem The exponential function satisfies the following properties: 

(iii) E (x) :f: 0 for all x e IR; 

(iv) E(x + y) = E(x)E(y) for all x, y e lR; 

(v) E(r) = er for all r E Q. 

Proof. (iii) Let a e 1R be such that E(a) = 0, and let Ja be the closed interval with 
endpoints 0, a. Let K ::: IE(t)l for all t e Ja. Taylor's Theorem 6.4.1, implies that for each 
n e N there exists a point en E Ja such that 

E' (a) E(n- 1> (a) 
1 = E(O) = E(a) + (-a)+···+ (-a)"-1 

1! (n-1)! 

E(n) (a) E (c } + (-a)"= n (-a)". 
(n)! n! 

Thus we have 0 < 1 ~ (KIn!) Ia I" for n eN. But since lim( Ia I" In!)= 0, this is a con
tradiction. 

(iv) Let y be fixed; by (iii) we have E(y) :f: 0. Let G : 1R ~ 1R be defined by 

G(x) := E(x + y) for x e JR. 
E(y) 

Evidently we have G' (x) = E' (x + y) IE (y) = E (x + y) IE (y) = G (x) for all x e IR, and 
G(O) = E(O + y)l E(y) = 1. Itfollowsfromtheuniquenessof E,provedinTheorem8.3.4, 
that G(x) = E(x) for all x e IR. Hence E(x + y) = E(x)E(y) for all x e JR. Since y E IR 
is arbitrary, we obtain (iv). 

(v) It follows from (iv) and Induction that if n e N, x e lR, then 

E(nx) = E(x)". 

If we let x = 1 In, this relation implies that 

whence it follows that E(11n) = e 1
'". Also we have E( -m) = 11 E(m) = 11em =e-m 

for m e N. Therefore, if m e Z, n e N, we have 

E(mln) = (E(11n)}m = (e1fn)m = emfn. 

This establishes (v). Q.E.D. 

8.3. 7 Theorem The exponential function E is strictly increasing on 1R and has range 
equal to {y e 1R: y > 0}. Further, we have 

(vi) lim E(x) = 0 and lim E(x) = oo. 
X-+-00 X-+00 

Proof. We know that E (0) = 1 > 0 and E (x) :f: 0 for all x e 1R. Since E is continuous 
on JR, it follows from Bolzano's Intermediate Value Theorem 5.3.7 that E(x) > 0 for all 
x e 1R. Therefore E' (x) = E (x) > 0 for x e 1R, so that E is strictly increasing on 1R. 
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It follows from Corollary 8.3.3 that 2 < e and that lim E (x) = oo. Also, if z > 0, then 
X-+00 

since 0 < E( -z) = 1/ E(z) it follows that lim E(x) = 0. Therefore, by the Intermediate 
X-+-00 

Value Theorem 5.3.7, every y e 1R withy> 0 belongs to the range of E. Q.E.D. 

TheLogaridunFunction -----------------------------------------

We have seen that the exponential function E is a strictly increasing differentiable function 
with domain 1R and range {y e 1R : y > 0}. (See Figure 8.3.1.) It follows that 1R has an 
inverse function. 

Figure 8.3.1 Graph of E. Figure 8.3.2 Graph of L. 

8.3.8 Definition The function inverse to E : 1R --+ 1R is called the logarithm (or the 
natural logarithm). (See Figure 8.3.2.) It will be denoted by L, or by ln. 

Since E and L are inverse functions, we have 

(L o E)(x) = x for all x e 1R 

and 

(Eo L)(y) = y for all y e lR, y > 0. 

These formulas may also be written in the form 

lnex = x, elny = y. 

8.3.9 Theorem The logarithm is a strictly increasing function L with domain {x e 1R : 
x > 0} and range lR. The derivative of Lis given by 

(vii) L'(x) = lfx for x > 0. 
The logarithm satisfies the functional equation 

(viii) L(xy) = L(x) + L(y) for x > 0, y > 0. 
Moreover, we have 

(ix) 

(x) 

(xi) 

L(l) = 0 and L(e) = 1, 

L(x') = rL(x) for x > 0, r e Q. 
lim L(x) = -oo and lim L(x) = oo. 

x-+0+ x-+oo 
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Proof. That L is strictly increasing with domain {x e 1R : x > 0} and range 1R follows 
from the fact that E is strictly increasing with domain 1R and range {y e 1R: y > 0}. 

(vii) Since E'(x) = E(x) > 0, it follows from Theorem 6.1.9 that Lis differentiable 
on (0, oo) and that 

I I 1 1 
L (x)- -- for x e (O,oo). 

- (E' o L)(x) - (Eo L)(x) x 

(viii) If x > 0, y > 0, let u := L(x) and v := L(y). Then we have x = E(u) and 
y = E(v). It follows from property (iv) of Theorem 8.3.6 that 

xy = E(u)E(v) = E(u + v), 

so that L(xy) = (L o E)(u + v) = u + v = L(x) + L(y). This establishes (viii). 
The properties in (ix) follow from the relations E(O) = 1 and E(1) =e. 
(x) This result follows from (viii) and Mathematical Induction for n eN, and is 

extended to r e Q by arguments similar to those in the proof of 8.3.6(v). 
To establish property (xi), we first note that since 2 < e, then lim(en) = oo and 

lim(e-n) = 0. Since L(e") =nand L(e-") = -nit follows from the fact that Lis strictly 
increasing that 

lim L(x) =lim L(e") = oo and lim L(x) ·.lim L(e-n) = -oo. Q.E.D. 
x-+oo x-+0+ 

Power Functions 

In Definition 5.6.6, we discussed the power function x r+ xr, x > 0, where r is a rational 
number. By using the exponential and logarithm functions, we can extend the notion of 
power functions from rational to arbitrary real powers. 

8.3.1 0 Definition If a e 1R and x > 0, the number xa is defined to be 

xa := ealnx = E(aL(x)). 

The function x r+ xa for x > 0 is called the power function with exponent a. 

Note If x > 0 and a= mfn where me Z, n eN, then we defined xa := (xm)lfn in 
Section 5.6. Hence we have lnxa =a lnx, whence xa = e1"xa = eatnx. Hence Definition 
8.3.1 0 is consistent with the definition given in Section 5.6. 

We now state some properties of the power functions. Their proofs are immediate 
consequences of the properties of the exponential and logarithm functions and will be left 
to the reader. 

8.3.11 Theorem If a e 1R and x, y belong to (0, oo ), then: 

(a) 1 a = 1, (b) Xa > 0, 

(c) (xy)a = xa ya' (d) (xfy)a = Xa fya. 

8.3.12 Theorem If a,fJ e 1R and x e (0, oo), then: 

(a) xa+P = xa xP, (b) (xa)P = xaP = (xP)a, 

(c) x-a = 1/xa, (d) if a < fJ, then xa < xP for x > 1. 

The next result concerns the differentiability of the power functions. 



8.3 THE EXPONENTIAL AND LOGARITHMIC FUNCTIONS 245 

8.3.13 Theorem Let a e JR. Then the function x 1-+ xa on (0, oo) to IR is continuous 
and differentiable, and 

for x e (0, oo). 

Proof. By the Chain Rule we have 

Dxa = Dealnx = ealnx. D(a lnx) 
a a a-1 = x · - =ax for x e (0, oo). Q.E.D. 

X 

It will be seen in an exercise that if a > 0, the power function x 1-+ xa is strictly 
increasing on (0, oo) to IR, and that if a < 0, the function x ~-+ xa is strictly decreasing. 
(What happens if a = 0?) 

The graphs of the functions x ~-+ xa on (0, oo) to IR are similar to those in Figure 5.6.8. 

The Function loga 

If a > 0, a #= 1, it is sometimes useful to define the function log
0

• 

8.3.14 Definition Let a > 0, a #= 1. We define 

lnx 
log

0
(x) := -

1 
-

na 
for x e (0, oo). 

For x e (0, oo), the number log
0

(x) is called the logarithm of x to the base a. The 
case a = e yields the logarithm (or natural logarithm) function of Definition 8.3.8. The 
case a= 10 gives the base 10 logarithm (or common logarithm) function log 10 often used 
in computations. Properties of the functions log

0 
will be given in the exercises. 

Exercises for Section 8.3 

1. Show that if x > 0 and if n > 2x, then 

I ~- (t + !._ + ... + x")l < 2x"+l 
I! n! (n+l)! 

_Use this formula to show that_2~ < e < 2~, hence e is not an integer. 

2. Calculate e correct to S decimal places. 

3. Show that ifO ~ x ~a and n eN, then 

x x" x x"- 1 e0 x" 
1+-+···+- <~ < 1+-+···+ +--. 

I! n!- - I! (n-1)! n! 
4. Show that if n ~ 2, then 

0 <en!- (1 + 1 + _!_ + ... + ..!..) n! < _e_ < 1. 
2! n! n +I 

Use this inequality to prove that e is not a rational number. 

S. H x ~ 0 and n e N, show that 

I 1 2 3 "-1 (-X)" --= -x+x -x +···+(-x) +--. 
x+l l+x 

Use this to show that 

x2 x3 x" 1x (-t)" 
ln(x + 1) = x - - + - - ... + ( -1)"-1- + -- dt 

2 3 n o 1+t 
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and that 

l
ln(x +I)- (x- x2 + x3- ... + (-l)n-lxn)l ~ xn+l. 

2 3 n n+1 
6. Use the formula in the preceding exercise to calculate In 1.1 and In 1.4 accurate to four decimal 

places. How large must one choose n in this inequality to calculate In 2 accurate to four decimal 
places? 

7. Show that ln(e/2) = I -In 2. Use this result to calculate In 2 accurate to four decimal places. 

8. Let f : R --+ R be such that f' (x) = f (x) for all x e R. Show that there exists K e R such 
that f(x) = K ex for all X E R. 

9. Let ak > 0 fork= 1, · · ·, n and let A := (a 1 + · · · + an)/n be the arithmetic mean of these 
numbers. For each k, put xk := ak/ A - 1 in the inequality 1 + x ~ ex (valid for x :::, 0). Multiply 
the resulting terms to prove the Arithmetic-Geometric Mean Inequality 

(6) (a · · ·a ) l/n < .!. (a + · · · + a ) 
I n - n I n • 

Moreover, show that equality holds in (6) if and only if a 1 = a 2 = · · · =an. 

10. Evaluate L' (I) by using the sequence (1 + 1/n) and the fact that e =lim( (1 + 1/n)n ). 

11. EstaQlish the assertions in Theorem 8.3.11. 

I2. Establish the assertions in Theorem 8.3.12. 

I3. (a) Show that if a > 0, then the function x ..-+ xa is strictly increasing on (0, oo) toR and that 
lim xa = 0 and lim xa = 00. 

x-+0+ x-oo 
(b) Show that if a < 0, then the function x ..-+ xa is strictly decreasing on (0, oo) toR and 

that lim xa = 00 and lim xa = 0. 
x-+0+ x-+oo 

I4. Prove that if a > 0, a'# 1, then a108ax = x for all x e (0, oo) and loga(a') = y for ally e R. 
Therefore the function x ..-+ loga x on (0, oo) to R is inverse to the function y ..-+ a' on R. 

15. If a > 0, a :f:. I, show that the function x ..-+ loga x is differentiable on (0, oo) and that 
D loga x = 1/(x Ina) for x e (0, oo). 

16. If a > 0, a '# I, and x andy belong to (0, oo), prove that loga (xy) = loga x + loga y. 

I7. If a > 0, a :f:. 1, and b > 0, b '# 1, show that 

log. x = c::) Iogb x for x e (0, oo). 

In particular, show that log10 x = (lne/ln 10) lnx = (log10 e) lnx for x e (0, oo). 

Section 8.4 The Trigonometric Functions 

Along with the exponential and logarithmic functions, there is another very important 
collection of transcendental functions known as the "trigonometric functions". These are 
the sine, cosine, tangent, cotangent, secant, and cosecant functions. In elementary courses, 
they are usually introduced on a geometric basis in terms of either triangles or the unit 
circle. In this section, we introduce the trigonometric functions in an analytical manner 
and then establish some of their basic properties. In particular, the various properties of 
the trigonometric functions that were used in examples in earlier parts of this book will be 
derived rigorously in this section. 

It suffices to deal with the sine and cosine since the other four trigonometric functions 
are defined in terms of these two. Our approach to the sine and cosine is similar in spirit to 
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our approach to the exponential function in that we first establish the existence of functions 
that satisfy certain differentiation properties. 

8.4.1 Theorem There exist functions e : JR ~ JR and S : JR ~ JR such that 

(i) e"(x) = -e(x) and S"(x) = -S(x) for all x e JR 

(ii) e (0) = 1, e' (0) = 0, and S(O) = 0, S' (0) = 1. 

Proof. We define the sequences (en) and (Sn) of continuous functions inductively as 

follows: 

(1) 

(2) 

(3) 

e1(x): = 1, S1(x) :=X, 

Sn(x): = Lx Cn(t)dt, 

cn+l(x): = 1- LX Sn(t)dt, 

for all n e N, x e JR. 
One sees by Induction that the functions en and Snare continuous on JR and hence they 

are integrable over any bounded interval; thus·these functions are well-defined by the above 

formulas. Moreover, it follows from the Fundamental Theorem 7.3.5 that Sn and en+l are 

differentiable at every point and that 

(4) S~(x) = en(x) and e~+ 1 (x) = -Sn(x) for n e N,x e JR. 

Induction arguments (which we leave to the reader) show that 

x2 x4 xm 
e (x) = 1--+-- · · · + (-l)n-

n+l 2! 4! (2n)!' 
x3 xs xm+l 

sn+l (x) =X- 3! + 5! - ... +(-It (2n + 1)!. 

Let A > 0 be given. Then if lxl ~ A and m > n > 2A, we have that (since Af2n < 1/4): 

xm x2n+2 x2m-2 

(5) lem (x)- en (x)l = (2n)! - (2n + 2)! + ... ± (2m-2)! 

<-- 1+- +···+-A2n [ (A ) 2 (A )2m-2n-2] 
- (2n)! 2n 2n 

A2n ( 16) 
< (2n)! 15 · 

Since lim(A 2n /(2n) !) = 0, the sequence (en) converges unifonnly on the interval [-A, A], 

where A > 0 is arbitrary. In particular, this means that (en(x)) converges for each x e JR. 
We define e : JR ~ JR by 

e(x) :=lim en (x) for x e JR. 

It follows from Theorem 8.2.2 that e is continuous on JR and, since en (0) = 1 for all n e N, 

that C(O) = 1. 
If lx 1 ~ A and m ~ n > 2A, it follows from (2) that 

.Sm(x)- Sn(x) = £' {Cm(t)- Cn(t)} dt. 
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If we use (5) and Corollary 7.3.15, we conclude that 

A2n (16 ) 
jSm(x)- Sn(x)j ~ (2n)! 15A ' 

whence the sequence (Sn) converges uniformly on [-A, A]. We defineS: lR ~ 1R by 

S(x) :=lim Sn(x) for x e IR. 

It follows from Theorem 8.2.2 that Sis continuous on 1R and, since Sn (0) = 0 for all n e N, 
that S(O) = 0. 

Since C~(x) = -Sn_1 (x) for n > 1, it follows from the above that the sequence (C~) 
converges uniformly on [-A, A]. Hence by Theorem 8.2.3, the limit function Cis differ
entiable on [-A, A] and 

C'(x) =lim C~(x) =lim( -Sn_ 1 (x)) = -S(x) for x e [-A, A]. 

Since A > 0 is arbitrary, we have 

(6) C'(x) = -S(x) for x e 1R. 

A similar argument, based on the fact that S~ (x) = C n (x), shows that S is differentiable on 
lR and that 

(7) S'(x) = C(x) for all x e JR. 

It follows from (6) and (7) that 

C"(x) = -(S(x))' = -C(x) and S"(x) = (C(x))' = -S(x) 

for all x e lR. Moreover, we have 

C'(O) = -S(O) = 0, S' (0) = C(O) = 1. 

Thus statements (i) and (ii) are proved. 

8.4.2 Corollary IfC, S are the functions in Theorem 8.4.1, then 

(iii) C'(x) = -S(x) and S'(x) = C(x) for x e JR. 

Moreover, these functions have derivatives of all orders. 

Q.E.D. 

Proof. The formulas (iii) were established in (6) and (7). The existence of the higher 
order derivatives follows by Induction. Q.E.D. 

8.4.3 Corollary The functions C and S satisfy the Pythagorean Identity: 

(iv) (C(x))2 + (S(x))2 = 1 for x e lR. 

Proof. Let f(x) := (C(x))2 + (S(x))2 for x e lR, so that 

f'(x) = 2C(x)( -S(x)) + 2S(x)(C(x)) = 0 for x e lR. 

Thus it follows that f(x) is a constant for all x e 1R. But since /(0) = 1 + 0 = 1, we 
conclude that f (x) = 1 for all x e lR. Q.E.D. 

We next establish the uniqueness of the functions C and S. 

8.4.4 Theorem The functions C and S satisfying properties (i) and (ii) of Theorem 8.4.1 
are unique. 
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Proof. Let C 1 and C 2 be two functions on JR to JR that satisfy Cj' (x) = - Ci (x) for all 

X E JR and Cj(O) = 1, Cj(O) = 0 for j = 1, 2. If we let D := cl- c2, then D"(x) = 

-D(x) for x e 1R and D(O) = 0 and D<k>(O) = 0 for all keN. 
Now let x e JR be arbitrary, and let /x be the interval with endpoints 0, x. Since 

D = C1 - C2 and T := S1 - S2 = Ci- Ci are continuous on lx, there exists K > 0 such 

that ID(t)l ~ K and IT(t)l ~ K for all t e /x. If we apply Taylor's Theorem 6.4.1 to D 

on /x and use the fact that D(O) = 0, v<k>(O) = 0 fork eN, it follows that for each n eN 

there is a point c n e I x such that 

D'(O) v<n-1> (0) v<n> (c ) 
D(x) = D(O) + --x + · · · + x"-1 + n x" 

1! (n- 1)! n! 

= D(n) (en) x". 
n! 

Now either D<n>(cn) = ±D(cn) or D<n>(cn) = ±T(cn). In either case we have 

ID (x)l ~ K I~ In. 
n. 

But since lim(lxl" /n!) = 0, we conclude that D(x) = 0. Since x e JR is arbitrary, we infer 

that cl (x) - C2(x) = 0 for all X E JR. 
A similar argument shows that if S 1 and S2 are two functions on JR ~ JR such that 

Sj'(x) = -Si(x)forallx e JRandSi(O) =O,Sj(O) = 1forj = 1,2,thenwehaveS1(x) = 

S2 (x) for all X E JR. Q.E.D. 

Now that existence and uniqueness of the functions C and S have been established, we 

shall give these functions their familiar names. 

8.4.5 Definition The unique functions C : JR ~ JR and S : 1R ~ JR such that C" (x) = 

-C(x) and S"(x) = -S(x) for all x e JR and C(O) = 1, C'(O) = 0, and S(O) = 0, 

S' (0) = 1, are called the cosine function and the sine function, respectively. We ordi

narily write 

cosx := C(x) and sinx := S(x) for x e JR. 

The differentiation properties in (i) of Theorem 8.4.1 do not by themselves lead to 

uniquely detennined functions. We have the following relationship. · 

8.4.6 Theorem H f : JR ~ JR is such that 

f"(x) =- f(x) 

then there exist real numbers a, {3 such that 

f(x) = aC(x) + fJS(x) 

for x e JR, 

for x e JR. 

Proof. Let g(x) := /(O}C(x) + /'(O)S(x) for x e JR. It is readily seen that g"(x) = 
-g(x) and that g(O) = /(0), and since 

g'(x) =-/(O)S(x) + j'(O)C(x), 

that g'(O) = /'(0). Therefore the function h := f- g is such that h"(x) = -h(x) for all 

x e JR and h (0) = 0, h' (0) = 0. Thus it follows from the proof of the preceding theorem 

that h (x) = 0 for all x E JR. Therefore f (x) = g (x) for all x e IR. Q.E.D. 



We shall now derive a few of the basic properties of the cosine and sine functions. 

8.4. 7 Theorem The function C is even and S is odd in the sense that 

(v) C( -x) = C(x) and S( -x) = -S(x) for x e JR. 

If x, y e IR, then we have the "addition formulas" 

(vi) C(x + y) = C(x)C(y)- S(x)S(y), S(x + y) = S(x)C(y) + C(x)S(y). 

Proof. (v) If qJ(x) := C(-x) for x e IR, then a calculation shows that qJ"(x) = -qJ(x) 
for x e IR. Moreover, (/) (0) = I and (/)1 (0) = 0 so that (/) = C. Hence, C (-x) = C (x) for 
all x e JR. In a similar way one shows that S( -x) = -S(x) for all x e JR. 

(vi) Let y e JR be given and let f(x) := C(x + y) for x e JR. A calculation shows that 
f" (x) = - f (x) for x e JR. Hence, by Theorem 8.4.6, there exists real numbers a, fJ such 
that 

f(x) = C(x + y) = aC(x) + fJS(x) and 

f'(x) = -S(x + y) = -aS(x) + fJC(x) 

for X E IR. If we let X = 0, we obtain C(y) =a ana -S(y) = fJ, whence the first formula 
in (vi) follows. The second formula is proved similarly. Q.E.D. 

The following inequalities were used earlier (for example, in 4.2.8). 

8.4.8 Theorem If x e IR, x ~ 0, then we have 

(vii) 

(ix) 

-x ~ S(x) ~ x; 

x - ! x 3 < S(x) < x · 
6 - - ' 

(viii) 

(x) 

I- lx2 < C(x) < I· 
2 - - ' 

Proof. Corollary 8.4.3 implies that -I ~ C (t) ~ I for t e IR, so that if x ~ 0, then 

-x::; Lx C (t) dt::: x, 

whence we have (vii). If we integrate (vii), we obtain 

-lx2 < Lx S (t) dt < lx2 
2 - - 2 ' 

0 

whence we have 

-~x2 ~ -C (x) +I ~ ~x2 • 

Thus we have I - ~x2 ~ C(x), which implies (viii). 
Inequality (ix) follows by integrating (viii), and (x) follows by integrating (ix). Q.E.D. 

The number 1r is obtained via the following lemma. 

8.4.9 Lemma There exists a root y of the cosine function in the interval ( ~' v'3). 
Moreover C (x) > 0 for x e [0, y). The number 2y is the smallest positive root of S. 

Proof. Inequality (x) of Theorem 8.4.8 implies that C has a root between the positive 
root ~ of x 2 

- 2 = 0 and the smallest positive root of x4 - I2x2 + 24 = 0, which is 
J 6 - 2v'3 < ~. We let y be the smallest such root of C. 
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It follows from the second formula in (vi) with x = y that S(2x) = 2S(x)C(x). This 

relation implies that S(2y) = 0, so that 2y is a positive root of S. The same relation implies 

that if 2c5 > 0 is the smallest positive root of S, then C(c5) = 0. Since y is the smallest 

positive root of C, we have c5 = y. Q.E.D. 

8.4.10 Definition Let rc := 2y denote the smallest positive root of S. 

Note The inequality~< y < J6- 2.J3 implies that 2.828 < rc < 3.185. 

8.4.11 Theorem The functions C and S have period 2rc in the sense that 

(xi) C(x + 2rc) = C(x) and S(x + 2rc) = S(x) for x e lR. 

Moreover we have 

(xii) S(x) = C (!rc- x) = -C (x + !rc), C(x) = S (!rc- x) = S (x + !rc) for all 

X E lR. 

Proof. (xi) Since S(2x) = 2S(x)C(x) and S(rc) = 0, then S(2rc) = 0. Further, if x = y 

in (vi), we obtain C(2x) = (C(x))2
- (S(x))2

• Therefore C(2rc) = 1. Hence (vi) with 

y = 2rc gives 

C(x + 2rc) = C(x)C(2rc)- S(x)S(2rc) = C(x), 

and 

S(x + 2rc) = S(x)C(2rc) + C(x)S(2rc) = S(x). 

(xii) We note that C(!rc) = 0, and it is an exercise to show that S(!rc) = 1. If we 

employ these together with formulas (vi), the desired relations are obtained. Q.E.D. 

Exercises for Section 8.4 

1. Calculate cos(.2), sin(.2) and cos 1, sin 1 correct to four decimal places. 

2. Show that I sinxl ~ 1 and I cosxl ~ 1 for all x e :R. 

3. Show that property (vii) of Theorem 8.4.8 does not hold if x < 0, but that we have I sinxl ~ lxl 

for all x e :R. Also show that I sinx- xl ~ lxl3 /6 for all x e :R. 

4. Show that if x > 0 then 
x2 x4 x6 x2 x4 

1- - +- - - < cosx < 1- - + -. 
2 24 720 - - 2 24 

Use this inequality to establish a lower bound for 1r. 

5. Calculate 1r by approximating the smallest positive zero of sin. (Either bisect intervals or use 

Newton's Method of Section 6.4.) 

6. Define the sequence (en) and (sn) inductively by c1 (x) := 1, s 1 (x) := x, and 

s.(x) := Lx c.(t)dt, c•+l(x) := 1 +fox s.(t)dt 

for all n eN, x e :R. Reason as in the proof of Theorem 8.4.1 to conclude that there exist 

functions c: R-+ Rands : R-+ :R such that (j) c"(x) = c(x) and s"(x) = s(x) for all x e R, 

and (jj) c(O) = 1, c'(O) = 0 and s(O) = 0, s'(O) = 1. Moreover, c'(x) = s(x) and s'(x) = c(x) 

for all x e :R. 
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7. Show that the functions c, s in the preceding exercise have derivatives of all orders, and that they 
satisfy the identity (c(x))2

- (s(x))2 = 1 for all x e JR. Moreover, they are the unique functions 
satisfying (j) and (jj). (The functions c, s are called the hyperbolic cosine and hyperboHc sine 
functions, respectively.) 

8. If f : 1R ~ 1R is such that /" (x) = f (x) for all x e JR., show that there exist real numbers a, fJ 
such that f(x) = ac(x) + fJs(x) for all X E JR. Apply this to the functions f. (x) := r and 
f

2
(x) :=e-x for x e JR. Show that c(x) = ~(#?+e-x) and s(x) = ~(ex- e-x) for x e JR. 

9. Show that the functions c, s in the preceding exercises are even and odd, respectively, and that 

c(x + y) = c(x)c(y) + s(x)s(y), 

for all x, y e 1R. 

s(x + y) = s(x)c(y) + c(x)s(y), 

10. Show that c(x) ~ 1 for all x e JR., that both c and s are strictly increasing on (0, oo), and that 
lim c(x) = lim s(x) = oo. 

x-oo x-oo 
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CHAPTER9 

INFINITE SERIES 

In Section 3.7 we gave a brief introduction to the theory of infinite series. The reader will 
do well to look over that section at this time, since we will not repeat the definitions and 
results given there. 

Instead, in Section 9.1 we will introduce the important notion of the "absolute conver
gence" of a series. In Section 9.2 we will present some "tests" for absolute convergence that 
will probably be familiar to the reader from calculus. The third section gives a discussion of 
series that are not absolutely convergent. In the final section we study series of functions and 
will establish the basic properties of power series which are very important in applications. 

Section 9.1 Absolute Convergence 

We have already met (in Section 3.7) a number of infinite series that are convergent and 
others that are divergent. For example, in Example 3.7.6(b) we saw that the harmonic 
series: 

00 1 
L-
n=l n 

is divergent since its sequence of partial sums s,. := f + ~ + · · · + ~ (n e N) is un
bounded. On the other hand, we saw in Example 3.7.6(f) that the alternating harmonic 
series: 

is convergent because of the subtraction that takes place. Since 

( -1}n+l 1 

n n 

these two series illustrate the fact that a series L x,. may be convergent, but the series L lx,.l 
obtained by taking the absolute values of the terms may be divergent. This observation leads 
us to an important definition. 

9.1.1 Definition Let X := (x,.) be a sequence in R. We say that the series L x,. is 
absolutely convergent if the series L lx,.l is convergent in R. A series is said to be 
conditionally (or nonabsolutely) convergent if it is convergent, but it is not absolutely 
convergent. 
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It is trivial that a series of positive terms is absolutely convergent if and only if it 
is convergent. We have noted above that the alternating hannonic series is conditionally 
convergent. 

9.1.2 Theorem If a series in 1R is absolutely convergent, then it is convergent. 

Proof. Since L lxn I is convergent, the Cauchy Criterion 3.7.4 implies that, given e > 0 
there exists M(e) e N such that if m > n ::: M(e), then 

lxn+ll + lxn+ll + · · · + lxml <E. 

However, by the Triangle Inequality, the left side of this expression dominates 

Ism- snl = lxn+l +xn+2 + · · · +xml· 

Since e > 0 is arbitrary, Cauchy's Criterion implies that L xn converges. Q.E.D. 

Grouping of Series 

Given a series L xn, we can construct many other series L yk by leaving the order of the 
terms xn fixed, but inserting parentheses that group together finite numbers of terms. For 
example, the series indicated by 

I - ~ + G -n + G -~ + D -~ + G -· · · + 1
1
3) - · · · 

is obtained by grouping the terms in the alternating hannonic series. It is an interesting 
fact that such grouping does not affect the convergence or the value of a convergent series. 

9.1.3 Theorem If a series L xn is convergent, then any series obtained from it by group
ing the tenns is also convergent and to the same value. 

Proof. Suppose that we have 

Yt := x 1 + · · · + xk ' Y2 := xk +l + · · · + xk ' 
1 I 2 

If s n denotes the nth partial sum of L x n and t k denotes the kth partial sum of L y k, then 
we have 

11 = Yt = sk ' 12 = Yt + Y2 = sk , 
1 2 

Thus, the sequence (tk) of partial sums of the grouped series L yk is a subsequence of the 
sequence (sn) of partial sums of L xn. Since this latter series was assumed to be convergent, 
so is the grouped series LYk· Q.E.D. 

It is clear that the converse to this theorem is not true. Indeed, the grouping 

(1 - 1) + (1 - 1) + (1 - 1) + ... 
produces a convergent series from L~o ( -1 )n, which was seen to be divergent in Example 
3.7.2(b) since the terms do not approach 0. 
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Rearrangements of Series 

Loosely speaking, a "rearrangement" of a series is another series that is obtained from the 
given one by using all of the terms exactly once, but scrambling the order in which the 
terms are taken. For example, the harmonic series has rearrangements 

1 1 1 1 1 1 
2+1+4+3+···+2n +2n-1 +···, 

1 1 1 1 1 1 
1+2+4+3+5+7+···. 

The first rearrangement is obtained from the harmonic series by interchanging the first and 
second terms, the third and fourth terms, and so forth. The second rearrangement is obtained 
from the harmonic series by taking one "odd term", two "even terms", three "odd terms", 
and so forth. It is obvious that there are infinitely many other possible rearrangements of 
the harmonic series. 

9.1.4 Definition A series LYk in JR is a rearrangement of a series L:x
11 

if there is a 
bijection f of N onto N such that yk = x f<k> for all k e N. 

While grouping series does not affect the convergence of a series, making rearrange
ments may do so. If fact, there is a remarkable observation, due to Riemann, that if E s

11 
is a 

conditionally convergent series in JR, and if c e JR is arbitrary, then there is a rearrangement 
of L x 

11 
that converges to c. 

To prove this assertion, we first note that a conditionally convergent series must contain 
infinitely many positive terms and infinitely many negative terms (see Exercise 1 ), and that 
both the series of positive terms and the series of negative terms diverge (see Exercise 2). 
To construct a series converging to c, we take positive terms until the partial sum is greater 
than c, then we take negative terms until the partial sum is less than c, then we take positive 
terms until the partial sum is greater than c, then we take negative terms, etc. 

In our manipulations with series, we generally want to be sure that rearrangements 
will not affect the convergence or the value of the series. That is why the following result 
is important. 

9.1.5 Rearrangement Theorem Let L X
11 

be an absolutely convergent series in JR. Then 
any rearrangement E yk of L X

11 
converges to the same value. 

Proof. Suppose that L X
11 

converges to x e JR. Thus, if E > 0, let N be such that if 
n, q > N and s11 : = x 1 + · · · + x 11 , then 

q 

and L lxkl < E. 
k=N+1 

Let M e N be such that all of the terms x 1, • • • , x N are contained as summands in t M := 
y 1 + · · · + y M. It follows that if m ~ M, then tm - s

11 
is the sum of a finite number of terms 

x k with index k > N. Hence, for some q > N, we have 

q 

ltm -s11 1 ~ L lxkl <E. 
k=N+1 
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Therefore, if m ::: M, then we have 

ltm- xl ~ ltm- snl + lsn- xl < e + e = 2e. 

Since e > 0 is arbitrary, we conclude that LYk converges to x. Q.E.D. 

Exercises for Section 9.1 

1. Show that if a convergent series contains only a finite number of negative terms, then it is 
absolutely convergent. 

2. Show that if a series is conditionally convergent, then the series obtained from its positive terms 
is divergent, and the series obtained from its negative terms is divergent. 

3. If E an is conditionally convergent, give an argument to show that there exists a rearrangement 
whose partial sums diverge to oo. 

4. Where is the fact that the series E xn is absolutely convergent used in the proof of 9.1.5? 

5. If E an is absolutely convergent, is it true that every rearrangement of E an is also absolutely 
convergent? 

6. Find an explicit expression for the nth partial sum of E:2 ln(1 - 1/n2
) to show that this series 

converges to - In 2. Is this convergence absolute? 

7. (a) If E an is absolutely convergent and (bn) is a bounded sequence, show that E anbn is 
absolutely convergent. 

(b) Give an example to show that if the convergence of Ean is conditional and (bn) is a 
bounded sequence, then E anbn may diverge. 

8. Give an example of a convergent series E an such that La; is not convergent. (Compare this 
with Exercise 3.7.8) 

9. If (an) is a de~_~i~_g sequence of strictly positive numbers and if L an is convergent, show 
, / that lim(nan) = 0. 

10. Give an example of a divergent series E an with (an) decreasing and such that lim( nan) = 0. 

11. If (an) is a sequence and if lim(n2an) exists in R, show that L an is absolutely convergent. 

12. Let a > 0. Show that the series EO + an)- 1 is divergent if 0 <a ~ 1 and is convergent if 
a> 1. 

13. (a) Does the series f (~- .fo) converge? 
n=l n 

(b) Does the series f (~- v'n) converge? 
n=l n 

14. If (ant) is a subsequence of (an), then the series L ant is called a subseries of E an. Show that 
E an is absolutely convergent if and only if every subseries of it is convergent. 

15. Let a : N x N ~ R and write aii := a(i, j). If A; := E;:, aij for each i e N and if A := 
E~1 A;, we say that A is an iterated sum of the aii and write A= E:1 E;:1 a;r We define 
the other iterated sum, denoted by E): 1 E: 1 aii, in a similar way. 
Suppose a .. > 0 for i, j eN. If (ck) is any enumeration of {a .. : i, j eN}, show that the y- y 
following statements are equivalent: 
(i) The interated sum E:1 E;:1 aii converges to B. 
(ii) The series E~1 ck converges to C. 
In this case, we have B = C. 
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16. The preceding exercise may fail if the terms are not positive. For example, let aii := + 1 if 
i- j = 1, aii := -1 if i - j = -1, and aii := 0 elsewhere. Show that the iterated sums 

00 00 00 00 

LLaij and LLaij 
i=l j=l j=l i=l 

both exist but are not equal. 

Section 9.2 Tests for Absolute Convergence 

In Section 3.7 we gave some results concerning the convergence of infinite series; namely, 
the nth Term Test, the fact that a series of positive terms is convergent if and only if its 
sequence of partial sums is bounded, the Cauchy Criterion, and the Comparison and Limit 
Comparison Tests. 

We will now give some additional results that may be familiar from calculus. These 
results are particularly useful in establishing absolute convergence. 

9.2.1 Limit Comparison Test, D. Suppose that X:= (xn) andY:= (yn) are nonzero 
real sequences and suppose that the following limit exists in JR: 

(I) . IX" I r := hm Yn . 

(a) If r =F 0, then L xn is absolutely convergent if and only if L Yn is absolutely 
convergent. 

(b) If r = 0 and if L y n is absolutely convergent, then L xn is absolutely convergent. 

Proof. This result follows immediately from Theorem 3.7.8. 

The Root and Ratio Tests 

The following test is due to Cauchy. 

9.2.2 Root Test Let X := (xn) be a sequence in JR. 

(a) If there exist r e 1R with r < 1 and K e N such that 

(2) 

then the series L xn is absolutely convergent. 

(b) If there exists K e N such that 

(3) 

then the series L:xn is divergent. 

for n ::::: K, 

for n ::::: K, 

Q.E.D. 

Proof. (a) If (2) holds, then we have lxn I < r" for n > K. Since the geometric series L r" 
is convergent for 0 < r < I, the Comparison Test 3. 7. 7 implies that L lx n I is convergent. 

(b) If (3) holds, then lxn I > 1 for n ::::: K, so the terms do not approach 0 and the nth 
Term Test 3.7.3 applies. Q.E.D. 

In calculus courses, one often meets the following version of the Root Test. 
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9.2.3 Corollary Let X := (xn) be a sequence in 1R and suppose that the limit 

(4) r :=lim lxn 11/n 

exists in JR. Then L xn is absolutely convergent when r < 1 and is divergent when r > I. 

Proof. If the limit in ( 4) exists and r < 1, then there exist r 1 with r < r 1 < 1 and K e .N 
such that lxn 1

11n ~ r1 for n > K. In this case we can apply 9.2.2(a). 
If r > 1, then there exists K e N such that lxn 11/n > 1 for n ::: K and the nth Term 

Test applies. Q.E.D. 

Note No conclusion is possible in Corollary 9.2.3 when r = 1, for either convergence or 
divergence is possible. See Example 9.2.7(b). 

Our next test is due to D' Alembert. 

9.2.4 Ratio Test Let X:= (xn) be a sequence of nonzero real numbers. 

(a) If there exist r e 1R with 0 < r < 1 and K e N such that 

(5) I x;:tl ::; r for n ?: K, 

then the series L xn is absolutely convergent. 

(b) If there exists K e N such that 

(6) lx;:1 1?: I for n > K, 

then the series L xn is divergent. 

Proof. (a) If (5) holds, an Induction argument shows that lxK+ml ~ lxKirm form eN. 
Thus, for n ::: K the terms in L lxn I are dominated by a fixed multiple of the terms in 
the geometric series L rm with 0 < r < 1. The Comparison Test 3.7.7 then implies that 
L lxn I is convergent. 

(b) If ( 6) holds, an Induction argument shows that lx K +m I ::: lx K I for m e N and the 
nth Term Test applies. Q.E.D. 

Once again we have a familiar result from calculus. 

9.2.5 Corollary Let X := (xn) be a nonzero sequence in 1R and suppose that the limit 

(7) r := lim I x;:t I 
exists in JR. Then L xn is absolutely convergent when r < 1 and is divergent when r > 1. 

Proof. If r < 1 and if r < r 1 < 1, then there exists K e 1R such that 1xn+1fxn I < r1 for 

n ::: K. Thus Theorem 9.2.4(a) applies to give the absolute convergence of :Lxn. 
If r > 1, then there exists K eN such that lxn+tfxn I > 1 for n ::: K, whence it follows 

that lxkl does not converge to 0 and the nth Term Test applies. Q.E.D. 

Note No conclusion is possible in Corollary 9.2.5 when r = 1, for either convergence or 
divergence is possible. See Example 9.2.7(c). 
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The Integral Test ----------------------

The next test-a very powerful one-uses the notion of the improper integral, which is 
defined as follows: If I is in R[a, b] for every b > a and if the limit lim J:b I (t) d t exists 

b-+oo a 

in JR, then the improper integral fa00 l(t) dt is defined to be this limit. 

9.2.6 Integral Test Let I be a positive, decreasing function on { t : t ::::: 1}. Then the 
series L~1 l(k) converges if and only if the improper integral 

f oo l(t) dt = lim Jb l(t) dt 
1 b-+00 1 

exists. In the case of convergence, the partial sum sn = E~=1 l(k) and the sum s = 
E~1 l(k) satisfy the estimate 

(8) 100 

l(t) dt ::: s - sn ::: 100 

l(t) dt. 
n+1 n 

Proof. Since I is positive and decreasing on the interval [k - 1, k], we have 

(9) l(k) ::: 1/c l(t) dt ::: l(k - 1). 
Jc-1 

By adding this inequality fork= 2, 3, · · ·, n, we obtain 

Sn - f(l) ~ Jn f(t) dt ~ Sn-l, 

which shows that either both or neither of the limits 

lim sn and lim j" l(t) dt 
n-+oo n-+oo 1 

exist. H they exist, then on adding (9) for k = n + 1, · · · , m, we obtain 

sm - sn ~ 1m f(t) dt ~ sm-l - sn-l' 

whence it follows that 

1m+1 1m 
l(t) dt ::: sm- sn ::: l(t) dt. 

n+1 n 

If we take the limit in this last inequality as m ~ oo, we obtain (8). Q.E.D. 

We will now show how the results in Theorems 9.2.1-9 .2.6 can be applied to the 
p-series, which were introduced in Example 3.7.6(d,e). 

9.2.7 Examples (a) Consider the case p = 2; that is, the series E 1/n2
• We compare 

it with the convergent series L 1/(n(n + 1)) of Example 3.7.2(c). Since 

I
_!_+ 1 l=n+1=1+.!_~1, 
n2 n(n + 1) n n 

the Limit Comparison Test 9.2.1 implies that L 1fn2 is convergent. 

(b) We demonstrate the failure of the Root Test for the p-series. Note that 
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Since (see Example 3.1.11(d)) we know that n 11n --+ 1, we haver= 1 in Corollary 9.2.3, 
and the theorem does not give any information. 

(c) We apply the Ratio Test to the p-series. Since 

I (n ~ I)P + niP I = (n :I)P = (1 + ~/n)P --+ 1, 

the Ratio Test, in the form of Corollary 9.2.5, does not give any information. 

(d) Finally, we apply the Integral Test to the p-series. Let f(t) := 1ftP fort =::: 1 and 
recall that 

in 1 
- d t = In n - In 1, 

1 t 

-dt- -- ---1 in 1 1 ( 1 ) 
1 tP - 1 - p nP-1 

for p :F 1. 

From these relations we see that the p-series converges if p > 1 and diverges if p ~ 1, as 
we have seen before in 3.7.6(d,e). D 

Raabe's Test 

If the limits lim lxn 11/n and lim(lxn+l/xn I) that are used in Corollaries 9.2.3 and 9.2.5 
equal 1, we have seen that these tests do not give any information about the convergence or 
divergence of the series. In this case it is often useful to employ a more delicate test. Here 
is one that is frequently useful. 

9.2.8 Raabe's Test Let X:= (xn) be a sequence of nonzero real numbers. 

(a) If there exist numbers a > 1 and K e N such that 

(10) for n > K, 

then L xn is absolutely convergent. 

(b) If there exist real numbers a ~ 1 and K eN such that 

( 11) for n > K, 

then L xn is not absolutely convergent. 

Proof. (a) If the inequality (10) holds, then we have (after replacing n by k and multi
plying) 

klxk+ll ~ (k- 1)1xkl- (a- 1)1xkl 

On reorganizing the inequality, we have 

(12) 

for k =::: K. 

for k =::: K, 

from which we deduce that the sequence (klxk+l I) is decreasing fork =::: K. If we add (12) 
for k = K, · · · , n and note that the left side telescopes, we get 

(K- l)lxKI- nlxn+tl ~(a- l){lxKI + · · · + lxnl). 
This shows (why?) that the partial sums of L lxn I are bounded and establishes the absolute 
convergence of the series. 
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(b) If the relation ( 11) holds for n :::: K, then since a ~ 1, we have 

for n :::: K. 

Therefore the sequence (nlxn+l I) is increasing for n :::: K and there exists a number c > 0 
such that lx,.+ 11 > c In for n :::: K. But since the harmonic series L 1 In diverges, the series 
L lx,. I also diverges. Q.E.D. 

In the application of Raabe's Test, it is often convenient to use the following limiting 
form. 

9.2.9 Corollary Let X := (x,.) be a nonzero sequence in 1R and let 

(I3) 

whenever this limit exists. Then L x,. is absolutely convergent when a > 1 and is not 
absolutely convergent when a < 1. 

. 
Proof. Suppose the limit in (I3) exists and that a > 1. If a 1 is any number with 
a > a 1 > I, then there exists KeN such that a1 < n(1- lx,.+ 11x,.l) for n > K. There
fore lx,.+ 11x,.l < 1- a 11n for n :::: K and Raabe's Test 9.2.8(a) applies. 

The case where a < 1 is similar and is left to the reader. Q.E.D. 

Note There is no conclusion when a = 1; either convergence or divergence is possible, 
as the reader can show. 

9.2.10 Examples (a) We reconsider the p-series in the light of Raabe's Test. Applying 
L'Hospital's Rule when p :::: 1, we obtain (why?) 

a= lim (n [1- (n :l)P]) =lim (n [<n ~ ~Pl~ nP]) 
I. ((1+11n)P-1) 1. ( 1 ) 1 = 1m · 1m = p · = p. 

0 11n ° (1 + 11n)P 

We conclude that if p > 1 then the p-series is convergent, and if 0 < p < 1 then the 
series is divergent (since the terms are positive). However, if p = 1 (the harmonic series!), 
Corollary.,.9.2.9 yields no information. 

oo n 
(b) We now consider L 2 • 

n=l n + 1 
An easy calculation shows that lim(x,.+11x,.) = I, so that Corollary 9.2.5 does not 

apply. Also, we have lim(n(I - x,.+11x,.)) = 1, so that Corollary 9.2.9 does not apply 
either. However, it is an exercise to establish the inequality x,.+11x,. > (n- 1)1n, whence 
it follows from Raabe's Test 9.2.8(b) that the series is divergent. (Of course, the Integral 
Test, or the Limit Comparison Test with (y,.) = (1/n), can be applied here.) 0 

Although the limiting form 9.2.9 of Rabbe's Test is much easier to apply, Example 
9.2.10(b) shows that the form 9.2.8 is stronger than 9.2.9. 
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Exercises for Section 9.2 

1. Establish the convergence or the divergence of the series whose nth term is: 
1 n 

(a) (n + 1)(n + 2)' (b) (n + 1)(n + 2)' 

(c) 2-1/n' (d) nl2n. 

2. Establish the convergence or divergence of the series whose nth term is: 

(a) (n(n + 1))-112 , (b) (n2 (n + 1))-112 , 

(c) n!lnn, (d) (-1)nnl(n + 1). 

3. Discuss the convergence or the divergence of the series with nth term (for sufficiently large n) 
given by 
(a) (lnn)-P, 
(c) (ln n)- Inn , 

(e) (n lnn)- 1, 

(b) (lnn)-n, 
(d) (lnn)-lnlnn, 

(f) (n(ln n)(ln In n)2) -I. 

4. Discuss the convergence or the divergence of the series with nth term 
(a) 2ne-n, (b) nne-n, 
(c) e-lnn, (d) (lnn)e-v'ii, 

2 
(e) n !e-n, (f) n !e-n . 

5. Show that the series 1112 + 1123 + 1132 + 1143 + · · · is convergent, but that both the Ratio 
and the Root Tests fail to apply. 

6. If a and bare positive numbers, then L:<an + b)-P converges if p > 1 and diverges if p!:: 1. 

7. Discuss the series whose nth term is 

(a) 
n! 

3 · 5 · 7 · · · (2n + 1) ' 
2 · 4 · · · (2n) 

(c) 3 · 5 · · · (2n + 1) ' 

8. Let 0 < a < 1 and consider the series 

(n!)2 
(b) (2n)!' 

2. 4 ... (2n) 

(d) 5 · 7 · · · (2n + 3) · 

a 2 +a +a4 +a3 + · ·· +a2n +a2n-t + · · ·. 

Show that the Root Test applies, but that the Ratio Test does not apply. 

9. Ifr e (0, 1) satisfies(2)intheRootTest9.2.2,showthatthepartialsumssn of Exn approximate 
its limits according to the estimate Is - sn I !:: rn+t I (1 - r) for n ~ K. 

10. If r e (0, 1) satisfies (5) in the Ratio Test 9.2.4, show that Is- sn I !:: r lxn I I (1 - r) for n ~ K. 

11. If a > 1 satisfies (10) in Raabe's Test 9.2.8, show that Is - sn I !:: n lxn I I (a - 1) for n ~ K. 

12. For each of the series in Exercise 1 that converge, estimate the remainder if only four terms are 
taken. If only ten terms are taken. If we wish to determine the sum of the series within 1 I 1000, 
how many terms should be taken? 

13. Answer the questions posed in Exercise 12 for the series given in Exercise 2. 

14. Show that the series 1 + ! - l + 1 + i - ~ + + - · · · is divergent. 

15. For n eN, let en be defined by en := f +! + · · · + 11n -Inn. Show that (en) is a decreasing 
sequence of positive numbers. The limit C of this sequence is called Euler's Constant and is 
approximately equal to 0.577. Show that if we put 

1 1 1 1 
bn := l - 2 + 3 - ... - 2n' 

then the sequence (bn) converges to ln2. [Hint: bn = e2n- en+ ln2.] 



9.3 TESTS FOR NONABSOLUTE CONVERGENCE 263 

16. Let {n 1, n 2, • • ·} denote the collection of natural numbers that do not use the digit 6 in their 
decimal expansion. Show that L 1/nk converges to a number less than 80. If {m 1, m2 , ···}is 
the collection of numbers that end in 6, then L 1/mk diverges. If {p1, p2 , ···,}is the collection 
of numbers that do not end in 6, then L 1/ pk diverges. 

17. If p > 0, q > 0, show that the series 

E (p + 1)(p + 2) · · · (p + n) 

(q + 1)(q + 2) · · · (q + n) 

converges for q > p + 1 and diverges for q =::: p + 1. 

18. Suppose that none of the numbers a, b, cis a negative integer or zero. Prove that the hyper· 
geometric series 

ab a(a + 1)b(b + 1) a(a + 1)(a + 2)b(b + 1)(b + 2) 
-+ + +··· 1 !c 2!c (c + 1) 3!c(c + 1)(c + 2) 

is absolutely convergent for c > a + b and divergent for c < a + b. 

19. Let an > 0 and suppose that L an converges. Construct a convergent series L bn with bn > 0 
such that lim(an/bn) = 0; hence Lbn converges less rapidly than Ean. [Hint: Let (An) be the 
partial sums of Ean and A its limit. Define b1 := .JA- JA- A 1 and bn := JA- An-I
J A - An for n ~ 1.] 

20. Let (an) be a decreasing sequence of real numbers converging to 0 and suppose that L an 
diverges. Construct a divergent series L bn with bn > 0 such that lim(bnfan) = 0; hence L bn 
diverges less rapidly than L an. [Hint: Let bn :=an/ JA:, where An is the nth partial sum of 
Ean.] 

Section 9.3 Tests for Nonabsolute Convergence 

The convergence tests that were discussed in the preceding section were primarily directed 
to establishing the absolute convergence of a series. Since there are many series, such as 

(1) f (-l}n+l' f (-l)n+l' 

n=l n n=l Jn 
that are convergent but not absolutely convergent, it is desirable to have some tests for this 
phenomenon. In this short section we shall present first the test for alternating series and 
then tests for more general series due to Dirichlet and Abel. 

Alternating Series 

The most familiar test for nonabsolutely convergent series is the one due to Leibniz that is 
applicable to series that are "alternating" in the following sense. 

9.3.1 Definition A sequence X := (xn) of nonzero real numbers is said to be alternating 
if the tenns ( -l)n+l xn, n e N, are all positive (or all negative) real numbers. If the sequence 
X = (xn) is alternating, we say that the series L xn it generates is an alternating series. 

In the case of an alternating series, it is useful to setxn = ( -l)n+l zn [or xn = ( -l)n zn], 
where zn > 0 for all n eN. 

9.3.2 Alternating Series Test Let Z := (zn) be a decreasing sequence of strictly positive 
numbers with lim(zn) = 0. Then the alternating series I:< -l)n+l zn is convergent. 
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Proof. Since we have 

s2n = (zl - z2) + (z3- z4) + · · · + <Zoa-t- ~), 

and since zk - zk+l 2:: 0, it follows that the subsequence (s2n) of partial sums is increasing. 
Since 

s2n = zt - (z2- z3)- ... - (z2n-2- Zm-t)- Zm' 

it also follows that s2n ::: z1 for all n e N. It follows from the Monotone Convergence 
Theorem 3.3.2 that the subsequence (s2n) converges to some numbers e IR. 

We now show that the entire sequence (sn) converges to s. Indeed, if e > 0, let K be 
such that if n 2:: K then ls2n - s I ::: !e and IZm+tl ::: !e. It follows that if n 2:: K then 

ls2n+I - s I = ls2n + z2n+l - s I 

::: ls2n- sl + IZm+tl ::: !e + !e =e. 
Therefore every partial sum of an odd number of terms is also within e of s if n is large 
enough. Since e > 0 is arbitrary, the convergence of (sn) and hence of L ( -1)"+1 zn is 
established. Q.E.D. 

Note It is an exercise to show that if s is the sum of the alternating series and if sn is its 
nth partial sum, then 

(2) 

It is clear that this Alternating Series Test establishes the convergence of the two series 
already mentioned, in ( 1 ). 

The Dirichlet and Abel Tests 

We will now present two other tests of wide applicability. They are based on the following 
lemma, which is sometimes called the partial summation formula, since it corresponds 
to the familiar formula for integration by parts. 

9.3.3 Abel's Lemma Let X := (xn) andY := (yn) be sequences in IR and let the partial 
sums of LYn be denoted by (sn) with s0 := 0. Ifm > n, then 

m m-1 

(3) L xkyk = (xmsm- xn+lsn) + L (xk- xk+l)sk. 
k=n+l k=n+l 

Proof. Since yk = sk -sk-I fork = I, 2, · · ·, the left side of (3) is seen to be equal to 
L~n+l xk(sk - sk_ 1). If we collect the terms multiplying sn, sn+l, · · ·, sm, we obtain the 
right side of (3). Q.E.D. 

We now apply Abel's Lemma to obtain tests for convergence of series of the form 

LXnYn· 

9.3.4 Dirichlet's Test If X := (xn) is a decreasing sequence with limxn = 0, and if the 
partial sums (sn) of LYn are bounded, then the series LXnYn is convergent. 
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Proof. Let lsn I ::; B for all n e N. If m > n, it follows from Abel's Lemma 9.3.3 and the 
fact that xk - xk+1 :::: 0 that 

m m-1 

L xkyk ::; (xm + xn+1)B + L (xk - xk+1 )B 
k=n+1 k=n+1 

= [(xm + xn+1) + (xn+1 - xm)]B 

=2xn+1B. 

Since lim(xk) = 0, the convergence of Exkyk follows from the Cauchy Convergence 
Criterion 3. 7 .4. Q.E.D. 

9.3.5 Abel's Test If X:= (xn) is a convergent monotone sequence and the series LYn 
is convergent, then the series LXnYn is also convergent. 

Proof. If (xn) is decreasing with limit x, let un := xn - x, n eN, so that (un) decreases 
to 0. Then xn = x + un, whence XnYn = xyn + UnYn· It follows from the Dirichlet Test 
9.3.4 that L unyn is convergent and, since L xyn converges (because of the assumed 
conve~gence of the series LYn), we conclude that L XnYn is convergent. 

if (xn) is increasing with limit x, let vn := x - xn, n e N, so that (vn) decreases to 0. 
Here xn = x- vn, whence XnYn = xyn- VnYn' and the argument proceeds as before. 

9.3.6 Examples (a) Since we have 

2 (sin ~x) (cosx + · · · + cosnx) =sin (n + ~) x- sin ~x, 

it follows that if x # 2k7r (k e N), then 

I sin ( n + ! } x - sin ! x I 1 
lcosx+···+cosnxl= 2 2 <---12 sin ~xI I sin ~ x 1· 

Q.E.D. 

Hence Dirichlet's Test implies that if (an) is decreasing with lim (an) = 0, then the series 
L~ 1 an cos nx converges provided x # 2kn. 

(b) Since we have 

2 (sin ~x) (sinx + · · · + sinnx) =cos ~x- cos (n + ~} x, 

it follows that if x # 2k7r (k e N), then 

I . . I I 
s1n x + · · · + s1n nx ::; I . 1 I . 

SID 2x 

As before, if (an) is decreasing and if lim( an) = 0, then the series 2:~1 an sin nx converges 
for x =j; 2kn (and it also converges for these values). D 

Exercises for Section 9.3 

1. Test the following series for convergence and for absolute convergence. 

00 ( -1)"+1 00 ( -1)"+1 
<a> E 2 , (b) E , 

n=1 n + 1 n=1 n + 1 
oo (-1)"+1 n 

(c) L , 
n=l n + 2 
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2. If s,. is the nth partial sum of the alternating series L::1 ( -l)n+l z,., and if s denotes the sum 

of this series, show that Is-s,. I ~ zn+l" 

3. Give an example to show that the Alternating Series Test 9.3.2 may fail if (z,.) is not a decreasing 
sequence. 

4. Show that the Alternating Series Test is a consequence of Dirichlet's Test 9.3.4. 

5. Consider the series 
1 1 1 1 1 1 

1 -2-3+4+5-6-7++--··· 
where the signs come in pairs. Does it converge? 

6. Let a,. E IR for n EN and let p < q. If the series L: a,.fnP is convergent, show that the series 
L: a,. I nq is also convergent. 

7. If p and q are positive numbers, show that L: ( -1 )11 (Inn )PI nq is a convergent series. 

8. Discuss the series whose nth term is: 
nn nn 

(a) ( -l)n (n + l)n+l ' (b) (n + l)n+l' 

n (n + l)n (n + l)n 
(c) (-1) 11 

, (d) +I • 
n n" 

9. If the partial sums of La,. are bounded, show that the series 2::1 a,.e-"' converges fort > 0. 

10. If the partial sums s,. of 2::1 a,. are bounded, show that the series L::1 a,./n converges to 

L::=l s,./n(n + 1). 

11. Can Dirichlet's Test be applied to establish the convergence of 

1 1 1 1 1 
1 -2-3+4+5+6-··· 

where the number of signs increases by one in each "block"? If not, use another method to 
establish the convergence of this series. 

12. Show that the hypotheses that the sequence X := (x,.) is decreasing in Dirichlet's Test 9.3.4 can 
be replaced by the hypothesis that L::1 lx,.- x,.+ 11 is convergent. 

13. If (a,.) is a bounded decreasing sequence and (b,.) is a bounded increasing sequence and if 

x,. :=a,.+ b
11 

for n EN, show that L:: 1 lx,.- x,.+.l is convergent. 

14. Show that if the partial sums s,. of the series 2:~ 1 ak satisfy Is n I ~ M n' for some r < 1, then 
the series 2::= 1 a,. In converges. 

15. Suppose that La,. is a convergent series of real numbers. Either prove that .L b,. converges or 
give a counter-example, when we define b,. by 
(a) anfn, 

(c) a,. sin n, 

(e) nlfna,.. 

Section 9.4 Series of Functions 

(b) F.ln (a,. ::: 0), 
(d) Ja,./n (a,. ::: 0), 
(f) a,./ (1 + Ia,. I). 

Because of their frequent appearance and importance, we now present a discussion of infinite 
series of functions. Since the convergence of an infinite series is handled by examining 
the sequence of partial sums, questions concerning series of functions are answered by 
examining corresponding questions for sequences of functions. For this reason, a portion 
of the present section is merely a translation of facts already established for sequences 
of functions into series terminology. However, in the second part of the section, where 
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we discuss power series, some new features arise because of the special character of the 
functions involved. 

9.4.1 Definition If <In> is a sequence of functions defined on a subset D of 1R with values 
in 1R, the sequence of partial sums (sn) of the infinite series LIn is defined for x in D by 

s1 (x) := 11 (x), 
s2(x) := s1 (x) + 12(x) 

In case the sequence (sn) of functions converges on D to a function I, we say that the 
infinite series of functions L In converges to I on D. We will often write 

or 

to denote either the series or the limit function, when it exist~. 

If the series L I In (x) I converges for each x in D, we say that L In is absolutely 
convergent on D. If the sequence (sn) of partial sums is uniformly convergent on D to 
I, we say that L In is uniformly convergent on D, or that it converges to I uniformly 
on D. 

One of the main reasons for the interest in uniformly convergent series of functions is 
the validity of the following results which give conditions justifying the change of order of 
the summation and other limiting operations. 

9.4.2 Theorem H In is continuous on D c 1R to 1R for each n e Nand if L In converges 
to I unifonnly on D, then I is continuous on D. 

This is a direct translation of Theorem 8.2.2 for series. The next result is a translation 
of Theorem 8.2.4. 

9.4.3 Theorem Suppose that the real-valued functions In' n eN, are Riemann integrable 
on the interval J :=[a, b]. H the series LIn converges to I unifonnly on J, then I is 
Riemann integrable and 

(I) lb 00 lb 
a /=~a fn· 

Next we turn to the corresponding theorem pertaining to differentiation. Here we 
assume the uniform convergence of the series obtained after term-by-term differentiation 
of the given series. This result is an immediate consequence of Theorem 8.2.3. 

9.4.4 Theorem For each n eN, let fn be a real-valued function on J :=[a, b] that has 
a derivative I~ on J. Suppose that the series E In converges for at least one point of J and 
that the series of derivatives E I~ converges uniformly on J. 

Then there exists a real-valued function 1 on J such that E fn converges uniformly 
on J to 1 . In addition, f has a derivative on J and f' = L f~. 
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Tests for Uniform Convergence 

Since we have stated some consequences of uniform convergence of series, we shall now 
present a few tests that can be used to establish uniform convergence. 

9.4.5 Cauchy Criterion Let (/,.) be a sequence of functions on D c 1R to JR. The series 
L f,. is uniformly convergent on D if and only if for every e > 0 there exists an M (e) such 
that ifm > n ~ M(e), then 

lfn+l (x) + · · · + fm(x)l < e for all xeD. 

9.4.6 Weierstrass M-Test Let (M,.) be a sequence of positive real numbers such that 
I/,. (x) I ~ M,. for x e D, n e N. H the series L M,. is convergent, then L f,. is uniformly 
convergent on D. 

Proof. If m > n, we have the relation 

lfn+l(x) + · · · + fm(x)l ~ Mn+l + · · · + Mm 

Now apply 3.7.4, 9.4.5, and the convergence of L M,.. 

for xeD. 

Q.E.D. 

In Appendix E we will use the Weierstrass M-Test to construct two interesting exam
ples. 

Power Series 

We shall now tum to a discussion of power series. This is an important class of series of 
functions and enjoys properties that are not valid for general series of functions. 

9.4.7 Definition A series of real functions L f,. is said to be a power series around 
x = c if the function /,. has the form 

f,.(x) = a,.(x- c)n, 

where a,. and c belong to 1R and where n = 0, 1, 2, · · ·. 

For the sake of simplicity of our notation, we shall treat only the case where c = 0. 
This is no loss of generality, however, since the translation x' = x - c reduces a power 
series around c to a power series around 0. Thus, whenever we refer to a power series, we 
shall mean a series of the form 

(2) 
00 

L a,.x" = a0 + a1 x + · · · + a,.xn + .... 
n=O 

Even though the functions appearing in (2) are defined over all of R, it is not to be 
expected that the series (2) will converge for all x in R. For example, by using the Ratio 
Test 9 .2.4, we can show that the series 

converge for x in the sets 

00 

Ln!x", 
n=O 

{0}, 

00 

Lx" fn!, 
n=O 

{x e R: lxl < 1}, R, 
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respectively. Thus, the set on which a power series converges may be small, medium, or 
large. However, an arbitrary subset of 1R cannot be the precise set on which a power series 
converges, as we shall show. 

If ( b n) is a bounded sequence of nonnegative real numbers, then we define the limit 
superior of (bn) to be the infimum of those numbers v such that bn ::: v for all sufficiently 
large n eN. This infimum is uniquely determined and is denoted by lim sup(bn). The only 
facts we need to know are (i) that if v > limsup(bn), then bn < v for all sufficiently large 
n eN, and (ii) that if w < lim sup(bn), then w ::: bn for infinitely many n eN. 

9.4.8 Definition Let L anxn be a power series. If the sequence (I an 11/n) is bounded, we 
set p := limsup(lan1 1/n); if this sequence is not bounded we set p = +oo. We define the 
radius of convergence of L anxn to be given by 

R := ~~/p 
+oo 

if p = +oo, 
if 0 < p < +oo, 
if p = 0. 

The interval of convergence is the open interval (-R, R). 

We shall now justify the term "radius of convergence". 

9.4.9 Cauchy-Hadamard Theorem If R is the radius of convergence of the power series 
L anxn, then the series is absolutely convergent if lx I < R and is divergent if lx I > R. 

Proof. We shall treat only the case where 0 < R < +oo, leaving the cases R = 0 and 
R = +oo as exercises. If 0 < lx I < R, then there exists a positive number c < 1 such 
that lx I < cR. Therefore p < c I lx I and so it follows that if n is sufficiently large, then 
I an l11n ::: c I lx 1. This is equivalent to the statement that 

(3) 

for all sufficiently large n. Since c < 1, the absolute convergence of L anxn follows from 
the Comparison Test 3. 7. 7. 

If lx I > R = 1 I p, then there are infinitely many n e· N for which I an 111 n > 1/lx !. 
Therefore, lanxn I > 1 for infinitely many n, so that the sequence (anxn) does not converge 
to zero. Q.E.D. 

Remark It will be noted that the Cauchy-Hadamard Theorem makes no statement as to 
whether the power series converges when lx I = R. Indeed, anything can happen, as the 
examples 

"'1 n ~-X' n 

show. Since lim(n 11 n) = 1, each of these power series has radius of convergence equal to 1. 
The first power series converges at neither of the points x = -1 and x = + 1; the second 
series converges at x = -1 but diverges at x = + 1; and the third power series converges at 
both x = -1 and x = + 1. (Find a power series with R = 1 that converges at x = + 1 but 
diverges at x = -1.) 
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It is an exercise to show that the radius of convergence of the series L anxn is also 
given by 

(4) 
a lim _n_ , 

an+1 

provided this limit exists. Frequently, it is more convenient to use (4) than Definition 9.4.8. 
The argument used in the proof of the Cauchy-Hadamard Theorem yields the uniform 

convergence of the power series on any fixed closed and bounded interval in the interval of 
convergence (-R, R). 

9.4.10 Theorem Let R be the radius of convergence of L anxn and let K be a closed 
and bounded interval contained in the interval of convergence (-R, R). Then the power 
series converges uniformly on K. 

Proof. The hypothesis on K c (-R, R) implies that there exists a positive constant 
c < 1 such that lx I < c R for all x e K. (Why?) By the argument in 9.4.9, we infer that 
for sufficiently large n, the estimate (3) holds for all x e K. S~nce c < 1, the uniform 
convergence of L anxn on K is a direct consequence of the ·weierstrass M-test with 
Mn := en. Q.E.D. 

9.4.11 Theorem The limit of a power series is continuous on the interval of convergence. 
A power series can be integrated term-by-term over any closed and bounded interval 
contained in the interval of convergence. 

Proof. If lxol < R, then the preceding result asserts that L anxn converges uniformly on 
any closed and bounded neighborhood of x0 contained in ( -R, R). The continuity at x0 
then follows from Theorem 9.4.2, and the term-by-term integration is justified by Theorem 
9.4.3. Q.E.D. 

We now show that a power series can be differentiated term-by-term. Unlike the 
situation for general series, we do not need to assume that the differentiated series is 
uniformly convergent. Hence this result is stronger than Theorem 9.4.4. 

9.4.12 · Differentiation Theorem A power series can be differentiated term-by-term 
within the interval of convergence. In fact, if 

00 00 

f(x) = Lanxn, then f'(x) = Lnanxn-1 for lxl < R. 
n=O n=1 

Both series have the same radius of convergence. 

Proof. Since lim(n 1/n) = 1, the sequence (I nan 11/n) is bounded if and only if the sequence 
(I an 11/n) is bounded. Moreover, it is easily seen that 

lim sup (lnanl
11

n) =lim sup (lanl
11

n). 

Therefore, the radius of convergence of the two series is the same, so the formally differen
tiated series is uniformly convergent on each closed and bounded interval contained in the 
interval of convergence. We can then apply Theorem 9.4.4 to conclude that the formally 
differentiated series converges to the derivative of the given series. Q.E.D. 
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Remark It is to be observed that the theorem makes no assertion about the endpoints of 
the interval of convergence. If a series is convergent at an endpoint, then the differentiated 
series may or may not be convergent at this point. For example, the series L~I xn fn 2 

converges at both endpoints x = -1 and x = + 1. However, the differentiated series given 
by L~I xn-I /n converges at x = -1 but diverges at x = + 1. 

By repeated application of the preceding result, we conclude that if k e N then 
L~o anxn can be differentiated term-by-term k times to obtain 

00 ' ~ n. n-k 
f=k (n- k)!anx . (5) 

Moreover, this series converges absolutely to J<k> (x) for lx I < R and uniformly over any 
closed and bounded interval in the interval of convergence. H we substitute x = 0 in (5), 
we obtain the important formula 

9.4.13 Uniqueness Theorem If L anxn and L b nxn converge on some interval 
(-r, r), r > 0, to the same function f, then 

forall n e N. 

Proof. Our preceding remarks show that n !an = J<n> (0) = n !b n for all n E N. Q.E.D. 

Taylor Series 

If a function f has derivatives of all orders at a point c in IR, then we can calculate the 
Taylorcoefficientsbya0 := f(c),an := J<n>(c)/n! forn e Nandinthiswayobtainapower 
series with these coefficients. However, it is not necessarily true that the resulting power 
series converges to the function fin an interval about c. (See Exercise 12 for an example.) 
The issue of convergence is resolved by the remainder term Rn in Taylor's Theorem 6.4.1. 
We will write 

(6) 
oo J<n>(c) 

f(x) = L , (x - c)n 
0 n. 

n= 

for lx - cl < R if and only if the sequence (Rn (x)) of remainders converges to 0 for each 
x in some interval {x: lx- cl < R}. In this case we say that the power series (6) is the 
Taylor expansion off at c. We observe that the Taylor polynomials for f discussed in 
Section 6.4 are just the partial sums of the Taylor expansion (6) off. (Recall that 0! = 1.) 

9.4.14 Examples (a) H f(x) := sinx, x e IR, we have J<2n>(x) = (-1)n sinx and 
t<2n+I>(x) = ( -1)n cosx for n eN, x e IR. Evaluating at c = 0, we get the Taylor coeffi
cients a2n = 0 and a2n+I = (-1)n/(2n + 1)! for n eN. Since lsinxl ~ 1 and lcosxl ~ I 
for all x, then IRn(x)l ::; lxln /n! for n eN and x e llt Since lim(Rn(x)) = 0 for each 
x e JR, we obtain the Taylor expansion 

oo (-l)n 
sinx = L x2n+l for all x e IR. 

n=O (2n + 1)! 
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An application of Theorem 9.4.12 gives us the Taylor expansion 

00 (-1)" 
cosx = L x2n for all x e Ill. 

n=O (2n)! 

(b) If g(x) := i",x e Ill, theng<">(x) = e:x foralln e N,andhencetheTaylorcoefficients 
are given by an= 1/n! for n eN. For a given x e Ill, we have IRn(x)l =::: e1:x1 1xl" /n! and 
therefore (Rn(x)) tends to 0 as n -+ oo. Therefore, we obtain the Taylor expansion 

(7) 
00 1 

e:x = L -x" 
n=O n! 

for all x e Ill. 

We can obtain the Taylor expansion at an arbitrary c e Ill by the device of replacing x by 
x - c in (7) and noting that 

00 1 00 ec 
e:x = ec · e:x-c = ec L -(x- c)"= L -(x- c)" 

n=O n! n=O n! 
for x e IR. 0 

Exercises for Section 9.4 

1. Discuss the convergence and the uniform convergence of the series L In, where In (x) is given 
by: 
(a) (x2 + n2)-l, (b) (nx)-2 (x #- 0), 

(c) sin(x I n 2), (d) (xn + 1)-1 (x #- 0) , 
(e) xn l(xn + 1) (x ~ 0), (f) (-1)n(n + x)- 1 (x ~ 0). 

2. If L an is an absolutely convergent series, then the series L an sinnx is absolutely and uni
formly convergent. 

3. Let (en) be a decreasing sequence of positive numbers. If Len sinnx is uniformly convergent, 
then lim(nen) = 0. 

4. Discuss the cases R = 0, R = +oo in the Cauchy-Hadamard Theorem 9.4.9. 

5. Show that the radius of convergence R of the power series L anxn is given by lim (I an I an+ 1 I) 
whenever this limit exists. Give an example of a power series where this limit does not exist. 

6. Determine the radius of convergence of the series L anxn, where an is given by: 

(a) 11nn, (b) naln!, 

(c) nn In!, (d) (lnn)- 1, n ~ 2, 

(e) (n !)2 I (2n) !, (f) n-~. 

7. If an := 1 when n is the square of a natural number and an := 0 otherwise, find the radius of 
convergence of L anxn. If b n := 1 when n = m! for m e N and b n := 0 otherwise, find the 
radius of convergence of the series L b nxn. 

8. Prove in detail that lim sup( I nan l 11n) =lim sup( I an ll/n). 

9. If 0 < p ~ I an I ~ q for all n e N, find the radius of convergence of L anxn. 

10. Let l(x) = Eanxn for lxl < R. If l(x) = 1(-x) for alllxl < R, show that an = 0 for all 
oddn. 

11. Prove that if I is defined for lx I < r and if there exists a constant B such that I 1<n> (x) I ~ B for 
all lx I < r and n e N, then the Taylor series expansion 

oo l(n) (O) E xn 
n=O n! 

converges to I (x) for lx I < r. 
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12. Prove by Induction that the function given by /(x) := e-•tx
2 

for x :f: 0, /(0) := 0, has deriva
tives of all orders at every point and that all of these derivatives vanish at x = 0. Hence this 
function is not given by its Taylor expansion about x = 0. 

13. Give an example of a function which is equal to its Taylor series expansion about x = 0 for 
x ~ 0, but which is not equal to this expansion for x < 0. 

14. Use the Lagrange form of the remainder to justify the general Binomial Expansion 

(I + x )m = f (:) x• for 0 ::; x < I. 
n=O 

15. (Geometric series) Show directly that if lxl < 1, then 1/(1 - x) = I::O x". 
16. Show by integrating the series for 1 I ( 1 + x) that if lx I < 1, then 

oo (-l)n+l 
ln(l +x) = L x". 

n=l n 

00 (-1)" 
17. Show that if lxl < 1, then Arctan x = L 

2 1 
x211+1

• 
n=O n + 
00 1 · 3 · · · (2n - 1) x 211+1 

18. Show that if lxl < 1, then Arcsin x = L 
2 

. 
2 

· 
2 

· 
n=O • 4 · · · n n + 1 

19. Find a series expansion for L' e_,z dt for x e R. 

20. If a e Rand lkl < I, the integral F(a, k) := L" (I - k2(sinxlr''
2 

dx is called an elliptic 
integral of the first kind. Show that 

(
1f ) _ 1f ~ ( 1 · 3 · · · (2n - 1) )

2 
2,. lkl < 1. 

F 2'k - 2 ~ 2·4···2n k for 
n=O 



CHAPTER 10 

THE GENERALIZED 
RIEMANN INTEGRAL 

In Chapter 7 we gave a rather complete discussion of the Riemann integral of a function 
on a closed bounded interval, defining the integral as the limit of Riemann sums of the 
function. This is the integral (and the approach) that the reader met in calculus courses; it is 
also the integral that is most frequently used in applications to engineering and other areas . 

. ·We have seen that continuous and monotone functions on [a, b] are Riemann integrable, so 
most of the functions arising in calculus are included in its scope. 

However, by the end of the 19th century, some inadequacies in the Riemann the
ory of integration had become apparent. These failings came primarily from the fact that 
the collection of Riemann integrable functions became inconveniently small as mathe
matics developed. For example, the set of functions for which the Newton-Leibniz for
mula: 

lb F' = F(b) - F(a) 

holds, does not include all differentiable functions. Also, limits of sequences of Riemann 
integrable functions are not necessarily Riemann integrable. These inadequacies led others 
to invent other integration theories, the best known of which was due to Henri Lebesgue 
( 1875-1941) and was developed at the very beginning of the 20th century. (For an account 
of the history of the development of the Lebesgue integral, the reader should consult the 
book of Hawkins given in the References.) 

Indeed, the Lebesgue theory of integration has become pre-eminent in contemporary 
mathematical research, since it enables one to integrate a much larger collection of functions, 
and to take limits of integrals more freely. However, the Lebesgue integral also has several 
inadequacies and difficulties: (I) There exist functions F that are differentiable on [a, b] 
but such that F' is not Lebesgue integrable. (2) Some "improper integrals", such as the 
important Dirichlet integral: 

roo sinx dx, 
lo x 

do not exist as Lebesgue integrals. (3) Most treatments of the Lebesgue integral have 
considerable prerequisites and are not easily within the reach of an undergraduate student 
of mathematics. 

As important as the Lebesgue integral is, there are even more inclusive theories of 
integration. One of these was developed independently in the late 1950s by the Czech 
mathematician J aroslav Kurzweil (b. 1926) and the English mathematician Ralph Henstock 
(b. 1923). Surprisingly, their approach is only slightly different from that used by Riemann, 
yet it yields an integral (which we will call the generalized Riemann integral) that includes 
"hnth thP R1Pm!lnn ~nrl thP T .PhP~Pue inte2r~s as soecia1 cases. Since the approach is so 
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Ralph Henstock and Jaroslav Kurzwell 
Ralph Henstock (pictured on the left) was born on 
June 2, 1923, in Nottinghamshire, England, the son of 
a mineworker. At an early age he showed that he was a 
gifted scholar in mathematics and science. He entered 
St. John's College, Cambridge, in 1941, studying with 
J. D. Bernal, G. H. Hardy, and J. C. Burkhill and was 
classified Wrangler in Part II of the Tripos Exams in 
1943. He earned his B.A. at Cambridge in 1944 and his 
Ph.D. at the University of London in 1948. His research 
is in the theory of summability, linear analysis, and inte
gration theory. Most of his teaching has been in Northern 
Ireland. He is presently an Emeritus Professor at the Coleraine Campus of the University of Ulster. 

Jaroslav Kurzweil (pictured on the right) was born on May 7. 1926, in Prague. A student of 
V. Jamfk, he has done a considerable amount of research in the theory of differential equations and 
the theory of integration, and also has had a serious interest in mathematical education. In 1964 he 
was awarded the Klement Gottwald State Prize, and in 1981 he was awarded the Bolzano medal 
of the Czechoslovak Academy of Sciences. Since 1989 he has been Director of the Mathematical 
Institute of the Czech Academy of Sciences in Prague and has had a profound influence on the 
mathematicians there. 

similar to that of Riemann, it is technically much simpler than the usual Lebesgue integral
yet its scope is considerably greater; in particular, it includes functions that are derivatives, 
and also includes all "improper integrals". 

In this chapter, we give an exposition of the generalized Riemann integral. In Sec
tion 10.1, it will be seen that the basic theory is almost exactly the same as for the ordinary 
Riemann integral. However, we have omitted the proofs of a few results when their proofs 
are unduly complicated. In the short Section 1 0.2, we indicate that improper integrals on 
[a, b] are included in the generalized theory. We will introduce the class of Lebesgue in
tegrable functions as those generalized integrable functions f whose absolute value 1/1 is 
also generalized integrable; this is a very different approach to the Lebesgue integral than 
is usual, but it gives the same class of functions. In Section 10.3, we \\'ill integrate functions 
on unbounded closed intervals. In the final section, we discuss the limit theorems that hold 
for the generalized Riemann and Lebesgue integrals, and we will give some interesting ap
plications of these theorems. We will also define what is meant by a .. measurable function" 
and relate that notion to generalized integrability. 

Readers wishing to study the proofs that are omitted here, should consult the first 
author's book, A Modern Theory of Integration, which we refer to as [MTI], or the books 
of DePree and Swartz, Gordon, and McLeod listed in the References. 

Section 10.1 Definition and Main Properties 

In Definition 5.5.2, we defined a gauge on [a, b] to be a strictly positive function~ : [a, b] ~ 
(0, oo). Further, a tagged partition P := {(/;, t;)}?=1 of [a, b], where I; := [x;_ 1, x;], is said 
to be ~-fine in case 

(1) for i = 1 , · · · , n. 

This is shown in Figure 5.5.1. Note that (i) only a tagged partition can be ~-fine, and (ii) 
.. L_ (' ~ .......... oc-C' nf ~ t~OOPn n:lrtitinn AAnru~rln ""-- tb ..... .n.b~: .......... "~ thn. t-n~Wn • """",.I tJ... ..... "'"'""""" r:t. \ 
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In Examples 5.5.4, we gave some specific examples of gauges, and in Theorem 5.5.5 
we showed that if o is any gauge on [a, b], then there exist o-fine tagged partitions of [a, b]. 

We will define the generalized Riemann (or the "Henstock-Kurzweil") integral. It 
will be seen that the definition is very similar to that of the ordinary Riemann integral, 
and that many of the proofs are essentially the same. Indeed, the only difference between 
the definitions of these integrals is that the notion of smallness of a tagged partition is 
specified by a gauge, rather than its norm. It will be seen that this-apparently minor-
difference results in a very much larger class of integrable functions. In order to avoid some 
complications, a few proofs will be omitted; they can be found in [MTI]. 

Before we begin our study, it is appropriate that we ask: Why are gauges more useful 
than norms? Briefly, the reason is that the norm of a partition is a rather coarse measure 
of the fineness of the partition, since it is merely the length of the largest subinterval in the 
partition. On the other hand, gauges can give one more delicate control of the subintervals 
in the partitions, by requiring the use of small subinterals when the function is varying 
rapidly but permitting the use of larger subintervals when the function is nearly constant. 
Moreover, gauges can be used to force specific points to be tags; this is often useful when 
unusual behavior takes place at such a point. Since gauges are more flexible than norms, 
their use permits a larger class of functions to become _ip.tegrable. 

1 0.1.1 Definition A function f : [a, b] ~ 1R is said to be generalized Riemann inte
grable on [a, b] if there exists a number L e 1R such that for every e > 0 there exists a 
gauge oE on [a, b] such that ifP is any oE-fine partition of [a, b], then 

IS(/; P)- Ll <e. 

The collection of all generalized Riemann integrable functions will usually be denoted by 
'R*[a, b]. 

It will be shown that iff e 'R*[a, b], then the number Lis uniquely determined; it will 
be called the generalized Riemann integral off over [a, b]. It will also be shown that if 
f e 'R[a, b], then f e 'R*[a, b] and the value of the two integrals is the same. Therefore, 
it will not cause any ambiguity if we also denote the generalized Riemann integral of 
f e 'R*[a, b] by the symbols 

or lb f(x)dx. 

Our first result gives the uniqueness of the value of the generalized Riemann integral. 
Although its proof is almost identical to that of Theorem 7 .1.2, we will write it out to show 
how gauges are used instead of norms of partitions. 

10.1.2 Uniqueness Theorem Iff e 'R*[a, b], then the value of the integral is uniquely 
determined. 

Proof. Assume that L' and L" both satisfy the definition and let e > 0. Thus there exists 
a gauge o;/2 such that if p 1 is any o;,2-fine partition, then 

IS(f; P1)- L'l < ej2. 

Also there exists a gauge o;/2 such that if p 2 is any o:,2-fine partition, then 

IS(/; P 2) - L"l < e /2. 
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We define 8e by 8
6
(t) := min{8~12 (t), 8;12(t)} fort e [a, b], so that 8

6 
is a gauge on [a, b]. 

If P is a 8e -fine partition, then the partition P is both 8~12-fine and 8;12-fine, so that 

IS(/; P>- L'l < E/2 and IS(/; P>- L"l < E/2, 

whence it follows that 

IL' - L"l < IL' - S(f; P>l + IS(/; P> - L"l 
< E/2 + E/2 =E. 

Since E > 0 is arbitrary, it follows that L' = L". Q.E.D. 

We now show that every Riemann integrable function f is also generalized Riemann 
integrable, and with the same value for the integral. This is done by using a gauge that is a 
constant function. 

10.1.3 Cousistency Theorem Iff e 'R.[a, b] with integral L, then also f e 'R.*[a, b] 
with integral L. 

Proof. Given E > 0, we need to construct an appropriate gauge on [a, b]. Since 
f e 'R.[a, b], there exists a number 8e > 0 such that if P is any tagged partition with 
nPn < 8£, then IS(/; P>- Ll <E. We define the function 8;(t) := 18e fort E [a, b], so 
that 8; is a gauge on [a, b]. 

If P = {(I;, t;) }7=1, where I; := [x; _1, X;], is a 8; -fine partition, then since 

I; C [t; -8;(t;),t; +8;(t;)] = [t; -18e,ti + 18£], 

it is readily seen that 0 < x; - x; _1 ~ 4 8 e < 8 e for all i = I, · · · , n. Therefore this partition 
also satisfies nPn < 8e and consequently IS(/; P>- Ll <E. 

Thus every 8;-fine partition P also satisfies IS(/; P)- Ll <E. Since E > 0 is arbi-
trary, it follows that f is generalized Riemann integrable to L. Q.E.D. 

From Theorems 7 .2.5, 7 .2.6 and 7 .2. 7, we conclude that: Every step function, every 
continuous function and every monotone function belongs to 'R.*[a, b]. We will now show 
that Dirichlet's function, which was shown not to be Riemann integrable in 7.2.2(b) and 
7.3 .13( d), is generalized Riemann integrable. 

10.1.4 Examples (a) The Dirichlet function f belongs to 'R.*[O, 1] and has integral 0. 
We enumerate the rational numbers in [0, 1] as {rl:}::1• Given E > 0 we define 

8e(rk) := E/2l:+2 and 8
6
(x) := 1 when x is irrational. Thus 8

6 
is a gauge on [0, 1] and 

if the partition P :={(I;, 1;)}7=1 is 8
6
-fine, then we havex; - X;_1 ~ U 6

(t;)· Since the only 
nonzero contributions to S(f; P) come from rational tags t; = rl:, where 

2£ E 
0 < f(rl:)(X; - X;_1) = 1 • (X; - X;_ 1) ~ 

2
l:+2 = 

2
l:+1 ' 

and since each such tag can occur in at most two subintervals, we have 

• 
00 

2E 
00 

E 
0 ~ S(f; P) < L l:+l = L k =E. 

l:=l 2 l:=l 2 

Since e > 0 is arbitrary, then I e 'R.*[O, 1] and 11 

1 = 0. 
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(b) Let H: [0, 1] ~ lR be defined by H(1/ k) := k fork eN and H(x) := 0 elsewhere 
on [0, 1]. 

Since His not bounded on [0, 1], it follows from the Boundedness Theorem 7.1.5 that 
it is not Riemann integrable on [0, 1]. We will now show that His generalized Riemann 
integrable to 0. 

In fact, given E > 0, we define !Je(1/ k) := E/(k2k+2) and set !Je(x) := 1 elsewhere on 
[0, 1], so !Je is a gauge on [0, 1].1fP is a !Je-fine partition of [0, 1] then X; - X;_ 1 ~ 2!Je(t;). 
Since the only nonzero contributions to S(H; P) come from tags t; = 1/ k, where 

2E E 
0 < H(1/ k)(X; - X;-t) = k. (X; - X;-t) ~ k. k2k+2 = 2k+l' 

and since each such tag can occur in at most two subintervals, we have 

. oo E 
0 ~ S(H; P) < L k =E. 

k=l 2 

Since e > 0 is arbitrary, then H e 7?.*[0, 1] and ~o• H = 0. 

The next result is exactly similar to Theorem 7.1.4. 

10.1.5 Theorem Suppose that f and g are in R.*[a, b]. Then: 

(a) If k e lR, the function kf is in R. • [a, b] and 

{ kf=k {f. 
(b) The function f + g is in R.*[a, b] and 

lb<f+g)= { !+ {g. 
(c) If f(x) ~ g(x)forall x e [a, b], then 

{ f!:: {g. 

0 

Proof. (b) Given E > 0, we can use the argument in the proof of the Uniqueness Theorem 
10.1.2 to construct a gauge !Je on [a, b] such that ifP is any !Je-fine partition of [a, b], then 

and 

Since S(f + g; P) = S(f; P) + S(g; P), it follows as in the proof of Theorem 7.1.4(b) 
that 

lsu + g; P>- (lb f + lb g) I !:: lsu; P> -lb !I+ ls<g; P> -lb gl 
<E/2+£/2=£. 

Since E > 0 is arbitrary, then f + g e R. • [a, b] and its integral is the sum of the integrals 
off and g. 

The proofs of (a) and (c) are analogous and are left to the reader. Q.E.D. 
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It might be expected that an argument similar to that given in Theorem 7 .1.5 can be 
used to show that a function in 'R.*[a, b] is necessarily bounded. However, that is not the 
case; indeed, we have already seen an unbounded function in 'R. • [0, 1] in Example 1 0.1.4(b) 
and will encounter more later. However, it is a profitable exercise for the reader to determine 
exactly where the proof of Theorem 7.1.5 breaks down for a function in 'R.*[a, b]. 

The Cauchy Criterion --------------------

There is an analogous form for the Cauchy Criterion for functions in 'R.* [a, b]. It is important 
because it eliminates the need to know the value of the integral. Its proof is essentially the 
same as that of 7 .2.1. 

10.1.6 Cauchy Criterion A function f: [a, b] ~ IR belongs to 'R.*[a, b] if and only if 
for evezy £ > 0 there exist a gauge 1}

6 
on [a, b] such that if P and Q are any partitions of 

[a, b] that are 11
6 
-fine, then 

IS(f; P>- S(f; Q)l < £. 

Proof. (=>)Iff e 'R.*[a, b] with integral L, let 8612 be a gauge on [a, b] such that if P 
and Q are 8612-fine partitions of [a, b], then 

IS(/; P)- Ll < £/2 and IS(/; Q)- Ll < e/2. 

We set 1J
6
(t) := 8

612
(t) forte [a, b], so ifP and Q are 7}

6
-fine, then 

IS(f; P>- S(f; Q)l ~ IS(f; P>- Ll + IL- S(f; Q)l 
< £/2 + £/2 = £. 

( <=) For each n e N, let 8n be a gauge on [a, b] such that if P and Q are partitions 
that are 8n -fine, then 

IS(f; P) - S(f; Q)l < 1/n. 

We may assume that 8n(t) ~ 8n+t (t) for all t e [a, b] and n eN; otherwise, we replace 8n 
by the gauge 8~(t) := min{81 (t), · · ·, 8n(t)} for all t e [a, b]. 

For each n e N, let P,. be a partition that is 8n -fine. Clearly, if m > n then both Pm and 
P,. are 8n -fine, so that 

(2) IS(/; 'P,.)- S(f; Pm)l < 1/n for m > n. 

Consequently, the sequence (S(f; Pm))~=t is a Cauchy sequence in IR, so it converges to 
some number A. Passing to the limit in (2) as m ~ oo, we have 

IS(f; 'P,.)- AI ~ 1/n for all n eN. 

To see that A is the generalized Riemann integral of f, given e > 0, let K e N satisfy 
K > 2/£. H Q is a 8K-fine partition, then 

IS(/; Q)- AI < IS(/; Q)- S(f; PK>I +IS(/; PK)- AI 

~1/K+1/K<e. 

Since e > 0 is arbitrary, then f e 'R.*[a, b] with integral A. Q.E.D. 
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10.1.7 Squeeze Theorem Letf: [a, b]--. 1R. Thenf e 'R*[a, b]ifandonlyifforevery 
e > 0 there exist functions ae and we in 'R*[a, b] with 

for all x e [a, b], 

and such that 

The proof of this result is exactly similar to the proof of Theorem 7 .2.3, and will be 
left to the reader. 

The Additivity Theorem 

We now present a result quite analogous to Theorem 7 .2.8. Its proof is a modification of 
the proof of that theorem, but since it is somewhat technical, the reader may choose to omit 
the proof on a first reading. 

10.1.8 Additivity Theorem Let f : [a, b]--. 1R and let c e (a, b). Then f e 'R*[a, b] 
if and only if its restrictions to [a, c] and [c, b] are both generalized Riemann integrable. 
In this case 

(3) t != [ !+ lb f. 
Proof. ( {=) Suppose that the restriction / 1 of f to [a, c ], and the restriction / 2 of 
f to [ c, b] are generalized Riemann integrable to L 1 and L 2, respectively. Then, given 
e > 0 there exists a gauge 8' on [a, c] such that if P 1 is a 8' -fine partition of [a, c] then 
IS(/1; P 1)- Ld < ej2. Also there exists a gauge 8" on [c, b] such that ifP2 is a 8"-fine 
partition of [c, b] then IS(/2 ; P2)- L2 1 < ej2. 

We now define a gauge 8e on [a, b] by 

I min{8' (t), ~ (c- t)} 
8e (t) := min{8' (c), 8" (c)} 

min{8"(t), ~(t- c)} 

for t e [a, c), 

for t = c, 
for t e (c, b]. 

(This gauge has the property that any 8 e-fine partition must have c as a tag for any subinterval 
containing the point c.) 

We will show that if Q is any 8e -fine partition of [a, b ], then there exist a 8' -fine 
partition Q1 of [a, c] and a 8" -fine partition Q2 of [c, b] such that 

(4) 

Case (i) If c is a partition point of Q, then it belongs to two subintervals of Q and is 
the tag for both of these subintervals. H Q1 consists of the part of Q having subintervals in 
[a, c], then Q1 is 8' -fine. Similarly, if Q2 consists of the part of Q having subintervals in 
[c, b], then Q2 is 8" -fine. The relation (4) is now clear. 

Case (ii) If c is not a partition point in Q = {(I;, t;) }7!:1, then it is the tag for some 
subinterval, say [xk_ 1, xk]. We replace the pair ([xk_1, xk], c) by the two pairs ([xk_1, c], c) 

and ([c, xk], c), and let Q1 and Q2 be the tagged partitions of [a, c] and [c, b] that result. 
Since f(c)(xk - xk_1) = f(c)(c- xk_1) + f(c)(xk -c), it is seen that the relation (4) 
also holds. 
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In either case, equation ( 4) and the Triangle Inequality imply that 

IS(f; Q)- (Ll + L2>1 = I(S(f; Ql) + S(f; Q2))- {L. + L2)1 
~ IS(f; Ql)- Ltl + IS(f; Q2)- L21· 

Since Q1 is 8' -fine and Q2 is 8" -fine, we conclude that 

IS(f; Q)- (L 1 + L 2} I <e. 

Since e > 0 is arbitrary, we infer that f e 'R*[a, b] and that (3) holds. 
(:::::>)Suppose that f e 'R*[a, b] and, given e > 0, let the gauge 11£ satisfy the Cauchy 

Criterion. Let / 1 be the restriction off to [a, c] and let P1, Q1 be '7£-fine partitions of 
[a, c]. By adding additional partition points and tags from [c, b], we can extend P1 and 

Q1 to 11£-fine partitions P and Q of [a, b]. If we use the same additional points and tags in 
[c, b] for both P and Q, then 

S(f; P>- S(f; Q) = S(ft; P.>- S(/1; Q.). 

Since both P and Q are '7£-fine, then IS(/1; P1)- S(/1; Q1)1 < e also holds. Therefore 
the Cauchy Condition shows that the restriction / 1 off to [a, c] is in 'R*[a, c]. Similarly, 
the restriction / 2 of f to [ c, d] is in 'R • [ c, d]. 

The equality (3) now follows from the first part of the theorem. Q.E.D. 

It is easy to see that results exactly similar to 7.2.9-7.2.12 hold for the generalized 
Riemann integral. We leave their statements to the reader, but will use these results freely. 

The Fundamental Theorem (First Form) 

We will now give versions of the Fundamental Theorems for the generalized Riemann 
integral. It will be seen that the First Form is significantly stronger than for the (ordinary) 
Riemann integral; indeed, we will show that the derivative of any function automatically 
belongs to 'R*[a, b], so the integrability of the function becomes a conclusion, rather than 
a hypothesis. 

10.1.9 The Fundamental Theorem of Calculus (First Form) Suppose there exists a 
countable set E in [a, b], and functions f, F : [a, b] ~ lR such that: 

(a) F is continuous on [a, b ]. 

(b) F'(x) = f(x) for all x e [a, b] \E. 
Then f belongs to 'R*[a, b] and. 

(5) { f = F(b) - F(a). 

Proof. We will prove the theorem in the case where E = 0, leaving the general case to 
be handled in the Exercises. 

Thus, we assume that (b) holds for all x e [a, b]. Since we wish to show that f e 
'R*[a, b], given e > 0, we need to construct a gauge 8£; this will be done by using the 
differentiability of F on [a, b]. If t e I, since the derivative f(t) = F' (t) exists, there 
exists 8£(1) > 0 such that if 0 < lz- tl < 8£(t), z e [a, b], then 

I 
F(z)- F(t) - f(t) < le. 

z-t 2 

If we multiply this inequality by lz- tl, we obtain 

IF(z)- F(t)- f(t)(z- t)l ~ ielz- tl 
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whenever z e [t- 8e(t), 1 + 8e(1)] n [a, b]. The function 8e is our desired gauge. 
Now let u, v e [a, b] with u < v satisfy 1 e [u, v] c [1- 8e(1), 1 + 8e(t)]. H we sub

tract and add the term F (t) - f (t) · t and use the Triangle Inequality and the fact that 
v - 1 ~ 0 and t - u ~ 0, we get 

IF(v)- F(u)- f(t)(v- u)l 

~ IF(v)- F(t)- f(t)(v- t)l + IF(t)- F(u)- j(1)(t- u)l 

~ !e<v- 1) + !e(t- u) = !e(v- u). 

Therefore, if 1 e [u, v] c [1- 8e(l), 1 + 8e(l)], then we have 

(6) IF(v)- F(u)- f(t)(v- u)l ~ !e(v- u). 

We will show that f e 'R*[a, b] with integral given by the telescoping sum 

11 

(7) F(b)- F(a) = L{F(x;)- F(x;_1)}. 

i=l 

for i = 1, · · · , n, 

and so we can use (7), the Triangle Inequality, and (6) to obtain 

11 

I F(b) - F(a) - S(f; P)l = IE { F(x;)- F(x;_ 1)- f(1;)(x; - X;_ 1)} I 
i=l 
11 

~ L IF(x;)- F(x;_ 1)- j(1;)(x;- X;_ 1)1 
i=l 

11 

~ L !e(x;- X;_1) < e(b- a). 
i=l 

Since e > 0 is arbitrary, we conclude that f e 'R*[a, b] and (5) holds. Q.E.D. 

10.1.10 Examples (a) If H(x) := 2../i for x e [0, b], then His continuous on [0, b] 
and H'(x) = 1f ../X for x e (0, b]. We define h(x) := H'(x) for x e (0, b] and h(O) := 0. 
It follows from the Fundamental Theorem 10.1.9 withE:= {0} that h belongs to 'R*[O, b] 
and that J: h = H(b)- H(O) = H(b), which we write as 

{b - 1- dx = 2../b. 
lo ../X 

(b) More generally, if a > 0, let Ha(x) := xa fa= ealnx fa for x e (0, b] and let 
Ha(O) := 0 so that Ha is continuous on [0, b] and H~(x) = xa-l for all x e (0, b]; see 
8.3.10 and 8.3.13. We define ha(x) := H~(x) for x E (0, b] and ha(O) := 0. 

Then Theorem 10.1.9 implies that ha E 'R*[O, b] and that Jt ha = Ha(b)- Ha(O) = 
Ha (b), which we write as 

l
b ba 
xa-ldx= -. 

o a 

(c) Let L(x) := x Inx- x for x e (0, b] and L(O) := 0. Then Lis continuous on [0, b] 
(use I' Hospital's Rule at x = 0), and it is seen that L'(x) = lnx for x e (0, b]. 
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It follows from Theorem 1 0.1.9 withE = {0} that the unbounded function l (x) := In x 
for x e (0, b] and 1(0) := 0 belongs to 'R.*[O, b] and that J: l = L(b)- L(O), which we 
write as 

fob lnxdx = blnb- b. 

(d) Let A(x) := Arcsinx for x e [ -1, 1] so that A is continuous on [ -1, 1] and 
A'(x) = 11../1- x 2 for x e (-1, 1). We define s(x) := A'(x) for x e (-1, 1) and let 
s(-1) = s(1) := 0. 

Then Theorem 10.1.9 withE= {-1, 1} implies that s e 'R.*[-1, 1] and that f~ 1 s = 
A(1)- A(-1) = 1r, which we write as 

11 dX A- • 1 A- • 
---;::::::=:::;: = J"U CSln - J"U CStn ( -1) = 1r. 

-t ../1-x2 
0 

The Fundamental Theorem (Second Form) -------------

We now tum to the Second Form of the Fundamental Theorem, in which we wish to 
differentiate the indefinite integral F of f, defined by: 

(8) F(z) := 1• f(x) dx for z e [a, b]. 

10.1.11 Fundamental Theorem of Calculus (Second Form) Let f belong to 'R.*[a, b] 
and let F be the indefinite integral off. Then we have: 

(a) F is continuous on [a, b ]. 

(b) There exists a null set Z such that if x e [a, b] \ Z, then F is differentiable at x and 
F'(x) = f(x). 

(c) Iff is continuous at c e [a, b], then F'(c) = f(c). 

Proof. The proofs of (a) and (b) can be found in [MTI]. The proof of (c) is exactly as the 
proofofTheorem 7.3.5 except that we use Theorems 10.1.8 and 10.1.5(c). Q.E.D. 

We can restate conclusion (b) as: The indefinite integral F off is differentiable to f 
almost everywhere on [a, b]. 

Substitution Theorem --------------------

In view of the simplicity of the Fundamental Theorem 10.1.9, we can improve the theorem 
justifying the "substitution formula". The next result is a considerable strengthening of 
Theorem 7.3.8. The reader should write out the hypotheses in the case E1 =E.,= E = ~-

10.1.12 Substitution Theorem (a) Let I :=[a, b] and J :=[a, /J], and let F: I ~ 1R 
and qJ : J ~ 1R be continuous functions with qJ(J) c I. 

(b) Suppose there exist sets E1 c I and E., c J such that f(x) = F'(x) for x e I\ E1, 

thatqJ'(t) exists forte J \E.,, and that E := qJ-1(E1) U E, is countable. 

(c) Set f(x) := 0 for x e E1 and ({)1(t) := 0 forte E.,. 
We conclude that f e 'R,*(qJ(J)), that (f o ({)) · ({)1 e R*(J) and that 

1p (/ 0 rp). rp' = F 0 rpr = 1·(/J) f. 
a a fl(a) 

(9) 
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Proof. Since qJ is continuous on J, Theorem 5.3.8 implies that qJ(J) is a closed interval 
in /. Also qJ -l ( E 1) is countable, whence E 

1 
n ({J ( J) = qJ ( qJ -I ( E 1)) is also countable. 

Since f(x) = F'(x) for all x e qJ(J) \ E1, the Fundamental Theorem 10.1.9 implies that 
f e 'R* (({J(l)) and that 

1 fP(fJ) I fP{fJ) 
f = F = F(({J(/3)) - F (({J(a)). 

fP(a) fP(a) 

If t e J \ E, then t e J \ EfP and ({J(t) e I\ E1. Hence the Chain Rule 6.1.6 implies 
that 

(F o qJ)' (t) = /(({J(t)} · ((J1(t) for t e J \E. 

Since E is countable, the Fundamental Theorem implies that(/ o ({J) · ({)1 e 'R*(J) and that 

1'1 

(f o q~) o q~' = F o q11: = F(q~(fl)) - F(q~(a) )o 

The conclusion follows by equating these two terms. Q.E.D. 

10.1.13 Examples (a) Consider the integral 14 

c7 dt 0 

Since the integrand is unbounded as t ~ 0+, there is some doubt about the existence 
of the integral. Also, we have seen in Exercise 7.3.19(b) that Theorem 7.3.8 does not apply 
with qJ(t) :=.Jr. However, Theorem 10.1.12 applies. 

Indeed, this substitution gives ({J1(t) = 1/(2-Ji) fort e (0, 4] and we set qJ(O) := 0. If 
we put F (x) : = 2 sin x, then f (x) = F' (x) = 2 cos x and the integrand has the form 

f (q~(t)) 0 q~'(t) = ( 2cos .Jt) c~) for t =F Oo 

Thus, the Substitution Theorem 10.1.12 with EfP := {0}, E1 := 0, E := {0} implies that 

1t=4 COS .Ji 1x=2 
r: dt = 2cosx dx = 2 sin 2. 

t=O vI x=O 

(b) Consider the integral t ~ = t dt 
lo vt- t 2 lo .Ji~· 

Note that this integrand is unbounded as t ~ 0+ and as t ~- 1-. As in (a), we let 
x = ({J(t) := .Ji for t e [0, 1] so that ({)1(1) = 1/(2-Ji) for t e (0, 1]. Since ~ = 
JI - x2

, the integrand takes the form 

2 I 2 I -- . - = . ({J (t), 
~ 2-Ji J1-x2 

which suggests f(x) = 21J1- x2 for x # 1. Therefore, we are led to choose F(x) := 
2 Arcsinx for x e [0, 1], since 

2 
= F'(x) = (2Arcsinx)' for x e [0, 1). 

JI-x2 

Consequently, we have EfP = {0} and E1 = {1}, so that E = {0, 1}, and the Substitution 
Theorem yields 

1t=l dt lx=l 2dx II 
r: ~ = = 2Arcsinx = 2Arcsin 1 = 1r. D 

t=O v • v 1 - t x=O .../ 1 - x 2 0 
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Other formulations of the Substitution Theorem are given in [MTI]. 

The Multiplication Theorem -------------------

In Theorem 7.3.16 we saw that the product of two Riemann integrable functions is Rie
mann integrable. That result is not true for generalized Riemann integrable functions; see 
Exercises 18 and 20. However, we will state a theorem in this direction that is often useful. 
Its proof will be found in [MTI]. 

10.1.14 Multiplication Theorem If I e 'R*[a, b] and if g is a monotone function on 
[a, b], then the product I· g belongs to 'R*[a, b]. 

Integration by Parts ----------------------

The following version of the formula for integration by parts is useful. 

10.1.15 Integration by Parts Theorem Let F and G be differentiable on [a, b]. Then 
F' G belongs to 'R • [a, b] if and only ifF G' belongs to 'R • [a, b]. In this case we have 

(10) lb b lb 
D F'G = FGL - tJ FG'. 

The proof uses Theorem 6.1.3( c); it will be left to the reader. In applications, we usually 
have F'(x) = f(x) and G'(x) = g(x) for all x e [a, b]. It will be noted that we need to 
assume that one of the functions fG = F'G and Fg = FG' belongs to 'R*[a, b]. 

The reader should contrast the next result with Theorem 7.3.18. Note that we do not 
need to assume the integrability of t<n+l>. 

10.1.16 Taylor's Theorem Suppose that f, f', f", · · ·, t<"> and t<n+l> exist on [a, b]. 
Then we have 

(11) 
f'(a) t<">(a) 

f(b) = l(a) + --(b- a)+···+ (b- a)" + R 
1! n! "' 

where the remainder is given by 

1 lb R" = f l(n+l)(t) · (b- t)" dt. 
n. a 

(12) 

Proof. Since t<n+l) is a derivative, it belongs to 'R*[a, b]. Moreover, since t ~ (b- t)" 
is monotone on [a, b], the Multiplication Theorem 10.1.14 implies the integral in (12) 
exists. Integrating by parts repeatedly, we obtain (11). Q.E.D. 

Exercises for Section 10.1 

1. Let & be a gauge on [a, b] and let P = {([x;_1, X;], t;)l?=1 be a &-fine partition of [a, b]. 
(a) Show that 0 <X;- xi-l ~ U(t;) fori= I,···, n. 
(b) If a· := sup{&(t) : t E [a, b]} < 00, show that IIPII ~ u·. 
(c) If &. := inf{&(t) : t e [a, b]} satisfies&. > 0, and if Q is a tagged partition of [a, b] such 

that we have II Qll ~ & • , show that Q is &-fine. 
(d) If e = 1, show that the gauge &1 in Example 10.1.4(a) has the property that inf{&1 (t) : t e 

[0, 1]} = 0. 
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2. (a) IfP is a tagged partition of [a, b ], show that each tag can belong to at most two subintervals 
in P. 

(b) Are there tagged partitions in which every tag belongs to exactly two subintervals? 

3. Let~ be a gauge on [a, b] and let P be a ~-fine partition of [a, b]. 
(a) Show that there exists a ~-fine partition Q1 such that (i) no tag belongs to two subintervals 

in Q1, and (ii) S(f; Q1) = S(f; P) for any function f on [a, b]. 
(b) Does there exist a ~-fine partition~ such that (j) every tag belongs to two subintervals in 

Q2, and (jj) S(f; Q2) = S(f; P) for any function f on [a, b]? 
(c) Show that there exists a ~-fine partition Q3 such that (k) every tag is an endpoint of its 

subinterval, and (kk) S(f; Q3) = S(f; P) for any function f on [a, b]. 

4. If~ is defined on [0, 2] by ~(t) := 41t - 11 for x :/= 1 and 8(1) := 0.01, show that every ~-fine 
partition P of [0, 2] hast = 1 as a tag for at least one subinterval, and that the total length of 
the subintervals in P having 1 as a tag is ~ 0.02. 

5. (a) Construct a gauge~ on [0, 4] that will force the numbers 1, 2, 3 to be tags of any ~-fine 
partition of this interval. 

(b) Given a gauge~. on [0, 4], construct a gauge ~2 such that every ~2-fine partition of [0, 4] 
will (i) have the numbers 1, 2, 3 in its collection of tags, and (ii) be 81-fine. 

6. Show that f e 'R*[a, b] with integral L if and only if for every e > 0 there exists a gauge y 
• £ 

on [a, b] such that if'P = {([x;_ 1, X;], t;>l?=1 is any tagged partition such that 0 <X;- X;_ 1 ~ 

yt(t;) fori= 1. · · ·, n, then IS(/; P>- Ll <e. (This provides an alternate-but equivalent
way of defining the generalized Riemann integral.) 

7. Show that the following functions belong to 'R*[O, 1] by finding a function Fie that is continuous 
on [0, 1] and such that F;(x) = fk(x) for x e [0, 1] \ EJc, for some finite set E/c. 
(a) / 1 (x) := (x + 1)/ .Ji for x E (0, 1] and / 1 (0) := 0. 
(b) / 2(x) := xj.;r:::i for x e [0, 1) and / 2(1) := 0. 
(c) f 3 (x) := .Jilnx for x e (0, 1] and / 3(0) := 0. 
(d) / 4 (x) := (lnx)/.Ji for x e (0, 1] and / 4 (0) := 0. 
(e) / 5 (x) := v'O + x)/(1 - x) for x e [0, 1) and / 5(1) := 0. 
(f) f 6 (x) := l/(.Jiv'2- x) for x e (0, 1] and / 6(0) := 0. 

8. Explain why the argument in Theorem 7.1.5 does not apply to show that a function in 'R*[a, b] 
is bounded. 

9. Let j(x) := 1/x for x e (0, 1] and /(0) := 0; then f is continuous except atx = 0. Show that 
f does not belong to 'R*[O, 1]. [Hint: Compare f with s,.(x) := 1 on (1/2, 1], s,.(x) := 2 on 
(1/3, 1/2], s,.(x) := 3 on (1/4, 1/3], · · ·, s,.(x) :=non [0, 1/n].] 

10. Let k : [0, 1] ~ lR be defined by k(x) := 0 if x e [0, 1] is 0 or is irrational, and k(m/n) := n 
if m, n eN have no common integer factors other than 1. Show that k e 'R,*[O, 1] with integral 
equal to 0. Also show that k is not continuous at any point, and not bounded on any subinterval 
[c, d] with c < d. 

11. Let f be Dirichlet's function on [0, 1] and F(x) := 0 for all x e [0, 1]. Since F'(x) = f(x) for 
all x e [0, 1] \ Q, show that the Fundamental Theorem 10.1.9 implies that f e 'R,*[O, 1]. 

12. Let M(x) :=In lxl for x :/= 0 and M(O) := 0. Show that M'(x) = 1/x for all x :F 0. Explain 
why it does not follow that f~2 (1/x) dx =In I - 21 -In 2 = 0. 

13. Let L 1 (x) := x In lxl- x for x ;6 0 and L 1 (0) := 0, and let 11 (x) :=In lxl if x :F 0 and 11 (0) := 

0. If [a, b] is any interval, show that 11 e 'R*[a, b] and that J: In lxl dx = L 1 (b)- L 1 (a). 

14. Let E := {c1, c2, ···}and let F be continuous on [a, b] and F'(x) = f(x) for x E [a, b] \ E 
and f(ck) := 0. We want to show that f e 'R,*[a, b] and that equation (5) holds. 
(a) Given e > 0 and t e [a, b] \ E, let 8,(t) be defined as in the proof of 10.1.9. Choose 

~e(ck) > 0 such that if lz- c1cl < 8e(ck) and z e [a, b], then IF(z)- F(c/c)l < e/2/c+l. 
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(b) Show that if the partition P is cS£ -fine and has a tag t; = cle, then we have 
IF(x;)- F(x;_ 1)- f(cle)(x;- X;_ 1)1 < e/21e+l. 

(c) Use the argument in 10.1.9 to get IS(/; P>- (F(b)- F(a))l < e(b- a+ 1). 

15. Show that the function g1 (x) := x- 112 sin(l/x) for x e (0, 1] and g1 (0) := 0 belongs to 
'R.*[O, 1]. [Hint: Differentiate C1 (x) := x 312 cos(l/x) for x e (0, 1] and C1 (0) := 0.] 

16. Show that the function g2(x) := (1/x) sin(l/x) for x e (0, 1] and g2 (0) := 0 belongs to 
'R.*[O, 1]. [Hint: Differentiate C2(x) := x cos(Ifx) for x e {0, 1] and C2(0) := 0, and use the 
result for the cosine function that corresponds to Exercise 7.2.12.] 

17. Use the Substitution Theorem 10.1.12 to evaluate the following integrals. 

13 L4~~ 
(a) (2t + 1)sgn(t2 + t - 2) dt = 6, (b) ~' 

-3 0 1 + t 

(c) J.' t~ =2Arctan2, (d) [ ~dt. 
18. Give an example of a function f e 'R*[O, 1] whose square / 2 does not belong to 'R*[O, 1]. 

19. Let F(x) := x cos(1rjx) for x e (0, 1] and F(O) := 0. It will be seen that f := F' e 'R*[O, 1] 
but that its absolute value 1/1 = IF' I ~ 'R*[O, 1]. (Here /(0) := 0.) 
(a) Show that F' and IF' I are continuous on any interval [c, 1], 0 < c < 1 and f ~.'R.*[O, 1]. 
(b) Ifale := 2/(2k+ l)andb/c := 1/kfork e N,thentheintervals[a/c,b/c]arenon-overlapping 

and 1/k ~ I:~c 1/1. 
k 

(c) Since the series 2:~ 1 1/ k diverges, then 1/1 ~ 'R*[O, 1]. 

20. Let f be as in Exercise 19 and let m(x) := (-1)1e for x e [ale, b/c] (keN), and m(x) := 0 
elsewhere in [0, 1]. Show that m · f = lm ·fl. Use Exercise 7.2.11 to show that the bounded 
functions m and lml belong to 'R[O, 1]. Conclude that the product of a function in 'R*[O, 1] and 
a bounded function in 'R.[O, 1] may not belong to 'R*[O, 1]. 

21. Let cl>(x) :=xI cos(Jr/x)l for x e (0, 1] and let 4>(0) := 0. Then cl> is continuous on [0, 1] and 
cl>'(x) exists for x fJ E := {0} U {ale : k e N}, where ale := 2/(2k + 1). Let cp(x) := cl>'(x) for 
x fJ E and cp(x) := 0 for x e E. Show that cp is not bounded on [0, 1]. Using the Fundamental 
Theorem 10.1.9 with E countable, conclude that cp e 'R*[O, 1] and that I: cp = cl>(b)- cl>(a) 
for a, be [0, 1]. As in Exercise 19, show that lcpl fJ 'R*[O, 1]. 

22. Let \ll(x) := x 21 cos(Jr/x)l for x e (0, 1] and \11(0) := 0. Then \II is continuous on [0, 1] and 
lll'(x) exists for x ~ E 1 :={ale}. Let 1/t(x) := lll'(x) for x fJ E 1 and Y,(x) := 0 for x e E 1• 

Show that 1/t is bounded on [0, 1] and (using Exercise 7.2.11) that 1/t e 'R[O, 1]. Show that I: 1/t = \ll(b) - \ll(a) for a, b e [0, 1]. Also sho~ that 11/tl e 'R[O, 1]. 

23. Iff : [a, b]--+ JR. is continuous and if p e 'R*[a, b) does not change sign on [a, b], and if fp e 
'R*[a, b], then there exists~ e [a, b] such that I: fp =/(~)I: p. (This is a generalization of 
Exercise 7.2.16; it is called the First Mean Value Theorem for integrals.) 

24. Let f e 'R.*[a, b], let g be monotone on [a, b] and suppose that f ~ 0. Then there exists 
~ e [a, b] such that I: fg = g(a) I! f + g(b) I: f. (This is a form of the Second Mean Value 
Theorem for integrals.) 

Section 10.2 Improper and Lebesgue Integrals 

We have seen in Theorem 7.1.5 that a function fin 'R.[a, b] must be bounded on [a, b] 
(although this need not be the case for a function in 'R.*[a, b]). In order to integrate certain 
functions that have infinite limits at a point c in [a, b ], or which are highly oscillatory 
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at such a point, one learns in calculus to take limits of integrals over subintervals, as the 
endpoints of these subintervals tend to the point c. 

For example, the function h(x) := 1/ .Ji for x e (0, 1] and h(O) := 0 is unbounded on 
a neighborhood of the left endpoint of [0, 1]. However, it does belong to 'R.[y, 1] for every 
y e (0, 1] and we define the "improper Riemann integral" of h on [0, 1] to be the limit 

11 1 11 1 
r= dx := lim r= dx. 

o vx y-+O+ Y vx 

We would treat the oscillatory function k(x) := sin(1/x) for x e (0, 1] and k(O) := 0 in 
the same way. 

One handles a function that becomes unbounded, or is highly oscillatory, at the right 
endpoint of the interval in a similar fashion. Furthermore, if a function g is unbounded, or 
is highly oscillatory, near some c e (a, b), then we define the "improper Riemann integral" 
to be 

(1) 1b g := lim 1a g + lim rb g. 
a a-+c- a fJ-+c+ } fJ 

These limiting processes_ are not necessary when one deals with the generalized 
Riemann integral. 

For example, we have seen in Example 10.1.10(a) that if H(x) := 2,Ji for x e [0, I] 
then H'(x) = 1/.Ji =: h(x) for x e (0, 1] and the Fundamental Theorem 10.1.9 asserts 
that h e 'R*[O, 1] and that 

~o• Jxdx=H(l)-H(0)=2. 

This example is an instance of a remarkable theorem due to Heinrich Hake, which we now 
state in the case where the function becomes unbounded or is oscillatory near the right 
endpoint of the interval. 

10.2.1 Hake's Theorem If I: [a, b] ~ lR, then I e 'R*[a, b] if and only if for every 
y e (a, b) the restriction of I to [a, y] belongs to 'R*[a, y] and 

(2) lim 1Y I = A e JR. 
y-+b- a 

In this case 1b f = A. 

The idea of the proof of the ( <=) part of this result is to take an increasing sequence 
(y") converging to b so that I e 'R*[a, Yn] and limn J:n I= A. In order to show that 
I e 'R.*[a, b], we need to construct gauges on [a, b]. This is done by carefully "piecing 
together" gauges that work for the intervals [y;_1, Y;] to obtain a gauge on [a, b]. Since the 
details of this construction are somewhat delicate and not particularly informative, we will 
not go through them here but refer the reader to [MTI]. 

It is important to understand the significance of Hake's Theorem. 

• It implies that the generalized Riemann integral cannot be extended by taking limits as 
in (2). Indeed, if a function I has the property that its restriction to every subinterval 
[a, y], where y e (a, b), is generalized Riemann integrable and such that (2) holds, then 
1 already belongs to n• [a, b ]. 



10.2 IMPROPER AND LEBESGUE INTEGRALS 289 

An alternative way of expressing this fact is that the generalized Riemann integral does 
not need to be extended by taking such limits. 

• One can test a function for integrability on [a, b] by examining its behavior on subin
tervals [a, y] with y < b. Since it is usually difficult to establish that a function is in 
n • [a, b] by using Definition 1 0.1.1, this fact gives us another tool for showing that a 
function is generalized Riemann integrable on [a, b]. 

• It is often useful to evaluate the integral of a function by using (2). 

We will use these observations to give an important example that provides insight into 
the set of generalized Riemann integrable functions. 

10.2.2 Example (a) Let I:~1 ak be any series of real numbers convering to A e 1R. 
We will construct a function qJ e 1?,*[0, 1] such that 

1
1 00 

(/) = Lak =A. 
0 k=1 

Indeed, we define(/) : [0, 1] ~ 1R to be the function that takes the values 2a., 22a2 , 

23a 3, ••• on the intervals [0, ~), [~, ~), [~, i>, · · ·. (See Figure 10.2.1.) For convenience, 
let ck := 1 - 1/2" fork= 0, 1, ···,then 

0 

{
2"ak for ck_1 ~ x < ck (keN), 

(/)(X) := 0 
for x = 1. 

1 
2 

3 

l11 
Figure 10.2.1 The graph of tp. 

Clearly the restriction of(/) to each interval [0, y] for y e (0, 1), is a step function and 
therefore is integrable. In fact, if y E [en, cn+1) then 

1Y rp = (2al) 0 G)+ (22a2) 0 G2) + 0 0 0 + (2nan) 0 (;n) + ry 

= a1 + a2 + ... + an + r Y' 

where lr Y 1 < I an+ 11. But since the series is convergent, then r Y -+ 0 and so 

1
y n 

lim qJ = lim "'""a" =A. y~1- 0 n~oo L.J 
k=1 
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(b) If the series L~t ale is absolutely convergent in the sense of Definition 9.1.1, then it 
follows as in (a) that the function lcpl also belongs to 'R*[O, 1] and that 

r• ~ 
Jo I<PI = ~ la~cl· 

0 lc=l 

However, if the series L:~1 lak I is not convergent, then the function I <PI does not belong to 
'R*[O, 1]. 

Since there are many convergent series that are not absolutely convergent (for example, 
2:~1 ( -1)/c I k), we have examples of functions that belong to 'R*[O, 1] but whose absolute 
values do not belong to 'R*[O, 1]. We have already encountered such functions in Exercises 
10.1.19 and 10.1.21. 0 

The fact that there are generalized Riemann integrable functions whose absolute value 
is not generalized Riemann integrable is often summarized by saying that the generalized 
Riemann integral is not an "absolute integral". Thus, in passing to the generalized Riemann 
integral we lose an important property of the (ordinary) Riemann integral. But that is the 
price that one must pay in order to be able to integrate a much larger class of functions. 

Lebesgue Integrable Functions 

In view of the importance of the subset of functions in 'R*[a, b] whose absolute values also 
belong to 'R*[a, b], we will introduce the following definition. 

10.2.3 Definition A function f e 'R*[a, b] such that 1/1 e 'R*[a, b] is said to be 
Lebesgue integrable on [a, b]. The collection of all Lebesgue integrable functions on 
[a, b] is denoted by .C[a, b]. 

Note The collection of all Lebesgue integrable functions is usually introduced in a 
totally different manner. One of the advantages of the generalized Riemann integral is 
that it includes the collection of Lebesgue integrable functions as a special-and easily 
identifiable-collection of functions. 

It is clear that if f e 'R*[a, b] and if f(x) ~ 0 for all x e [a, b], then we have 
1/1 = f e 'R*[a, b], so that f e .C[a, b]. That is, ·a nonnegative function f e 'R*[a, b] 
belongs to .C[a, b]. The next result gives a more powerful test for a function in 'R*[a, b] to 
belong to .C[a, b]. 

10.2.4 Comparison Test Iff, we 'R*[a, b] and 1/(x)l ~ w(x) for all x e [a, b], then 
! e .C[a, b] and 

(3) 

Partial Proof. The fact that 1/1 e 'R*[a, b] is proved in [MTI]. Since Ill ~ 0, this implies 
that f e .C[a, b ]. 

To establish (3), we note that -Ill < f < Ill and 10.1.5(c) imply that 

-lb Ill < lb f < lb lfl, 
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whence the first inequality in (3) follows. The second inequality follows from another 

application of 10.1.5(c). Q.E.D. 

The next result shows that constant multiples and sums of functions in .C[a, b] also 

belong to .C[a, b]. 

10.2.5 Theorem Iff, g e .C[a, b] andifc e 1R, then cf and f + g also belong to.C[a, b]. 

Moreover 

(4) and 

Proof. Since lcf(x)l = lcll/(x)l for all x e [a, b], the hypothesis that 1/1 belongs to 

'R*[a, b] implies that cf and lc/1 also belong to 'R*[a, b], whence cf e .C[a, b]. 

The Triangle Inequality implies that 1/(x) + g(x)l :::: 1/(x)l + lg(x)l for all x e 

[a, b]. But since w := 1/1 + lgl belongs to 'R*[a, b], the Comparison Test 10.2.4 implies 

that f + g belongs to .C[a, b] and that 

lb If+ gl ::sib (1/1 + lgl) = t 1/1 + lb lgl. Q.E.D. 

The next result asserts that one only needs to establish a one-sided inequality in order 

to show that a function f e 'R*[a, b] actually belongs to .C[a, b]. 

10.2.6 Theorem Iff e 'R*[a, b], the following assertions are equivalent: 

(a) f e .C[a, b]. 

(b) There exists we .C[a, b] such that f(x) :::: w(x) for all x e [a, b]. 

(c) There exists a e .C[a, b] such thata(x):::: f(x) for all x e [a, b]. 

Proof. (a) =>(b) Let w := f. 
(b) => (a) Note that f = w- (w- f). Since w- f ~ 0 and since w- f belongs 

to 'R*[a, b], it follows that w- f e .C[a, b]. Now apply Theorem 10.2.5. 

We leave the proof that (a) <===> (c) to the reader. Q.E.D. 

10.2.7 Theorem Iff, g e .C[a, b], then the functions max{/, g} and min{/, g} also be

long to .C[a, b]. 

Proof. It follows from Exercise 2.2.16 that if x e [a, b ], then 

max{f(x), g(x)} = !<f(x) + g(x) + 1/(x)- g(x)l), 

min{f(x), g(x)} = !<f(x) + g(x)- 1/(x)- g(x)l). 

The assertions follow from these equations and Theorem 10.2.5. Q.E.D. 

In fact, the preceding result gives a useful conclusion about the maximum and the 

minimum of two functions in 'R*[a, b]. 

10.2.8 Theorem Suppose that f, g, a and w belong to 'R*[a, b]. If 

f ~ w, g :::: (J) or if a :::: /, a < g, 

then max{/, g} and min{/, g} also belong to'R*[a, b]. 



292 CHAPTER 10 THE GENERALIZED RIEMANN INTEGRAL 

Proof. Suppose that f ::::; w and g::::; w; then max{/, g} ::::; w. It follows from the first 
equality in the proof of Theorem 10.2.7 that 

0 :S 1/- gl = 2max{f, g}- f- g :S 2w- f- g. 

Since 2w- f- g ~ 0, this function belongs to .C[a, b]. The Comparison Test 10.2.4 
implies that 2 max{/, g}- f- g belongs to .C[a, b], and somax{f, g} belongs to'R.*[a, b). 

The second part of the assertion is proved similarly. Q.E.D. 

The Seminorm in .C[a, b) 

We will now define the "seminorm" of a function in .C[a, b] and the "distance between" 
two such functions. 

10.2.9 Definition Iff e .C[a, b), we define the seminorm off to be 

11/11:= {111· 

If f, g e .C [a, b], we define the distance between f and g to be 

dist(j, g) := II/- gil = {if- gl. 

We now establish a few properties of the seminorm and distance functions. 

10.2.10 Theorem The seminorm function satisfies: 

(i) 11/11 ~ 0 for all f e .C[a, b). 

(ii) If f(x) = 0 for x e [a, b], then 11/11 = 0. 
(iii) Iff e .C[a, b] and c e IR, then llc/11 = lei· 11/11. 
(iv) Iff, g e .C[a. b), then II!+ gil :S 11/11 + llgll. 

Proof. Parts (i)-(iii) are easily seen. Part (iv) follows from the fact that If+ gl ~ 1/1 + 
lgl and Theorem 10.1.5(c). Q.E.D. 

10.2.11 Theorem The distance function satisfies: 

(j) dist(f, g) ~ 0 for all f, g e .C[a, b ]. 

(jj) If f(x) = g(x) for x e [a, b), then dist(f, g) = 0. 
(jjj) dist(f, g) = dist(g, f) for all f, g e .C[a, b]. 
(jv) dist(f, h) ~ dist(f, g)+ dist(g, h) for all f, g, h e .C[a, b]. 

These assertions follow from the corresponding ones in Theorem 1 0.2.1 0. Their proofs 
will be left as exercises. 

Using the seminorm (or the distance function) we can define what we mean for a 
sequence of functions (fn) in .C[a, b] to converge to a function f e .C[a, b]; namely, given 
any e > 0 there exists K (e) such that if n ~ K (e) then 

This notion of convergence can be used exactly as we have used the distance function in 1R 
for the convergence of sequences of real numbers. 
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We will conclude this section with a statement of the Completeness Theorem for 
.C[a, b] (also called the Riesz-Fischer Theorem). It plays the same role in the space .C[a, b] 
that the Completeness Property plays in IR. 

10.2.12 Completeness Theorem A sequence (/,) of functions in .C[a, b] converges to 
a function f e .C[a, b] if and only if it has the property that for every e > 0 there exists 
H(e) such that ifm, n ~ H(e) then 

11/m -/,.II = dist(/m' /,) < £. 

The direction ( =>) is very easy to prove and is left as an exercise. A proof of 
the direction ( <=) is more involved, but can be based on the following idea: Find a 
subsequence (gk) := (/, ) of (/,) such that llgk+I - gkll < l/2k and define /(x) := 

lc 

g 1(x) + I:~1 (gk+ 1(x)- gk(x)), wherethisseriesisabsolutelyconvergent,andf(x) := 0 
elsewhere. It can then be shown that f e .C[a, b] and that 11/,- /II ~ 0. (The details are 
given in [MTI].) 

Exercises for Section 10.2 

1. Show that Hake's Theorem 1 0.2.1 can be given the following sequential formulation: A function 
I e R.•[a, b) if and only if there exists A e R such that for any increasing sequence (en) in (a, b) 
with en --+ b, then I E R.*[a, en] and J;,. I --+ A. 

2. (a) Apply Hake's Theorem to conclude that g(x) := l/x2!3 for x e (0, 1] andg(O) := Obelongs 
to R.*[O, 1]. 

(b) Explain why Hake's Theorem does not apply to l(x) := 1/x for x e (0, 1] and 1(0) := 0 
(which does not belong to R. • [0, 1 ]). 

3. Apply Hake's Theorem to g(x) := (1 - x)- 112 for x e [0, 1) and g(l) := 0. 

4. Suppose that 1 e R.*[a, c) for all c e (a, b) and that there exists y e (a, b) and we .C[y, b) such 
that ll(x)l ~ w(x) for x e [y, b). Show that I e R.•[a, b). 

5. Show that the function g 1 (x) := x- 112 sin(l/x) for x e (0, I] and g 1 (0) := 0 belongs to .C[O, 1]. 
(This function was also considered in Exercise 10.1.15.) 

6. Show that the following functions (properly defined when necessary) are in .C[O, 1 ]. 
x lnx sin1rx 

(a) 1 +x2' (b) ~· 
lnx 

(c) (lnx)(ln(l- x)), (d) ~-

7. Determine whether the following integrals are convergent or divergent. (Define the integrands to 
be 0 where they are not already defined.) 

1
1 sinxdx 

(a) 
o x3/2 ' 

1
1 lnxdx 

(c) 
o xJ1- x2 ' 

(e) f (lnx)(sin(l/x)) dx, 

8. If I e R.[a, b), show that I e .C[a, b). 

( 1 cosxdx 
(b) Jo x3f2 ' 

(d) (
1 

lnx dx, 
Jo 1 -x 
(

1 dx 
(f) Jo Ji(l- x) · 

9. If 1 e .C[a, b), show that / 2 is not necessarily in .C[a, b). 
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10. Iff, g e .C[a, b] and if g is bounded and monotone, show that fg e .C[a, b]. More exactly, if 
lg(x)l ~ B, show that 11/gll ~ Bll/11. 

11. (a) Give an example of a function f e 'R*[O, 1] such that max{/, 0} does not belong to 
'R*[O, 1 ]. 

(b) Can you give an example off e .C[O, 1] such that max{/, 0} ~ .C[O, 1]? 

12. Write out the details of the proof that min(/. g} e 'R*[a, b] in Theorem 10.2.8 when a ~ f and 
a ~g. 

13. Write out the details of the proofs of Theorem 10.2.11. 

14. Give an f e .C[a, b] with f not identically 0, but such that 11/11 = 0. 

15. Iff, g e .C[a, b], show that III/II - llglll ~ II/± gil. 

16. Establish the easy part of the Completeness Theorem 1 0.2.12. 

17. If fn(x) := xn for n eN, show that fn e .C[O, 1] and that 11/n II ~ 0. Thus 11/n- 811 ~ 0, 
where 8 denotes the function identically equal to 0. 

18. Let gn(x) := -1 for x e [-1, -1/n), let gn(x) := nx for x e [-1/n, 1/n] and let gn(x) := 1 
for x e (1/n, 1]. Show that llgm - gn II ~ 0 as m, n --+ oo, so that the Completeness Theorem 
10.2.12 implies that there exists g e .C[ -1, 1] such that (gn) converges to g in .C[ -1, 1 ]. Find 
such a function g. 

19. Let hn (x) := n for x e (0, 1/ n) and hn (x) := 0 elsewhere in [0, 1]. Does there exist h e .C[O, 1] 
such that llhn - h II --+ 0? 

20. Letkn(x) := nforx e (0, l/n2)andkn(x) := Oelsewherein[O, 1].Doesthereexistk e .C[O, 1] 
such that llk

11 
- kll --+ 0? 

Section 10.3 Infinite Intervals 

In the preceding two sections, we have discussed the integration of functions defined 
on bounded closed intervals [a, b). However, in applications we often want to integrate 
functions defined on unbounded closed intervals, such as 

[a, oo), ( -00, b], or (-00, 00). 

In calculus, the standard approach is to define an integral over [a, oo) as a limit: 

1
00 

f := lim 1Y f, 
a y-+oo a 

and to define integrals over the other infinite intervals similarly. In this section, we will 
treat the generalized Riemann integrable (and Lebesgue integrable) functions defined on 
infinite intervals. 

In defining the generalized Riemann integral of a function f on [a, oo ), we will adopt a 
somewhatdifferentprocedurefromthatincalculus. WenotethatifQ := (([x0 , x.J, t1), • • ·, 

([xn-l' xn], tn), ([xn' oo], tn+ 1)} is a tagged partition of[a, oo], thenx0 =a andxn+t = 00 

and the Riemann sum corresponding to Q has the fonn: 

(1) f(tt)(xl - Xo) + ... + f(tn)(xn- xn-t) + /(tn+t)(oo- xn). 

Since the final tenn /(tn+t)(oo- xn) in (1) is not meaningful, we wish to suppress this 
term. We can do this in two different ways: (i) define the Riemann sum to contain only the 
first n terms, or (ii) have a procedure that will enable us to deal with the symbols ± oo in 
calculations in such a way that we eliminate the final tenn in (1). 
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We choose to adopt method (i): instead of dealing with partitions of [a, oo) into a 
finite number of non-overlapping intervals (one of which must necessarily have infinite 
length), we deal with certain subpartitions of [a, oo), which are finite collections of 
non-overlapping intervals of finite length whose union is properly contained in [a, oo). 

We define a gauge on [a, oo] to be an ordered pair consisting of a strictly positive 
function ~ defined on [a, oo) and a number d* > 0. When we say that a tagged subpartition 
P := { ([x0 , x.J, t1), · · ·, ([xn-l, xn], tn)} is(~, d*)-flne, we mean that 

(2) 

that 

(3) 

and that 

(4) 

or, equivalently, that 

(4') 

n 

[a, oo) = U [x;-1' X;] U [xn, oo), 
i=l 

for i = 1 , · · · , n, 

1/d* ~ xn. 

Note Ordinarily we consider a gauge on [a, oo] to be a strictly positive function~ with 
domain [a, oo] :=[a, oo) U {oo} where ~(oo) := d*. 

We will now define the generalized Riemann integral over [a, oo). 

10.3.1 Definition (a) A function f: [a, oo)-+ 1R is said to be generalized Riemann 
integrable if there exists A e 1R such that for every e > 0 there exists a gauge ~ E on [a, oo] 
such that ifP is any ~E-fine tagged subpartition of [a, oo), then IS(/; P)- AI ~ e.ln this 
case we write f e 'R.*[a, oo) and 

["' f :=A. 

(b) A function f : [a, oo) -+ 1R is said to be Lebesgue integrable if both f and 1/1 belong 
to 'R.*[a, oo). In this case we write f e £[a, oo). 

Of particular importance is the version of Hake's Theorem for functions in 'R.*[a, oo). 
Other results for functions in £[a, oo) will be given in the exercises. 

10.3.2 Hake's Theorem Iff: [a, oo)-+ IR, then f e 'R.*[a, oo) if and only if for every 
y e (a, oo) the restriction off to [a, y] belongs to 'R.*[a, y] and 

(5) lim 1y f = A E JR. 
y~oo a 

In this case 1"" f =A. 

The idea of the proof of Hake's theorem is as before; the details are given in [MTI]. 

The generalized Riemann integral on the unbounded interval [a, oo) has the same 
properties as this integral on a bounded interval [a, b] that were demonstrated in Section 
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10.1. They can be obtained by either modifying the proofs given there, or by using Hake's 
Theorem. We will give two examples. 

10.3.3 Examples (a) Iff, g e R.*[a, oo), then f + g e R.*[a, oo) and 

["' <f +g) = ["'I+[" g. 
If e > 0 is given let 81 be a gauge on [a, oo] such that ifP is 81-fine, then IS(/; P)

fa
00 f I ~ e /2, and there exists a gauge 8 such that if P is 8 

8
- fine, then IS (g; P> - fa

00 
g I ~ 

ef2.Nowlet8s(t) := min{81 (t), 8
8
(t)}lort e [a, oo]andargueasintheproofof10.1.5{b). 

(b) Let f : [a, oo) ~ 1R and let c e (a, oo). Then f e R.*[a, oo) if and only if its restric
tions to [a, c] and [c, oo) are integrable. In this case, 

(6) 

We will prove ( ~) using Hake's Theorem. By hypothesis, the restriction of f to 
[c, oo) is integrable. Therefore, Hake's Theorem implies that for every y e (c, oo), the 
restriction of f to [ c, y] is integrable and that 

1
00 

I = lim 1Y f. 
c y-+oo c 

If we apply the Additivity Theorem 10.1.8 to the interval [a, y] =[a, c] U [c, y], we 
conclude that the restriction off to [a, y] is integrable and that 

1y I= [I+ [I. 
whence it follows that 

l_!.m 1Y f = 1c I + l_!.m 1Y f = 1c f + 100 

f. 
Y 00 a a Y 00 c a c 

Another application of Hake's Theorem establishes (6). 0 

10.3.4 Examples (a) Let a > 1 and let fa(x) := 1/xa for x e [1, oo). We will show 
that fa e R.*[1, 00). 

Indeed, if y e ( 1, oo) then the restriction of fa to [ 1, y] is continuous and therefore 
belongs to R. • [ 1, y]. Moreover, we have 

J. Y _!_dx = _1 ·x•-aly = _1 . [1- _1 J. 
1 xa 1 - a 1 a - 1 ya-t 

But since the last term tends to 1/(a- 1) as y ~ oo, Hake's Theorem implies that fa e 
R.*[1, oo) and that 

J.oo _!_ dx = _I_ 
1 xa a- I 

when a> 1. 

(b) Let L~t ak be a series of real numbers that converges to A e 1R. We will construct a 
functions e R.*[O, oo) such that · 

roo 00 

Jo s = Lak =A. 
0 k=l 
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Indeed, we define s (x) := ak for x e [k - I, k), k e N. It is clear that the restriction of 
s to every subinterval [0, y] is a step function, and therefore belongs to 'R.*[O, y]. Moreover, 
if y e [n, n + I), then 

1Y s =a,+ 0 0 0 +an+ ry, 

where lr Y I ~ lan+tl· But since the series is convergent, then r Y -+ 0 and so Hake's Theorem 
I0.3.2 implies that 

1
y n 

lim s · lim Lak =A. y-.oo 0 n-.oo k=l 

(c) If the function s is defined as in (b), then lsi has the value lakl on the interval 
[k- I, k}, keN. Thus s belongs to .C[O, oo) if and only if the series L~I lakl is conver
gent; that is, if and only if L~t ak is absolutely convergent. 
(d) Let D(x) := (sinx)fx for x e (0, oo) and let D(O) := I. We will consider the impor
tant Dirichlet integral: 

roo D(x) dx = roo sinx dx. 
lo lo x 

Since the restriction of D to every interval [0, y] is continuous, this restriction J>elongs 
to'R.•[o, y].Toseethatfd' D(x)dxhasalimitasy-+ oo,weletO < {J < y.Anintegration 
by parts shows that 

rr D(x) dx - rfJ D(x) dx = ly sinx dx 
h h fJ X 

= _ cosx IY -1Y co~x dx. 
X fJ fJ X 

But since I cos xI ~ 1, it is an exercise to show that the above terms approach 0 as {J < y 
tend to oo. Therefore the Cauchy Condition applies and Hake's Theorem implies that 
D e n•[o, oo). 

However, it will be seen in Exercise I3 that I D I does not belong to 'R. • [0, oo). Thus 
the function D does not belong to .C[O, oo). D 

We close this discussion of integrals over [a, oo) with a version of the Fundamental 
Theorem (First Form). 

10.3.5 Fundamental Theorem Suppose that Eisa countable subset of[a, oo) and that 
I, F : [a, oo) -+ IR are such that: 

(a) F is continuous on [a, oo) and lim F(x) exists. x-.oo 
(b) F'(x) = l(x) for all x e (a, oo), x ;. E. 

Then I belongs to 'R. • [a, oo) and 

(7) loo I = lim F(x) - F(a). 
a x-.oo 

Proof. If y is any number in (a, oo), we can apply the Fundamental Theorem 10.1.9 to 
the interval [a, y] to conclude that f belongs to 'R*[a, y] and 

lr f = F(y) - F(a)o 
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Letting y ---. oo, we conclude from Hake's Theorem that f e 'R.*[a, oo) and that equation 
(7) holds. Q.E.D. 

Integrals over ( -oo, b] 

We now discuss integration over closed intervals that are unbounded below. 
Let b e 1R and g : ( -oo, b] ---. 1R be a function that is to be integrated over the infinite 

interval ( -oo, b ]. By a gauge on [ -oo, b] we mean an ordered pair consisting of a number 
d. > 0 and a strictly positive function tS on ( -oo, b). We say that a tagged subpartition 
P := { ([x0 , x 1], t1), ([x1, x2], t2), • • ·, ([xn_ 1, b], tn)} of ( -oo, b] is (d., tS)-fine in case 
that 

n 

(-oo, b] = (-oo, x0] U U [x;_1, X;], 

i=1 

that 

for i = I, · · · , n, 

and that 

( -oo, x0] ~ ( -oo, -If d.] 

or, equivalently, that 

Note Ordinarily we consider a gauge on [ -oo, b] to be a strictly positive function tS with 
domain [-oo, b] := {-oo} U (oo, b] where tS(-oo) :=d •. 

• • n 

Here the Riemann sum of g for Pis S(g; P) = L g(t;Hx; - x;_ 1). 
i=l 

Finally, we say that g : ( -oo, b] ---. 1R is generalized Riemann integrable if there 
exists B e 1R such that for every e > 0 there exists a gauge tSe on [ -oo, b] such that if 
Pis any tSe-fine subpartition of (-oo, b], then IS(g; P)- Bl ~e. In this case we write 
g e 'R,*( -oo, b] and 

lb g =B. 
-00 

Similarly, a fpnction g : ( -oo, b] ---. 1R is said to be Lebesgue integrable if both g and lgl 
belong to 'R.*( -oo, b]. In this case we will write g e .C( -oo, b]. 

The theorems valid for the integral over [a, oo] are obtained in this case as well. Their 
formulation will be left to the reader. 

Integrals over ( -oo, oo) 

Let h : ( -oo, oo) ---. 1R be a function that we wish to integrate over the infinite interval 
( -oo, oo). By a gauge on ( -oo, oo) we mean a triple consisting of a strictly positive 
function tS on ( -oo, oo) and two strictly positive numbers d., d*. We say that a tagged sub
partition P := { ([x0 , x.J, t1), ([x1, x2], t2), • • ·, ([xn_ 1, xn], tn)} is (d., tS, d*)-fine in case 
that 

n 

(-oo, oo) = (-oo, x0] U U [x;_1, X;] U [xn, oo), 
i=1 
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that 

for i = 1, · · · , n, 

and that 

(-oo, x0] c (-oo, -1/d.] 

or, equivalently, that 

and 

and 

Note Ordinarily we consider a gauge on [ -oo, oo] to be a strictly positive function 8 with 

domain [-oo, oo] := {-oo} u (oo, oo) U {oo} where 8( -oo) :=d. and 8(oo) := d*. 

• • n 

Here the Riemann sum of h for Pis S(h; P) = L h(t;)(x; - X;_1). 
i=l 

Finally, we say that h : ( -oo, oo) ~ 1R is generalized Riemann integrable if there 

exists C e 1R such that for every e > 0 there exists a gauge 8
6 

on [ -oo, oo] such that if 

Pis any 8
6
-fine subpartition of (-oo, oo), then IS(h; P)- Cl ~e. In this case we write 

h e 'R:( -oo, oo) and 

1
00 

h =c. 
-00 

Similarly, a function h : ( -oo, oo) ~ 1R is said to be Lebesgue integrable if both h and 

lhl belong to 'R*( -oo, oo). In this case we write h e £( -oo, oo). 

In view of its importance, we will state the version of Hake's Theorem that is valid for 

the integral over (-oo, oo). 

10.3.6 Hake's Theorem Ifh: (-oo, oo) ~ lR, then he 'R*(-oo, oo) if and only if for 

evezy {J < y in ( -oo, oo), the restriction of h to [{J, y] is in 'R*[{J, y] and 

In this case 100 

h = C. 
-oo 

lim f Y h = C e 1R. 
tJ--oo }8 
y-+oo ~ 

As before, most of the theorems valid for the finite interval [a, b] remain true. They 

are proved as before, or by using Hake's Theorem. We also state the first form of the 

Fundamental Theorem for this case. 

10.3.7 Fundamental Theorem Suppose that E is a countable subset of ( -oo, oo) and 

that h, H : ( -oo, oo) ~ 1R satisfy: 

(a) His continuous on ( -oo, oo) and the limits lim H(x) exist. 
.r-+:::1:00 

(b) H'(x) = h(x) for all x e (-oo, oo), x ' E. 

Then h belongs to 'R, • ( -oo, oo) and 

(8) 1
00 

h = lim H(x)- lim H(y). 
_ 00 .r-+oo y-+ -oo 



300 CHAPTER 10 THE GENERALIZED RIEMANN INTEGRAL 

10.3.8 Examples (a) Let h(x) := I/(x2 +I) for x e (-oo, oo). H we let H(x) ::: 
Arctanx, then H'(x) = h(x) forallx e (-oo, oo). Further, we have lim H(x) = !7r and 

x~oo 2 
lim H (x) = -! 1r. Therefore it follows that 

x~-oo 

100 I 1 ( 1 ) 
-oo x2 + 1 dx = 27r- -27r = 7r. 

2 2 
(b) Let k(x) := lxle-x for x e (-oo, oo). ffwe let K(x) :=!<I- e-x ) for x ~ 0 and 

2 
K(x) :=-!<I- e-x ) for x < 0, then it is seen that K is continuous on (-oo, co) and 
that K'(x) = k(x) for x #- 0. Further, lim K(x) = ! and lim K(x) =-!·Therefore it 

x~oo x~-oo 

follows that 

100 2 

lxle-x dx =!- (-!) = 1. 
-00 

0 

Exercises for Section 10.3 

1. Let~ be a gauge on [a, oo]. From Theorem 5.5.5, every bounded subinterval [a, b) has a ~-fine 
partition. Now show that [a, oo] has a ~-fine partition. 

2. Let f e 'R*[a, y] for ally ~a. Show that f e 'R*[a, oo) if and only if for every£ > 0 there 
exists K(£) ~a such that if q > p ~ K(£), then I J: /I < £. 

3. Let f and 1/1 belong to 'R*[a, y] for ally ~a. Show that f e .C[a, oo) if and only if for every 
£ > 0 there exists K(£) ~a such that if q > p > K(£) then J: 1/1 < £. 

4. Let f and 1/1 belong to 'R*[a, y] for every y ~a. Show that f e .C[a, oo) if and only if the 
set V :={fax 1/1 : x ~a} is bounded in R. 

5. If f, g e .C[a, oo), show that f + g e .C[a, oo). Moreover, if llhll := fa00 
lhl for any hE 

.C[a, oo), show that II/+ gil~ 11/11 + llgll. 

6. If /(x) := 1/x for x e [1, oo), show that f ''R*[l, oo). 

7. Iff is continuous on [1, oo) and if 1/(x)l ~ Kjx2 for x e [1, oo), show that f e .C[l, oo). 

8. Let /(x) := cosx for x e [0, oo). Show that f ''R*[O, oo). 

9. If s > 0, let g(x) := e-sx for x e [0, oo). · 
(a) Use Hake's Theorem to show that g e .C[O, oo) and / 0

00 e-sx dx = 1js. 
(b) Use the Fundamental Theorem 10.3.5. 

10. (a) Use Integration by Parts and Hake's Theorem to show that fo00 xe-sx dx = 1js2 for s > 0. 
(b) Use the Fundamental Theorem 10.3.5. 

11. Show that if n E N, s > 0, then /
0
00 xne-sx dx = n !fsn+l. 

12. (a) Show that the integral / 1
00 x- 1 lnx dx does not converge. 

(b) Show that if a > 1, then f1
00 x-a lnx dx = 1/(a- 1)2• 

13. (a) Show that fn<;+l)tr lx-1 sinxl dx > 1/4(n + 1). 

(b) Show that IDI ''R*[O, oo), where Dis as in Example 10.3.4(d). 

14. Show that the integral J0
00 (l/../i) sinx dx converges. [Hint: Integrate by Parts.] 

15. Establish the convergence of Fresnel's integral fo00 sin(x2) dx. [Hint: Use the Substitution 
Theorem 10.1.12.] 

c 
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16. Establish the convergence or the divergence of the following integrals: 

L
oo lnx dx Loo lnx dx 

(a) 2 , (b) ' 
o x + 1 o v'x2 + 1 
roo dx 

(c) Jo x(x + 1)' 

(e) roo dx 

lo V1 +x3 ' 

{
00 xdx 

(d) Jo (x + 1)3 ' 

{
00 Arctanx dx 

(f) Jo x312 + 1 · 

17. Let I, fJ: [a, oo) -+ R. Abel's Test asserts that iff e 'R.*[a, oo) and fJ is bounded and mono
tone on [a, oo), then lffJ e 'R.*[a, oo). 
(a) Show that Abel's Test does not apply to establish the convergence of f0

00 (1 I x) sin x dx by 
taking tp(x) := 11x. However, it does apply if we take tp(x) := 11 ,Ji and use Exercise 14. 

(b) Use Abel's Test and Exercise 15 to show the convergence of J0
00(xl(x + 1)) sin(x2

) dx. 

(c) Use Abel's Test and Exercise 14 to show the convergence of J0
00 x-312 (x + 1) sinx dx. 

(d) Use Abel's Test to obtain the convergence of Exercise 16(f). 

18. With the notation as in Exercise 17, the Chartier-Dirichlet Test asserts that if I e 'R*[a, y] 
for ally ~a, if F(x) := J: I is bounded on [a, oo), and if tp is monotone and lim tp(x) = 0, 

. x-:)0 
then lf/J e 'R.*[a, oo]. .. 
(a) Show that the integral / 0

00 
( 1 I x) sin x dx converges. 

(b) Show that / 2
00 

( 1 I In x) sin x dx converges. 

(c) Show that J0
00 

( 1 I .JX> cos x d x converges. 

(d) Show that the Chartier-Dirichlet Test does not apply to establish the convergence of 
f0

00
(xl(x + 1)) sin(x2)dx by taking l(x) := sin(x2

). 

19. Show that the integral / 0
00 .jX · sin(x2

) dx is convergent, even though the integrand is not 
bounded as x -+ oo. [Hint: Make a substitution.] 

20. Establish the convergence of the following integrals. 

(a) L: e-l•l dx, 

(c) L: e-•
2 

dx, 

Section 10.4 Convergence Theorems 

(b) L: (x- 2)e-1' 1 dx, 

(d) L: e' a_ ~x_ •. 

We will conclude our discussion of the generalized Riemann integral with an indication of 
•be convergence theorems that are available for it. It will be seen that the results are much 
.,tronger than those presented in Section 8.2 for the (ordinary) Riemann integral. Finally, 
we will introduce a "measurable" function on [a, b] as the almost everywhere limit of a 
equence of step functions. We will show that every integrable function is measurable, and 

that a measurable function on [a, b] is generalized Riemann integrable if and only if it 
·atisfies a two-sided boundedness condition. 

We proved in Example 8.2.1(c) that if (/k) is a sequence in R.[a, b] that converges on 
(a, b] to a function f e 'R[a, b], then it need not happen that 

(1) 1b I = lim 1b fk. 
a k-+oo a 
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However, in Theorem 8.2.4 we saw that uniform convergence of the sequence is sufficient 
to guarantee that this equality holds. In fact, we will now show that this is even true for a 
sequence of generalized Riemann integrable functions. 

10.4.1 Uniform Convergence Theorem Let (/~c) be a sequence in n•[a, b] and suppose 
that <f~c> converges uniformly on [a, b] to f. Then f e 'R*[a, b] and (1) holds. 

Proof. Given e > 0, there exists K (e) such that if k ::: K (e) and x e [a, b ], then we have 
1/~c(x)- f(x)l <e. Consequently, if h, k::: K(e), then 

-2e < f~c(x)- fh(x) < 2e for x e [a, b]. 

Theorem 1 0.1.5 implies that 

-2e(b- a) < 1b fk - 1b fh < 2e(b- a). 

Since e > 0 is arbitrary, the sequence <J: f~c) is a Cauchy sequence in 1R and therefore 
converges to some number, say A e JR. We will now show that f e n•[a, b] with integral 
A. For, if e > 0 is given, let K(e) be as above. If P := {([x;_1, X;], t;)l?=1 is any tagged 
partition of [a, b] and if k::: K(e), then 

n 

jS(f~c; P)- S(f; P>l = I Ltf~c(l;)- f(t;)l<x; - X;_ 1)1 
i=l 
n 

~ L lf~c(t;)- f(t;)j(x; - X;_ 1) 

i=l 
n 

< L e(x;- X;_ 1) = e(b- a). 
i=l 

Now fix r 2:: K (e) such that I J: fr -AI < e and let ~r.e be a gauge on [a, b] such that 
b . • 

I fa fr- S(fr; 'P)I < e whenever Pis ~r.e-fine. Then we have 

IS<f; P>- AI ~ IS<f; P>- S(f,; P>l + isu,; P> -1b /,I+ If/,- AI 
< e(b -a) + e + e = e(b- a + 2). 

But since e > 0 is arbitrary, it follows that f E n•[a, b] and I: f =A. Q.E.D. 

It will be seen in Example 10.4.6(a) that the conclusion of 10.4.1 is false for an infinite 
interval. 

Equi-integrability -----------------------

The hypothesis of uniform convergence in Theorem 1 0.4.1 is a very stringent one and 
restricts the utility of this result. Consequently, we now show that another type of unifonnity 
condition can be used to obtain the desired limit. This notion is due to J aroslav Kurzweil, 
as is Theorem 10.4.3. 

10.4.2 Definition A sequence (/~c) in n•(J) is said to be equi-integrable if for every 
e > 0 there exists a gauge ~e on I such that if Pis any~ -fine partition of I and keN, 

• E 
then IS(f~c; P)- / 1 f~cl <e. 
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10.4.3 Equi-integrabiUty Theorem If <lk) e 'R,*(l) is equi-integrable on I and if 

f(x) = lim lk(x) for all x e I, then I e 'R,*(l) and 

(2) 11 = lim 11k· 
I k~oo I 

Proof. We will treat the case I= [a, b]; the general case can be found in [MTI]. 

Given £ > 0, by the equi-integrability hypothesis, there exists a gauge 8 
6 

on I such that 

ifP := {([x;_1, X;], t;)l?=1 is a 86 -fine partition of I, then we have IS(Ik; P>- f1 lkl < £ 

forallk e N.SincePhasonlyafinitenumberoftagsandsincelk(t) ~ l(t)fort e [a,b], 

there exists a K 
6 

such that if h, k ::: K 
6

, then 

n 

(3) IS<Ik; P>- S(lh; P>l ~ L llk(t;)- lh(t;)l(x; - X;_ 1) ~ e(b- a). 
i=1 

If we let h ~ oo in (3), we have 

(4) IS<Ik; P>- S(l; P>l ~ e(b- a) for k::: K 6
• 

Moreover, if h, k ::: K
6

, then the equi-integrability hypothesis and (3) give 

11 fk -1 !hi ~ 11 f~:.- S(fk; P>l + IS<Jk; P>- S(fh; P>i 

+ ls(fh; P> -1 !hi~ e +e(b -a) +e = e(2+b -a). 

Since e > 0 is arbitrary, then (/1 lk) is a Cauchy sequence and converges to some A e IR. 

If we let h --. oo in this last inequality, we obtain 

(5) 

We now show that I e 'R*(l) with integral A. Indeed, given e > 0, if Pis a 8
6
-fine 

partition of I and k ::: KE, then 

IS<f; P>- AI ~ IS<J; P>- S<f~:.; P>i + ls<f~:.; P> -1 I~:. I+ 11 f~:.- AI 
~ e(b- a) + £ + £(2 + b -a) = e(3 + 2b- 2a), 

where we used (4) for the first term, the equi-integrability for the second, and (5) for the 

third. Since e > 0 is arbitrary, I e: 'R*(l) with integral A. Q.E.D. 

The Monotone and Dominated Convergence Theorems ---------

Although the Equi-integrability Theorem is interesting, it is difficult to apply because it is 

not easy to construct the gauges 8 E. We now state two very important theorems summarizing 

the most important convergence theorems for the integral that are often useful. McLeod 

[pp. 9Cr-101] has shown that both of these theorems can be proved by using the Equi

integrability Theorem. However, those proofs require a delicate construction of the gauge 

functions. Direct proofs of these results are given in [MTI], but these proofs also use results 

not given here; therefore we will omit the proofs of these results. 

We say that a sequence of functions on an interval I ~ lR is monotone increasing if it 

satisfies 11 (x) ~ 12(x) ~ · · · :::; l~c(x) :::; llc+l (x) :::; ···for all k e N, x e I. It is said to be 

monotone decreasing if it satisfies the opposite string of inequalities, and to be monotone 

if it is either monotone increasing or decreasing. 
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10.4.4 Monotone Convergence Theorem . Let (fk) be~ monotone sequence of functions in 'R*(I) such that f(x) =lim fk(x) almost everywhere on I. Then f E 'R*(I) if and only if the sequence of integrals (ji fk) is bounded in R, in which case 

(6) 1! =lim 1fk. I k-+oo I 

The next result is the most important theorem concerning the convergence of integrable functions. It is an extension of the celebrated "Lebesgue Dominated Convergence Theorem'' from which it can also be proved. 

10.4.5 Dominated Convergence Theorem Let (fn) be a sequence in 'R*(I) and let f (x) = lim fk (x) almost everywhere on I. If there exist functions a, win n* (I) such that 
(7) for almost every x E I, 
then f E 'R*(I) and 

(8) 1 f = }!:! 1 k 
Moreover, if a and w belong to .C(I), th~n fk and f belong to .C(I) and 

(9) llfk -!II = 11tk -!I -+ O. 

Note If a and w belong to .C(I), and we put <p :=max{ Ia I, lwl}, then <p E .C(I) and we can replace the condition (7) by the condition 
(7') for almost every x e I. 

Some Examples -------------------------
10.4.6 Examples (a) Ifk E N,letfk(x) := 1/kforx E [0, k]andfk(x) := Oelsewhere in [0, oo). 

Then the sequence converges uniformly on [0, oo) to the 0-function. However / 0
00 

fk = 1 for all k E N, while the integral of the 0-function equals 0. It is an exercise to show that the function sup{fk(x) : k E N} does not belong to 'R*[O, oo), so the domination condition (7) is not satisfied. . 11 xk + 1 (b) We have lim k dx = ~· 
k-+oo o X + 3 

For, if gk(x) := (xk + 1)/(xk + 3), then 0 :::=: gk(x) :::=: 1 and gk(x) ~ 1/3 for x E [0, 1). Thus the Dominated Convergence Theorem 10.4.5 applies. 
(c) We have lim {k (1 + ::_k)k e-ax dx = -

1
- if a> 1. k-+oo } 0 a- 1 

Let hk(x) := (1 + xj k)ke-ax for x E [0, k] and hk(x) := 0 elsewhere on [0, oo). The argument in Example 3.3.6 shows that (hk) is an increasing sequence and converges to ex e-ax = e(l-a)x on [0, oo). If a > 1 this limit function belongs to .C[O, oo). Moreover, if F(x) := e(l-a)x /(1- a), then F'(x) = e<l-a)x sothattheMonotoneConvergenceTheorem 10.4.4 and the Fundamental Theorem 10.3.5 imply that 

100 100 100 1 lim hk = e(l-a)x dx = F(x) = --. k-+oo 0 0 o a - 1 
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(d) HI is bounded and continuous on [0, oo) and if a > 0, then the function defined by 
L(t) := / 0

00 
e-u f(x) dx is continuous forte Ja :=(a, oo). 

Since le-u /(x)l ~Me-ax for t e Ja, if (tk) is any sequence in Ja converging to 
t0 e Ja, the Dominated Convergence Theorem implies that L(tk)-+ L(t0 ). But since the 
sequence (tk) -+ t0 is arbitrary, then Lis continuous at t0. 

(e) The integral in (d) is differentiable fort >a and 

(10) L'(t) = 100 

(-x)e-tx f(x)dx, 

which is the result obtained by "differentiating under the integral sign" with respect to t. 
Fix a number t0 e Ja. H t e Ja, then by the Mean Value Theorem applied to the 

function t ~ e -u, there exists a point t x between t0 and t such that we have e -tx - e -tox = 
-xe-t.Kx (t - t

0
), whence 

Since w(x) := xe-ax f(x) belongs to .C[O, oo), then for any sequence (tk) in Ja with 
t0 :F tk ~ t0 , the Dominated Convergence Theorem implies that 

lim [L(tk)- L(to)J = roo lim [e-tlcx- e-toX] /(x) dx 
k-+oo tk - t0 } 0 k-+oo tk - t0 

= 100 

(-x)e-tox f(x)dx. 

Since (tk) is an arbitrary sequence, then L'(t0 ) exists and (10) is proved. 

(f) Let D1 (t) := 1k e-tx ( si:x) dx fork eN, t ::: 0. 

Since l(e-u sinx)/xl ~ e-tx ~ 1 fort :::: 0, x :::: 0, the integral defining Dk exists. In 
particular, we have 

1
k • 

Dk(O) = Sinx dx. 
0 X 

We want to show that Dk (0) ~ !1r as k ~ oo. By Example 10.3.4(d), this will show 
that J0

00 (sinx)/x dx = !1r. The argument is rather complex, and uses the Dominated 
Convergence Theorem several times. 

Since the partial derivative satisfies I :t ( e -IX :in x) I = I - e -IX sin xI ~ lfor t ::: 0, 

x :::: 0, an argument as in (e) and the Dominated Convergence Theorem imply that 

Dic(t) = -1k e-tx sinx dx for k e N, t :::: 0. 

S. . al 1 . h th a (e-u(t sinx + cosx)) u . th mce a routine c cu ation s ows at -a 2 = -e- s1nx, en an 
X t + 1 

application of the Fundamental Theorem gives 

D' (t) = e-tk(t sink+ cosk) 1 
k t 2 + 1 t 2 + 1. 
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e-tk (t sink+ cos k) 
Ifweputgk(t) := 2 1 

forO~ t ~ k andgk(t) := Ofort > k, then another 
t + 

application of the Fundamental Theorem gives 

(11) 
l

k lk lk dt 
Dk(k)- Dk(O) = D~(t) dt = gk(t) dt- ~1 0 0 0 t + 

= f'" gk(t) dt- Arctank. 

If we note that gk(t) ~ 0 fort > 0 ask~ oo and that (since k ~ 1) 

lgk(t)l ::; e-•:(t ~ l) ::; 2e-• for t ::: 0, 
t + 

then the Dominated Convergence Theorem gives f0
00 

gk(t) dt ~ 0. 
In addition, since l(sinx)/xl ~ 1, we have 

IDk(k)l = I {k e-kx sinx dxl :::: rk e-kx dx = e~kx lx=k 
lo X lo k x=O 

1 - e-k
2 

1 
---- < -~o. 

k - k 

Therefore, as k ~ oo, formula ( 11) becomes 

0- lim Dk(O) = 0- lim Arctank = -!n. 
k-+00 k-+00 

As we have noted before, this gives an evaluation of Dirichlet's Integral: 

(12) 

Measurable Functions 

1
00 sinx d _ 1 
-- X- 21l'. 

0 X 
0 

We wish to characterize the collection of functions in 'R*(/). In order to bypass a few minor 
details, we will limit our discussion to the case I : = [a, b]. We need to introduce the notion 
of a "measurable function"; this class of functions contains all the functions the reader is 
ever likely to encounter. Measurable functions are often defined in terms of the notion of 
a "measurable set". However, the approach we will use is somewhat simpler and does not 
require a theory of measurable sets to have been developed first. (In fact, the theory of 
measure can be derived from properties of the integral; see Exercises _15 and 16.) 

We recall from Definition 5.4.9 that ·a functions : [a, b] ~ 1R is a step function if 
it has only a finite number of values, each value being assumed on a finite number of 
subintervals of [a, b]. 

10.4.7 Definition A function f: [a, b] ~ 1R is said to be (Lebesgue) measurable if 
there exists a sequence (sk) of step functions on [a, b] such that 

(13) f(x) = lim sk(x) for almost every x e [a, b]. 
k-+oo 

We denote the collection of all measurable functions on [a, b] by M[a, b]. 

We can reformulate the definition as: A function f is in M[a, b] if there exists a null 
set Z C [a, b] and a sequence (sk) of step functions such that 

(14) for all x e [a, b] \ Z. 

a 
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It is trivial that every step function on [a, b] is a measurable function. By Theorem 
5.4.10, a continuous function on [a, b] is a uniform limit of a sequence of step functions; 
therefore, every continuous function on an interval [a, b] is measurable. Similarly, every 
monotone function on [a, b] is a uniform limit of step functions (see the proof of Theorem 
7 .2. 7); therefore, every monotone function on an interval is measurable. 

At first glance, it might seem that the collection of measurable functions might not be 
so very large. However, the requirement that the limit (13) is required to hold only almost 
everywhere (and not everywhere), enables one to obtain much more general functions. We 
now give a few examples. 

10.4.8 Examples (a) The Dirichlet function, f(x) := 1 for x e [0, 1] rational and 
f(x) := 0 for x e [0, 1] irrational, is a measurable function. 

Since Q n [0, 1] is a null set, we can take each sk to be the 0-function. We then obtain 
sk(x)-+ f(x) for x e [0, 1] \ Q. 

(b) Thomae's function h (see Examples 5.1.5(h) and 7.1.6) is a measurable function. 
Again, take sk to be the 0-function. Then sk(x) -+ h(x) for x e [0, 1] \ Q. 

(c) The function g(x) := 1/x for x e (0, 1] and g(O) := 0 is a measurable function. 
This can be seen by taking a step function sk(x) := 0 for x e [0, 1/ k) and (using 

5.4.10) such that lsk(x)- 1/xl < ·11 k for x e [1/ k, 1]. Then sk(x) -+ g(x) for all x e 
[0, 1]. 

(d) If f e M[a, b] and if 1/1 : [a, b] -+ 1R is such that 1/J(x) = f(x) a.e., then 1/1 e 
M[a, b]. 

For, if f(x) = limsk(x) for x E [a, b] \ Z 1 andifl/l(x) = f(x) forallx E [a, b] \ Z2, 

then 1/J(x) = limsk(x) for all X E [a, b] \ (Zl u Z2). Since zl u z2 is a null set when zl 
and Z2 are, the conclusion follows. D 

The next result shows that elementary combinations of measurable functions lead to 
measurable functions. 

10.4.9 Theorem Let f and g belong to M[a, b] and let c e JR. 

(a) Then the functions cf, 1/1, f + g, f- g and f · g also belong to M[a, b]. 

(b) lfqJ: 1R-+ 1R is continuous, then the composition(/) of e M[a, b]. 

(c) If(/,.) is a sequence in M[a, b] and f(x) =lim/,. (x) almost everywhere on I, then 
f ·e M[a, b]. 

Proof. (a) We will prove that 1/1 is measurable. Let Z c [a, b] be a null set such that 
(14) holds. Since lskl is a step function, the Triangle Inequality implies that 

0 ~ llf(x)l- lsk(x)ll ~ lf(x)- sk(x)l -+ 0 

for all x e [a, b] \ Z. Therefore Ill E M[a, b]. 
The other assertions in (a) follow from the basic properties of limits. 
(b) If skis a step function on [a, b], it is easily seen that(/) o skis also a step function 

on [a, b]. Since({) is continuous on 1R and f(x) = limsk(x) for allx e [a, b] \ Z, it follows 
that(({) o /)(x) = ({J(/(x)) = lim({)(sk(x)) =lim(({) o sk)(x) for all x e [a, b] \ Z. There
fore ({) o f is measurable. 

(c) This conclusion is not obvious; a proof is outlined in Exercise 14. Q.E.D. 
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The next result is that we can replace the step functions in Definition 1 0.4. 7 by 
continuous functions. Since we will use only one part of this result, we content ourselves 
with a sketch of the proof of the other part. 

10.4.10 Theorem A function f : [a, b] --+ 1R is in M[a, b] if and only if there exists a 
sequence (gk) of continuous functions such that 

(15) f(x) = lim gk(x) 
k-+00 

for almost every x e [a, b]. 

Proof. ( <=) Let Z c [a, b] be a null set and (gk) be a sequence of continuous functions 
such that f(x) =lim gk(x) for x e [a, b] \ Z. Since g/c is continuous, by 5.4.10 there exists 
a step function s k such that 

for all x e [a, b]. 

Therefore we have 

0 ~ lf(x)- s/c(x)l ~ lf(x) - gk(x)l + lg1c(x)- s/c(x)l 

~ lf(x)- g/c(x)l + 1/ k, 

whence it follows that f(x) =lim gk(x) for all x e [a, b] \ Z. 
Sketch of ( ~) Let Z be a null set and (s k) be a sequence of step functions such that 

f(x) = limsk(x) for all x e [a, b] \ Z. Without loss of generality, we may assume that 
each skis continuous at the endpoints a, b. Since skis discontinuous at only a finite number 
of points in (a, b), which can be enclosed in a finite union Jk of intervals with total length 
:::: 1/ k, we can construct a piecewise linear and continuous function gk which coincides 
with sk on [a, b] \ Jk. It can be shown that gk(x)--+ f(x) a.e. on/. (See [MTI] for the 
details.) Q.E.D. 

Functions in R * [a, b] are Measurable 

We now show that a generalized Riemann integrable function is measurable. 

10.4.11 Measurability Theorem Iff e R*[a, b], then f e M[a, b]. 

Proof. Let F : [a, b + 1] --+ 1R be the indefinite integral 

F(x) := ix f if x E [a, b], 

and let F(x) := F(b) for x e (b, b + 1]. It follows from the Fundamental Theorem (Second 
Form) 10.l.ll(a) that F is continuous on [a, b]. From 10.1.11(c), there exists a null set Z 
such that the derivative F' (x) = f (x) exists for x e [a, b] \ Z. Therefore, if we introduce 
the difference quotient functions 

gk(x) := F(x + 1/ k)- F(x) 

1/k 
for x e [a, b), k e N, 

then gk(x) --+ /(x) for all x e [a, b] \ Z. Since the gk are continuous, it follows from the 
part of Theorem 10.4.10 we have proved that f e M[a, b]. Q.E.D. 

Are Measurable Functions Integrable? 

Not every measurable function is generalized Riemann integrable. For example, the function 
g(x) := 1/x for x e (0, 1] and g(O) := 0 was seen in Example 10.4.8(c) to be measurable; 

-
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however it is not in 'R*[a, b] because it is "too large" (asx --+ 0+). However, if the graph of 
a measurable function on [a, b] lies between two functions in R.*[a, b], then it also belongs 
to R.*[a, b]. 

10.4.12 Integrability Theorem Let/ e M[a, b]. Thenf e R*[a, b]ifandonlyifthece 
exist functions a, w e 'R • [a, b] such that 

(16) a(x) ~ f(x) ~ w(x) for almost every x e [a, b ]. 

Moreover, ifeithera orw belongs to.C[a, b], then f e .C[a, b]. 

Proof. ( ~) This implication is trivial, since one can take a = w = f. 
(<=)Since f e M[a, b], there exists a sequence (sA:) of step functions on [a, b] such 

that ( 13) holds. We define sA: : = mid {a, sA:, w} for k e N, so that sA: (x) is the middle of the 
numbers a(x), sA:(x) and w(x) for each x e [a, b]. It follows from Theorem 10.2.8 and the 
facts 

mid{a, b, c} = min{max{a, b}, max{b, c}, max{c, a}}, 
• { I bl I} • { • { I b'} '} mina, ,c =miDnuna, ,c, 

that sk e 'R.*[a, b] and that a ~ sk ~ w. Since f = limsk = limsk a.e., the Dominated 
Convergence Theorem now implies that f e 'R.*[a, b]. 

If either a or w belongs to .C[a, b], then we can apply Theorem 10.2.6 to conclude that 
f belongs to .C[a, b]. Q.E.D. 

A Final Word 

In this chapter we have made frequent reference to Lebesgue integrable functions on an 
interval I, which we have introduced as functions in 'R.*(/) whose absolute value also 
belongs to 'R.*(/). While there is no single "standard approach" to the Lebesgue integral, 
our approach is very different from any that are customary. A critic might say that our 
approach is not useful because our definition of a function in .C(/) is not standard, but that 
would be wrong. 

After all, one seldom uses the definition to confinn that a specific function is Lebesgue 
integrable. Instead, one uses the fact that certain simpler functions (such as step functions, 
?Qiynomials, continuous functions, bounded measurable functions) belong to £(/), and 
.:hat more complicated functions belong to .C(/) by taking algebraic combinations or vari
ous limiting operations (e.g., Hake's Theorem or the Dominated Convergence Theorem). 
~ famous analyst once said, "No one ever calculates a Lebesgue integral; inste~ one 
calculates Riemann integrals and takes limits". 

It is the same as with real numbers: we listed certain properties as axioms for 1R and 
.hen derived consequences of these properties which enable us to work quite effectively 
with the real numbers, often by taking limits. 

~xercises for Section 10.4 

. Consider the following sequences of functions with the indicated domains. Does the sequence 
converge? H so, to what? Is the convergence uniform? Is it bounded? H not bounded, is it 
dominated? Is it monotone? Evaluate the limit of the sequence of integrals. 
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kx xk 
(a) 1 + kx [0, 1], (b) 1 + xk [0, 2], 

1 1 
(c) 1 + xk [0, 1], (d) 1 + xk [0, 2]. 

2. Answer the questions posed in Exercise 1 for the following sequences (when properly defined) 
kx 1 · 

(a) 1 + k,J'i [0, 1], (b) ,Ji(l + xk) [0, 1], 

1 1 
(c) k [1, 2], (d) k [0, 1] . 

.Ji'(l +X ) ,J'i(2- X ) 

3. Discuss the following sequences of functions and their integrals on [0, 1]. Evaluate the limit of 
the integrals, when possible. 

(c) kxe-0 , 

(e) kxe-lc2x2' 

(b) e-b fx, 

(d) k2xe-kx, 

(t) kxe-02
• 

1.
1 xk dx 1• kxk dx 

4. (a) Show that lim -0 (b) Show that lim -
1
-- = !· 

k-oo 0 (1 + x )2 - • k-oo o + X 

S. If f~c(x) := k for x e [1/ k, 2/ k] and f~c(x) := 0 elsewhere on [0, 2], show that f~c(x)-+ 0 but 

that f; f1c = 1. 

6. Let (//c) be a sequence on [a, b) such that each f1c is differentiable on [a, b) and J:(x)-+ g(x) 
with 1/:(.x)l ~ K for all x e [a, b). Show that the sequence (//c(x)) either converges for all 
x e [a, b) or it diverges for all x e [a, b). 

7. If f1c are the functions in Example 10.4.6(a), show that sup(f~cl does not belong to n.•[o, oo). 

8. Show directly that / 0
00 e-u dx = 1/t and / 0

00 xe-u dx = 1/t2 fort > 0, thus confinning the 
results in Examples 10.4.6(d,e) when f(.x) := I. 

9. Use the differentiation formula in 10.4.6(t) to obtain / 0
00 e-u sinx dx = l/(t2 + 1). 

10. If t > 0, define E(t) := J0
00[(e-u sinx)/.x] dx. 

(a) Show that E exists and is continuous fort >a > 0. Moreover, E(t)-+ 0 as t-+ oo. 

(b) Since I!__ (e-u sinx) I ~ e-ax fort ~a > 0, show that E'(t) = 
2
-l fort > 0. 

ar x r + 1 
(c) Deduce that E(t) = !1r -Arctan t fort > 0. 
(d) Explain why we cannot use the formula in (c) to obtain equation (12). 

11. In this exercise we will establish the important formula: 

(17) f"' .,-•' dx = !v'i". 
(a) Let G(t) := / 0

1 [e-'
2

<x
2

+l> /(x2 + 1)] dx for t ~ 0. Since the integrand is dominated by 
1/(x2 + 1) fort ~ 0, then G is continuous on [0, oo). Moreover, G(O) =Arctan 1 = ~11' 
and it follows from the Dominated Convergence Theorem that G(t)-+ 0 as t-+ oo. 

(b) The partial derivative of the integrand with respect to t is bounded for t ~ 0, x e [0, I), 
, ,2 r 1 ,2 2 ,2 r' 2 so G (t) = -2te- Jo e- x dx = -2e- Joe-" du. 

(c) If we set F(t) := [J~ e-x
2 

dx ]
2

, then the Fundamental Theorem 10.1.11 yields F'(t) = 
2e-'

2 J~ e-x
2 

dx fort ~ 0, whence F'(t) + G'(t) = 0 for all t ~ 0. Therefore, F(t) + 
G(t) = C for all t ~ 0. 

(d) Using F(O) = 0, G(O) = i1r and lim,_
00 

G(t) = 0, we conclude that lim,_
00 

F(t) = ~11' • 
so that formula (17) holds. 

12. Suppose I ~ R is a closed interval and that I: [a, b) X I~ R is such that at/at ex
ists on [a, b) xI, and for each t e [a, b) the function x t-+ f(t, x) is in n.•(l) and there 
exist a, we R,•(l) such that the partial derivative satisfies a(x) ~ aj(t, x)fat ~ w(x) for 

4 

If 
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ae. x e I. If F(t) := / 1 f(t,x)dx, show that F is differentiable on [a, b) and that F'(t) := 
/ 1 8/(t, x)j8t dx. 

13. (a) Iff, g e M[a, b), show that max{/, g} and min{/, g} belong to M[a, b). 
(b) Iff, g, he M[a, b), show that mid{/, g, h} e M[a, b). 

14. (a) If (/lc) is a bounded sequence in M[a, b) and f~c-+ f a.e., show that f e M[a, b). [Hint: 
Use the Dominated Convergence Theorem.] 

(b) If (gk) is any sequence in M[a, b) and if / 1 :=Arctan o gk, show that (/1) is a bounded 
sequence in M [a, b ]. 

(c) If (gk) is a sequence in M[a, b) and if gk -+ g a.e., show that g e M[a, b). 

15. A set E in [a, b) is said to be (Lebesgue) measurable if its characteristic function IE (defined 
by IE(x) := 1 if x e E and IE(x) := 0 if x e [a, b)\ E) belongs to M[a, b). We will denote 
the collection of measurable sets in [a, b) by M[a, b). In this exercise, we develop a number of 
properties of M[a, b). 
(a) Show that E e M[a, b) if and only if IE belongs to 'R*[a, b). 
(b) Show that~ e M[a, b) and that if [c, d) ~ [a, b), then the intervals [c, d), [c, d), (c, d) 

and (c, d) are in M[a, b). 
(c) Show that E e M[a, b) if and only if E' := [a, b)\ E is in M[a, b). 
(d) If E and Fare in M[a, b), then E U F, En F and E \Fare also in M[a, b). [Hint: Show 

that IEuF = max{IE,IF}, etc.] 
(e) If (Ek) is an increasing sequence in M[a, b], show that E := U:1 Elc is in M[a, b). Also, 

if (Fie) is a decreasing sequence in M[a, b) show that F := n:. Fie is in M[a, b). [Hint: 
Apply Theorem 10.4.9(c).] 

(f) If (Eic) is any sequence in M[a, b], show that U:1 Ek and n:. Elc are in M[a, b). 

l6. If E e M[a, b), we define the (Lebesgue) measure of E to be the number m(E) := J: IE. In 
this exercise, we develop a number of properties of the measure function m : M[a, b] -+ R. 
(a) Show that m(~) = 0 and 0 =:: m(E) =:: b -a. 
(b) Show that m([c, d]) = m([c, d))= m((c, d]) = m((c, d))= d- c. 
(c) Show that m(E') = (b -a) - m(E). 
(d) Show that m(E U F)+ m(E n F) = m(E) + m(F). 
(e) If En F = 0, show that m(E U F)= m(E) + m(F). (This is the additivity property of 

the measure function.) 
(f) If (Ek) is an increasing sequence in M[a, b], show that m<U:1 E1 ) = limk m(E~c>· [Hint: 

Use the Monotone Convergence Theorem.] 
(g) If (Cic) is a sequence in M[a, b) that is pairwise disjoint (in the sense that Ci n Clc = 0 

whenever j :f: k ), show that 

(18) 

(This is the countable additivity property of the measure function.) 



CHAPTER 11 

A GLIMPSE INTO TOPOLOGY 

For the most part, we have considered only functions that were defined on intervals. Indeed, 
for certain important results on continuous functions, the intervals were also assumed to 
be closed and bounded. We shall now examine functions defined on more general types 
of sets, with the goal of establishing certain important properties of continuous functions 
in a more general setting. For example, we proved in Section 5.3 that a function that is 
continuous on a closed and bounded interval attains a maximum value. However, we will 
see that the hypothesis that the set is an interval is not essential, and in the proper context 
it can be dropped. 

In Section 11.1 we define the notions of an open set, and a closed set. The study 
of open sets and the concepts that can be defined in terms of open sets is the study of 
point -set topology, so we are in fact discussing certain aspects of the topology of R. (The 
mathematical area called "topology" is very abstract and goes far beyond the study of 
the real line, but the key ideas are to be found in real analysis. In fact, it is the study of 
continuous functions on R that motivated many of the concepts developed in topology.) 

The notion of compact set is defined in Section 11.2 in terms of open coverings. 
In advanced analysis, compactness is a powerful and widely used concept. The compact 
subsets of R are fully characterized by the Heine-Borel Theorem, so the full strength of the 
idea is not as apparent as it would be in more general settings. Nevertheless, as we establish 
the basic properties of continuous functions on compact sets in Section 11.3, the reader 
should begin to appreciate how compactness arguments are used. 

In Section 11.4 we take the essential features of distance on the real line and introduce 
a generalization of distance called a "metric". The much-used triangle inequality is the key 
property in this general concept of distance. We present examples and show how theorems 
on the real line can be extended to the context of a metric space. 

The ideas in this chapter are somewhat more abstract than those in earlier chapters; 
however, abstraction can often lead to a deeper and more refined understanding. In this 
case, it leads to a more general setting for the study of analysis. 

Section 11.1 Open and Closed Sets in R 

There are special types of sets that play a distinguished role in analysis-these are the open 
and the closed sets in R. To expedite the discussion, it is convenient to have an extended 
notion of a neighborhood of a point. 

11.1.1 Definition A neighborhood of a point x e R is any set V that contains an 
£-neighborhood V£ (x) := (x - e, x + e) of x for some e > 0. 
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While an £-neighborhood of a point is required to be "symmetric about the point", the 
idea of a (general) neighborhood relaxes this particular feature, but often serves the same 
purpose. 

11.1.2 Definition (i) A subset G of R is open in R if for each x e G there exists a 
neighborhood V of x such that V c G. ---
(ii) A subset F ofR is closed In 1R if the complement C(F) := R\F is open in IR. 

To show that a set G c 1R is open, it suffices to show that each point in G has an 
e-neighborhood contained in G. In fact, G is open if and only if for each x e G, there exists 
ex > 0 such that (x- ex, x +ex) is contained in G. 

To show that a set F c R is closed, it suffices to show that each point y ~ F has an 
e-neighborhood disjoint from F. In fact, F is closed if and only if for each y ~ F there 
~xists e

1 
> 0 such that F n (y- e

1
, y + e

1
) = f2J. 

11.1.3 Examples (a) The entire set R = ( -oo, oo) is open. 
For any x e IR, we may take e := 1. 

tb) The set G := {x e R: 0 < x < 1} is open. 
For any x e G we may take ex to be the- smaller of the numbers x, 1 - x. We leave it 

to the reader to show that if lu- xl <ex then u e G. 
c) Any open interval/ := (a, b) is an open set. 

In fact, if x e I, we can take ex to be the smaller of the numbers x - a, b - x. 
"1Jle reader can then show that (x - ex, x + ex) ~ I. Similarly, the intervals ( -oo, b) and 
\a, oo) are open sets. 

ld) The set I := [0, 1] is not open. 
This follows since every neighborhood of 0 e I contains points not in I. 

(e) The set I := [0, 1] is closed. 
To see this let y ~ I; then either y < 0 or y > 1. H y < 0, we take e

1 
:= lyl, and if 

y > 1 we take e 
1 

:= y - 1. We leave it to the reader to show that in either case we have 
' n (y - e 1 , y + e ,> = f2J. 
u) The setH := {x : 0::: x < 1} is neither open nor closed. (Why?) 

t ~) The empty set f2J is open in R. 
In fact, the empty set contains no points at all, so the requirement in Definition 11.1.2(i) 

is vacuously satisfied. The empty set is also closed since its complement R is open, as was 
:en in part (a). 0 

In ordinary parlance, when applied to doors, windows, and minds, the words "open" 
-ld "closed" are antonyms. However, when applied to subsets of R, these words are not 
antonyms. For example, we noted above that the sets f2J, R are both open and closed in R. 

"he reader will probably be relieved to learn that there are no other subsets of R that have 
both properties.) In addition, there are many subsets of IR that are neither open nor closed; 
:- fact, most subsets of R have this neutral character. 

The following basic result describes the manner in which open sets relate to the 
~-.erations of the union and intersection of sets in R. 

11.1.4 Open Set Properties (a) The union of an arbitrary collection of open subsets in 
is open. 

(b) The intersection of any finite collection of open sets in R is open. 
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Proof. (a) Let {GA :).. e A} be a family of sets in 1R that are open, and let G be thei 
union. Consider an element x e G; by the definition of union, x must belong to G. fo~ 
some A.0 e A. Since GAo is open, there exists a neighborhood V of x such that v ~ "'(;. . 
But GA

0 
~ G, so that V ~G. Since xis an arbitrary element of G, we conclude that a'i, 

open in JR. 
(b) Suppose G 1 and G2 are open and let G := G 1 n G 2 • To show that G is open. we 

consider any x e G; then x e G 1 and x e G2 • Since G 1 is open, there exists e
1 

> 0 such 
that (x - E 1 , x + E 1) is contained in G 1• Similarly, since G 2 is open, there exists E., > o 
such that (x- e2 , x + e2) is contained in G2• If we now take E to be the smaller -of E 

and e2, then the £-neighborhood U := (x- E, x +e) satisfies both U c G
1 

and U ~ G,'. 
Thus, x e U ~ G. Since x is an arbitrary element of G, we conclude that G is open in ~-. 

It now follows by an Induction argument (which we leave to the reader to write out) 
that the intersection of any finite collection of open sets is open. Q.E.D 

The corresponding properties for closed sets will be established by using the general 
De Morgan identities for sets and their components. (See Theorem 1.1.4.) 

11.1.5 Closed Set Properties (a) The intersection of an arbitrary collection of closed 
sets in 1R is closed. 

(b) The union of any finite collection of closed sets in 1R is closed. 

Proof. (a) If {FA :).. e A} is a family of closed sets in 1R and F := n FA, then C(F) = 
AEA 

U C(F>..) is the union of open sets. Hence, C(F) is open by Theorem 11.1.4(a), and 
AE/\ 
consequently, F is closed. 

(b) Suppose F1, F2 , • • ·, Fn are closed in 1R and let F := F1 U F2 U · · · U Fn. By th\! 
De Morgan identity the complement of F is given by 

C(F) = C(F1) n ... n C(Fn) 

Since each set C ( F;) is open, it follows from Theorem 11.1.4(b) that C (F) is open. Hence 
F is closed. Q.E.D 

The finiteness restrictions in 11.1.4(b) and 11.1.5(b) cannot be removed. Consider the 
following examples: 

11.1.6 Examples (a) Let Gn := (0, 1 + 1/n) for n e N. Then Gn is open for each 
00 

n e N, by Example 11.1.3(c). However, the intersection G := n Gn is the interval {0, 1] 
n=l 

which is not open. Thus, the intersection of infinitely many open sets in 1R need not be open. 
00 

(b) Let Fn := [1/n, 1] for n e N. Each Fn is closed, but the union F := U Fn is the set 
n=l 

(0, 1] which is not closed. Thus, the union of infinitely many closed sets in 1R need not be 
closed. D 

The Characterization of Closed Sets 

We shall now give a characterization of closed subsets of 1R in terms of sequences. As we 
shall see, closed sets are precisely those sets F that contain the limits of all convergent 
sequences whose elements are taken from F. 
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11.1.7 Characterization of Closed Sets Let F c JR; then the following assertions are 
equivalent. 

(i) F is a closed subset of JR. 
(ii) If X = (xn) is any convergent sequence of elements in F, then lim X belongs to F. 

Proof. (i) ~ (ii) Let X = (xn) be a sequence of elements in F and let x := lim X; we 
wish to show that x e F. Suppose, on the contrary, that x ' F; that is, that x e C(F) 
the complement of F. Since C(F) is open and x e C(F), it follows that there exists an 
e-neighborhood V

6 
of x such that V

6 
is contained in C(F). Since x = lim(xn), it follows 

that there exists a natural number K = K (e) such that x K e V
6

• Therefore we must have 
xK e C(F); but this contradicts the assumption that xn e F for all n eN. Therefore, we 
conclude that x e F. 

(ii) ~ (i) Suppose, on the contrary, that F is not closed, so that G := C(F) is not 
open. Then there exists a point y0 e G such that for each n eN, there is a number Yn e 
C(G) = F such that IYn - y0 1 < 1/n. It follows that y0 := lim(yn), and since Yn e F for all 
n eN, the hypothesis (ii) implies that y0 e F, contrary to the assumption y0 e G = C(F). 
Thus the hypothesis that F is not closed implies that (ii) is not true. Consequently (ii) 
implies (i), as asserted. Q.E.D. 

The next result is closely related to the preceding theorem. It states that a set F is 
closed if and only if it contains all of its cluster points. Recall from Section 4.1 that a point 
xis a cluster point of a set F if every e-neighborhood of x contains a point ofF different 
from x. Since by Theorem 4.1.2 each cluster point of a set F is the limit of a sequence 
of points in F, the result follows immediately from Theorem 11.1. 7 above. We provide a 
second proof that uses only the relevant definitions. 

11.1.8 Theorem A subset of 1R is closed if and only if it contains all of its cluster points. 

Proof. Let F be a closed set in 1R and let x be a cluster point of F; we will show that 
x e F. If not, then x belongs to the open set C (F). Therefore there exists an e-neighborhood 
v£ of X such that v£ ~ C(F). Consequently VE n F = 0, which contradicts the assumption 
that x is a cluster point of F. / 

Conversely, let F be a subset of 1R that contains all of its cluster points; we will show 
that C(F) is open. For if y e C(F), then y is not a cluster point of F. It follows that there 
exists an e-neighborhood V

6 
of y that does not.contain a point ofF (except possibly y). 

But since y e C(F), it follows that V
6 
~ C(F). Since y is an arbitrary element of C(F), we 

deduce that for every point in C(F) there is an e-neighborhood that is entirely contained in 
C(F). But this means that C(F) is open in JR. Therefore F is closed in JR. Q.E.D. 

The Characterization of Open Sets ----------------

The idea of an open set in 1R is a generalization of the notion of an open interval. That this 
generalization does not lead to extremely exotic sets that are open is revealed by the next 
result. 

11.1.9 Theorem A subset of JR is open if and only if it is the union of countably many 

clisjoinc OP'n intcll'als in R. 

Proof. Suppose that G =f. 0 is an open set in JR. For each x e G, let Ax :={a e JR: 
[a, x] ~ G} and let Bx := {b E lR : [x, b) ~ G}. Since G is open, it follows that A and B 

X X 
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are not empty. (Why?) H the set Ax is bounded below, we set ax := inf Ax; if Ax is not 
bounded below, we set ax := -oo. Note that in either case ax ' G. H the set B x is bounded 
above, we set b x := sup B x; if B x is not bounded above, we set b x := oo. Note that in either 

case bx 'G. 
We now define /x :=(ax, bx); clearly /x is an open interval containing x. We claim 

that /x c G. To see this, let y e /x and suppose that y < x. It follows from the definition 
of ax that there exists a' e Ax with a' < y, whence y e (a', x 1 s; G. Similarly, if y e 1 
and x < y, there exists b' e B x with y < b', whence it follows that y e [x, b') s; G. Sine~ 
y e /x is arbitrary, we have that /x s; G. 

Since x e G is arbitrary, we conclude that U /x s; G. On the other hand, since for each 
.reG 

x e G there is an open interval /x with x e /x s; G, we also have G s; U /x. Therefore 
xeG 

we conclude that G = U /x. 
xeG 

We claim that if x, y e G and x :f:. y, then either /x =I, or /x n I,=~. To prove 
this suppose that z e /x n I,, whence it follows that ax < z < b, and a, < z < bx. (Why?) 
We will show that ax =a,. H not, it follows from the Trichotomy Property that either (i) 

ax <a,, or (ii) a, <ax. In case (i), then a, e /x =(ax, bx) s; G, which contradicts the 
fact that a, ' G. Similarly, in case (ii), then ax e I.,= (a,, b,) s; G, which contradicts 
the fact that ax ' G. Therefore we must have ax = a, and a similar argument implies that 
bx = b,. Therefore, we conclude that if Ix n I, :1= ~'then /x =I . 

It remains to show that the collection of distinct intervals (Ix : x e G} is countable. 
To do this, we enumerate the set Q of rational numbers Q = { r 1, r 2 , • • • , r,., · · ·} (see 
Theorem 1.3.11). It follows from the Density Theorem 2.4.8 that each interval /x contains 
rational numbers; we select the rational number in /x that has the smallest index n in 
this enumeration of Q. That is, we choose r,.<x> e Q such that I, = lx and n(x) is the 

ll(.r) 

smallest index n such that I, = lx. Thus the set of distinct intervals /x, x e G, is put into 
II 

correspondence with a subset of N. Hence this set of distinct intervals is countable. Q.E.D. 

It is left as an exercise to show that the representation of G as a disjoint union of open 
intervals is uniquely determined. 

It does not follow from the preceding theorem that a subset of R is closed if and only if 
it is the intersection of a countable collection of closed intervals (why not?). In fact, there 
are closed sets in R that cannot be expressed as the intersection of a countable collection of 
closed intervals in R. A set consisting of two points is one example. (Why?) We will now 
describe the construcf:ion of a much more interesting example called the Cantor set. 

The Cantor Set ------------------------

The Cantor set, which we will denote by 1F, is a very interesting example of a (somewhat 
complicated) set that is unlike any set we have seen up to this point. It reveals how in
adequate our intuition can sometimes be in trying to picture subsets of R. 

The Cantor set 1F can be described by removing a sequence of open intervals from the 
closed unit interval I := [0, 1]. We first remove the open middle third (l, ~) of [0, 1] to 
obtain the set 

F1 := [o, !] u [~, 1]. 

We next remove the open middle third of each of the two closed intervals in F1 to obtain 
the set 

r 
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We see that F2 is the union of 22 = 4 closed intervals, each of which is of the fonn 
[ k /32

, (k + 1) /32
]. We next remove the open middle thirds of each of these sets to get F3, 

which is union of 23 = 8 closed intervals. We continue in this way. In general, if Fn has 
been constructed and consists of the union of 2" intervals of the fonn [k/3", (k + 1)/3"], 
then we obtain the set Fn+ 1 by removing the open middle third of each of these intervals. 
The Cantor set 1F is what remains after this process has been carried out for every n e N. 
(See Figure 11.1.1.) 

0 1 
Fl 

F2 

F3 -- -- -- --
F4 •••• • ••• •• •• • ••• 

Figure 11.1.1 Construction of the Cantor set. 

11.1.10 Definition The Cantor set 1F is the intersection of the sets Fn, n eN, obtained 
by successive removal of open middle thirds, starting with [0, 1]. 

Since it is the intersection of closed sets, 1F is itself a closed set by 11.1.5( a). We now 
list some of the properties of 1F that make it such an interesting set. 

( 1) The total length of the removed intervals is 1. 
We note that the first middle third has length 1/3, the next two middle thirds have 

lengths that add up to 2/32
, the next four middle thirds have lengths that add up to 22/33, 

and so on. The total length L of the removed intervals is given by 

Using the formula for the sum of a geometric series, we obtain 

1 1 
L = 3 . 1 - (2/3) = 1. 

Thus 1F is a subset of the unit interval [0, 1] whose complement in [0, 1] has total length 1. 
Note also that the total length of the intervals that make up Fn is (2/3)", which has 

limit 0 as n -+ oo. Since 1F s; Fn for all n e N, we see that if 1F can be said to have "length", 
it must have length 0. 

(2) The set IF contains no nonempty open interval as a subset. 
Indeed, if 1F contains a nonempty open interval J := (a, b), then since J s; Fn for all 

n e N, we must have 0 < b - a ~ (2/3)" for all n e N. Therefore b -a = 0, whence J is 
empty, a contradiction. 

(3) The Cantor set 1F has infinitely (even uncountably) many points. 
The Cantor set contains all of the endpoints of the removed open intervals, and these 

are all points of the fonn 21c /3" where k = 0, 1, · · · , n for each n e N. There are infinitely 
-many points of this fonn. 
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The Cantor set actually contains many more points than those of the fonn 21c /3"; in fac~ 
1F is an uncountable set. We give an outline of the argument. We note that each x e [0, 11 
can be written in a ternary (base 3) expansion 

where each an is either 0 or 1 or 2. (See the discussion at the end of Section 2.5.) Indeed, 
each x that lies in one of the removed open intervals has an = 1 for some n; for example, 
each point in ( l, j) has a 1 = 1. The endpoints of the removed intervals have two possible 
ternary expansions, one having no 1s; for example, 3 = (.HX> · · ·)3 = (.022 · · ·)3. H we 
choose the expansion without 1s for these points, then 1F consists of all x e [0, 1] that have 
ternary expansions with no 1s; that is, an is 0 or 2 for all n eN. We now define a mapping 
(/)of 1F onto [0, 1] as follows: 

for x e 1F. 

That is, ({J((.a1a2 • • ·)3) = (.b1b2 • • ·)2 where bn = an/2 for all n eN and (.b1b2 • • ·)2 de
notes the binary representation of a number. Thus f{J is a surjection of 1F onto [0, 1]. 
Assuming that 1F is countable, Theorem 1.3.10 implies that there exists a surjection 1/1 of 
N onto 1F, so that(/) o 1/1 is a surjection of N onto [0, 1]. Another application of Theorem 
1.3.10 implies that [0, 1] is a countable set, which contradicts Theorem 2.5.5. Therefore 1F 
is an uncountable set. 

Exercises for Section 11.1 

1. If x e (0, 1), let ex be as in Example 11.1.3(b). Show that if lu- xl <ex, then u e (0, 1). 

2. Show that the intervals (a, oo) and ( -oo, a) are open sets, and that the intervals [b, oo) and 
(-oo, b] are closed sets. 

3. Write out the Induction argument in the proof of part (b) of the Open Set Properties 11.1.4. 

4. Prove that (0, 1] = n~. (0, 1 + 1/n), as asserted in Example 11.1.6(a). 

5. Show that the set N of natural numbers is a closed set. 

6. Show that A = { 1/ n: n e N} is not a closed set, but that AU {0} is a closed set. 

7. Show that the set Q of rational numbers is neither open nor cfosed. 

8. Show that if G is an open set and F is a closed set, then G\F is an open set and F\G is a closed 
set. 

9. A point x e R is said to be an interior point of A s; R in case there is a neighborhood V of x 
such that V s; A. Show that a set A s; R is open if and only if every point of A is an interior 
point of A. 

10. A point x e R is said to be a boundary point of As; R in case every neighborhood V of x 
contains points in A and points in C(A). Show that a set A and its complement C(A) have exactly 
the same boundary points. 

11. Show that a set G ~ R is open if and only if it does not contain any of its boundary points. 

12. Show that a set F 5; R is closed if and only if it contains all of its boundary points. 

13. H A s; lR, let A0 be the union of all open sets that are contained in A; the set A 0 is called the 
interior of A. Show that A o is an open set, that it is the largest open set contained in A, and that 
a point z belongs to A o if and only if z is an interior point of A. 
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14. Using the notation of the preceding exercise, let A, B be sets in R. Show that A0 ~A, (A0
)

0 = 
A o, and that (A n Bt = A o n 8°. Show also that A o U 8° ~ (A U Bt, and give an example 
to show that the inclusion may be proper. 

15. If A ~ R, let A- be the intersection of all closed sets containing A; the set A- is called the 
closure of A. Show that A- is a closed set, that it is the smallest closed set containing A, and 
that a point w belongs to A- if and only if w is either an interior point or a boundary point of A. 

16. Using the notation of the preceding exercise, let A, B be sets in R. Show that we have A ~ 
A-, (A_)_= A-, and that (AU B)-= A-Us-. Show that (An B)-~ A-n B-, and give 
an example to show that the inclusion may be proper. 

17. Give an example of a set A ~ R such that A o = ((J and A- = R. 

18. Show that if F ~ R is a closed nonempty set that is bounded above, then sup F belongs to F. 

19. If G is open and x e G, show that the sets Ax and B x in the proof of Theorem 11.1.9 are not 
empty. 

20. If the set Ax in the proof of Theorem 11.1.9 is bounded below, show that ax := inf Ax does not 
belong to G. 

21. If in the notation used in the proof of Theorem 11.1. 9, we have ax < y < x, show that y e G. 

22. If in the notation used in the proof of Theorem 1 ~-~.9, we have lx n I, ::/: 0, show that bx = b,. 

23. Show that each point of the Cantor set 1F is a cluster point ofF. 

24. Show that each point of the Cantor set F is a cluster point of C(1F). 

Section 11.2 Compact Sets 

In advanced analysis and topology, the notion of a "compact" set is of enormous importance. 
This is less true in 1R because the Heine-Borel Theorem gives a very simple characterization 
of compact sets in 1R. Nevertheless, the definition and the techniques used in connection 
with compactness are very important, and the real line provides an appropriate place to see 
the idea of compactness for the first time. 

The definition of compactness uses the notion of an open cover, which we now define. 

11.2.1 Definition Let A be a subset of 1R. An open cover of A is a collection Q = { G a} 
of open sets in 1R whose union contains A; that is, 

A~ Uaa. 
a 

If Q' is a subcollection of sets from Q such that the union of the sets in Q' also contains 
A, then Q' is called a subcover of Q. If Q' consists of finitely many sets, then we call Q' a 
finite subcover of Q. 

There can be many different open covers for a given set. For example, if A := [1, oo}, 
then the reader can verify that the following collections of sets are all open covers of A: 

Q0 := {(0, oo)}, 

91 := {(r- 1, r + 1): r e Q, r > 0}, 

Q2 := {(n- 1, n + 1): n eN}, 
Q3 := {(O,n): n eN}, 

Q4 := {(0, n) : n EN, n ~ 23}. 
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We note that Q 2 is a subcover of Q 1, and that Q 4 is a subcover of Q 3• Of course, many other 
open covers of A can be described. 

11.2.2 Definition A subset K of 1R is said to be compact if every open cover of K has a 
finite subcover. 

In other words, a set K is compact if, whenever it is contained in the union of a 
collection Q = { G a} of open sets in IR, then it is contained in the union of some finite 
number of sets in Q. 

It is very important to note that, in order to apply the definition to prove that a set K 
is compact, we must examine an arbitrary collection of open sets whose union contains 
K, and show that K is contained in the union of some finite number of sets in the given 
collection. That is, it must be shown that any open cover of K has a finite subcover. On 
the other hand, to prove that a set H is not compact, it is sufficient to exhibit one specific 
collection Q of open sets whose union contains H, but such that the union of any finite 
number of sets in Q fails to contain H. That is, H is not compact if there exists some open 
cover .of H that has no finite subcover. 

11.2.3 Examples (a) Let K := {x1, x2 , • • ·, xn} be a finite subset of IR. If Q ={Gal is 
an open cover of K, then each x; is contained in some set Ga. in Q. Then the union of the 

I 

sets in the collection { G a , G a , · · · , G a } contains K, so that it is a finite subcover of Q. 
I 2 n 

Since Q was arbitrary, it follows that the finite set K is compact. 

(b) Let H := [0, oo). To prove that H is not compact, we will exhibit an open cover that 
00 

has no finite subcover. If we let G n := ( -1, n) for each n E N, then H s; U G n' so that 
n=l 

Q := {Gn : n EN} is an open cover of H. However, if {Ga , Ga , · · ·, Ga } is any finite 
I 2 n 

subcollection of Q, and if we let m := sup{n 1, n2, • • ·, nk }, then 

Gn
1 

UGn
2 

U···UGnk = Gm = (-1,m). 

Evidently, this union fails to contain H = [0, oo). Thus no finite subcollection of Q will 
have its union contain H, and therefore H is not compact. 

(c) Let J := (0, 1). If we let Gn := (1/n, 1) for each n eN, then it is readily seen that 
00 

J = U G . Thus Q := { G n : n E N} is an open cover of J. If { G n , G n , • • • , G n } is any 
n=l n I 2 r 

finite subcollection of g, and if we sets := sup { n 1, n2 , • • • , n,} then 

Since 1 Is is in J but not in G s, we see that the union does not contain J. Therefore, J is 
not compact. 0 

We now wish to describe all compact subsets of JR. First we will establish by rather 
straightforward arguments that any compact set in JR must be both closed and bounded. 
Then we will show that these properties in fact characterize the compact sets in JR. This is 
the content of the Heine-Borel Theorem. 

11.2.4 Theorem If K is a compact subset of R, then K is closed and bounded. 

4 
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Proof. We will first show that K is bounded. For each m eN, let Hm := ( -m, m). Since 
00 

each Hm is open and since K c U Hm =JR., we see that the collection {Hm : m eN} is an 
m=1 

open cover of K. Since K is compact, this collection has a finite subcover, so there exists 
M e N such that 

M 

K s; U Hm = HM = (-M, M). 
m=1 

Therefore K is bounded, since it is contained in the bounded interval (-M, M). 
We now show that K is closed, by showing that its complement C(K) is open. To do 

so, let u e C(K) be arbitrary and for each n eN, we let Gn := {y e 1R: ly- ul > 1/n}. 
00 

It is an exercise to show that each set G n is open and that 1R \ { u} = U G n. Since u ¢ K, 
n=1 

00 

we have K c U G n. Since K is compact, there exists m e N such that 
n=1 

m 

KcUG =G. - n m 
n=1 

Now it follows from this that K n (u- 1/m, u + 1/m) = 0, so that the interval (u- 1/m, 
u + 1/m) s; C(K). But since u was an arbitrary point in C(K), we infer that C(K) is 
open. Q.E.D. 

We now prove that the conditions of Theorem 11.2.4 are both necessary and sufficient 
for a subset of 1R to be compact. 

11.2.5 Beine-Borel Theorem A subset K of lR is compa~ only if it closed and 
bounded. "'-----

Proof. We have shown in Theorem 11.2.4 that a compact set in 1R must be closed and 
bounded. To establish the converse, suppose that K is closed and bounded, and let g = { G a} 
be an open cover of K. We wish to show that K must be contained in the union of some 
finite subcollection from g. The proof will be by contradiction. We assume that: 

( 1) K is not contained in the union of any finite number of sets in g. 

By hypothesis, K is bounded, so there exists r >. 0 such that K c [ -r, r]. We let I 1 := 
[ -r, r] and bisect I 1 into two closed subintervals If := [ -r, 0] and Ii' := [0, r]. At least 
one of the two subsets K n Ii, and K n I;' must be nonvoid and have the property that 
it is not contained in the union of any finite number of sets in g. [For if both of the sets 
K n Ii and K n Ii' are contained in the union of some finite number of sets in Q, then K 
= (K n Ii) U (K n Ii') is contained in the union of some finite number of sets in Q, con
trary to the assumption (1).] If K n Ii is not contained in the union of some finite number 
of sets in Q, we let I 2 := Ii; otherwise K n Ii' has this property and we let I2 := Ii'· 

We now bisect I2 into two closed subintervals I~ and I~'. H K n I~ is nonvoid and is 
not contained in the union of some finite number of sets in Q, we let I3 := I~; otherwise 
K n I~' has this property and we let I 3 := I2'· 

Continuing this process, we obtain a nested sequence of intervals (In). By the Nested 
Intervals Property 2.5 .2, there is a point z that belongs to all of the In, n e N. Since each 
interval In contains infinitely many points in K (why?), the point z is a cluster point of K. 
Moreover, since K is assumed to be closed, it follows from Theorem 11.1.8 that z e K . 

• 
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Therefore there exists a set G A in g with z e GA. Since G A is open, there exists e > 0 such 
that 

(z-e,z+e) c GA. 

On the other hand, since the intervals I,. are obtained by repeated bisections of 1
1 

= 
[ -r, r ], the length of I,. is r /2"-2

• It follows that if n is so large that r /2"-2 < e, then 
I,. £; (z- e, z +e) £;GA. But this means that if n is such that r/2"-2 < e, then K n I,. is 
contained in the single set GA in Q, contrary to our construction of I,.. This contradiction 
shows that the assumption ( 1) that the closed bounded set K requires an infinite number of 
sets in g to cover it is untenable. We conclude that K is compact. Q.E.D. 

Remark It was seen in Example 11.2.3(b) that the closed set H := [0, oo) is not compact; 
note that H is not bounded. It was also seen in Example 11.2.3( c) that the bounded set 
J : = (0, 1) is not compact; note that J is not closed. Thus, we cannot drop either hypothesis 
of the Heine-Borel Theorem. 

We can combine the Heine-Bore! Theorem with the. Bolzano-Weierstrass Theorem 
3.4.8 to obtain a sequential characterization of the compact subsets of JR. 

11.2.6 Theorem A subset K of lR is compact if and only if evezy sequence in K has a 
subsequence that converges to a point in K. 

Proof. Suppose that K is compact and let (x,.) be a sequence with x,. e K for all n eN. By 
the Heine-Borel Theorem, the set K is bounded so that the sequence (x,.) is bounded; by the 
Bolzano-Weierstrass Theorem 3.4.8, there exists a subsequence (x,. ) that converges. Since 

k 
K is closed (by Theorem 11.2.4), the limit x := lim(x,. ) is in K. Thus every sequence in 

k 
K has a subsequence that converges to a point of K. 

To establish the converse, we will show that if K is either not closed or not bounded, 
then there must exist a sequence in K that has no subsequence converging to a point of K. 
First, if K is not closed, then there is a cluster point c of K that does not belong to K. Since 
c is a cluster point of K, there is a sequence (x,.) with x,. e K and x,. :F c for all n e N such 
that lim(x,.) =c. Then every subsequence of (x,.) also converges to c, and since c ¢ K, 
there is no subsequence that converges to a point of K. 

Second, if K is not bounded, then there exists a sequence (x,.) inK such that lx,. I > n 
for all n e N. (Why?) Then every subsequence of (x,.) is unbounded, so that no subsequence 
of it can converge to a point of K. Q.E.D. 

Remark The reader has probably noticed that there is a similarity between the compact
ness of the interval [a, b] and the existence of 8-fine partitions for [a, b]. In fact, these 
properties are equivalent, each being deducible from the other. However, compactness 
applies to sets that are more general than intervals. 

Exercises for Section 11.2 

1. Exhibit an open cover of the interval (1, 2] that has no finite subcover. 

2. Exhibit an open cover of N that has no finite subcover. 

3. Exhibit an open cover of the set {1/n: n eN} that has no finite subcover. 
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4. Prove, using Definition 11.2.2, that if F is a closed subset of a compact set K in R, then F is 
compact. 

5. Prove, using Definition 11.2.2, that if K 1 and K 2 are compact sets in R, then their union K 1 U K 2 
is compact. 

6. Use the Heine-Borel Theorem to prove the following version of the Bolzano-Weierstrass The
orem: Every bounded infinite subset of R has a cluster point in R. (Note that if a set has no 
cluster points, then it is closed by Theorem 11.1.8.) 

00 

7. Find an infinite collection {K,. : n eN} of compact sets in 1R such that the union U K,. is not 
n=l 

compact. 

8. Prove that the intersection of an arbitrary collection of compact sets in R is compact. 

9. Let (K,. : n e N) be a sequence of nonempty compact sets in IR such that K 1 2 K 2 2 · · · 2 
K,. 2 · · ·. Prove that there exists at least one point x e IR such that x e K,. for all n e N; that 

00 

is, the intersection n K,. is not empty. 
n=l 

10. Let K :f: 0 be a compact set in R. Show that inf K and sup K exist and belong to K. 

11. Let K :f: 0 be compact in R and let c e R. Prove that there exists a point a in K such that 
lc- al = inf{lc- xl : x e K}. 

12. Let K :f: 0 be compact in 1R and let c e R. Prove that there exists a point b in K such that 
lc- bl = sup{lc- xl: x e K}. 

13. Use the notion of compactness to give an alternative proof of Exercise 5.3.18. 

14. If K1 and K2 are disjoint nonempty compact sets, show that there exist k; e K; such that 
0 < lk1 - k2 1 = inf{lx1 - x2 1 :X; e K;} 

15. Give an example of disjoint closed sets F1, F2 such that 0 = inf{ lx 1 - x2 1 : X; e F;}. 

Section 11.3 Continuous Functions 

In this section we will examine the way in which the concept of continuity of functions can 
be related to the topological ideas of open sets and compact sets. Some of the fundamental 
properties of continuous functions on intervals presented in Section 5.3 will be established 
in this context. Among other things, these new arguments will show that the concept 
of continuity and many of its important properties can be carried to a greater level of 
abstraction. This will be discussed briefly in the next section on metric spaces. 

Continuity 

In Section 5.1 we were concerned with continuity at a point, that is, with the "local" 
continuity of functions. We will now be mainly concerned with "global" continuity in the 
sense that we will assume that the functions are continuous on their entire domains. 

The continuity of a function f: A~ 1R at a point c e A was defined in Section 5.1. 
Theorem 5.1.2 stated that f is continuous at c if and only if for every £-neighborhood 
Ve(f(c)) of f(c) there exists a 8-neighborhood V8(c) of c such that if x e V1(c) n A, then 
f (x) e V, (f (c)). We wish to restate this condition for continuity at a point in terms of 
general neighborhoods. (Recall from 11.1.1 that a neighborhood of a point c is any set U 
that contains an £-neighborhood of c for some e > 0.) 
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11.3.1 Lemma A function f : A --+ 1R is continuous at the point c in A if and only if for 
every neighborhood U off (c), there exists a neighborhood V of c such that if x e v n A 
then f(x) e U. ' 

Proof. Suppose f satisfies the stated condition. Then given£> 0, we let U = Ve(f(c)) 
and then obtain a neighborhood V for which x e V n A implies f (x) e U. H we choose 0 > 
0 such that V6 (c) s; V, then X E V8 (c) n A implies f (x) E U; therefore f is continuous at 
c according to Theorem 5.1.2. 

Conversely, if f is continuous at c in the sense of Theorem 5.1.2, then since any 
neighborhood U of /(c) contains an £-neighborhood Ve(f(c)), it follows that taking the 
8-neighborhood V = V,s(c) of c of Theorem 5.1.2 satisfies the condition of the lemma. 

Q.E.D. 

We note that the statement that x e V n A implies f (x) e U is equivalent to the 
statement that f(V n A) c U; that is, that the direct image of V n A is contained in U. 
Also from the definition of inverse image, this is the same as V n A s; f- 1 (U). (See 
Definition 1.1. 7 (or the definitions of direct and inverse images.) Using this observation, 
we now obtain a condition for a function to be continuous on its domain in terms of open 
sets. In more advanced courses in topology, part (b) of the next result is often taken as the 
definition of (global) continuity. 

11.3.2 Global Continuity Theorem Let A c 1R and let f : A --+ 1R be a function with 
domain A. Then the following are equivalent: 

(a) f is continuous at every point of A. 

(b) For every open set G in R, there exists an open setH in 1R such that H n A = /- 1 (G). 

Proof. (a) => (b). Assume that f is continuous at every point of A, and let G be a 
given open set in 1R. If c belongs to /- 1 (G), then /(c) e G, and since G is open, G is a 
neighborhood of /(c). Therefore, by the preceding lemma, it follows from the continuity 
of f that there is an open set V (c) such that x e V (c) implies that f (x) e G; that is, V (c) 
is contained in the inverse image /-1 (G). Select V(c) for each c in /-1 (G), and let H be 
the union of all these sets V(c). By the Open Set Properties 11.1.4, the setH is open, and 
we have H n A = f- 1 (G). Hence (a) implies (b). . 

(b) => (a). Let c be any point A, and let G be an open neighborhood of f(c). Then 
condition (b) implies that there exists an open set H in 1R such that H n A = /-1 (G). 
Since f (c) e G, it follows that c e H, so H is a neighborhood of c. If x e H n A, then 
f(c) e G, and therefore f is continuous at c. Thus (b) implies (a). Q.E.D. 

In the case that A = IR., the preceding result simplifies to some extent. 

11.3.3 Corollary A function f: R--+ 1R is continuous if and only if /-1(G) is open in 
1R whenever G is open. · 

It must be emphasized that the Global Continuity Theorem 11.3.2 does not say that if 
f is a continuous function, then the direct image f (G) of an open set is necessarily open. In 
general, a continuous function will not send open sets to open sets. For example, consider 
the continuous function f : 1R --+ R defined by 

f(x) := x 2 + 1 for x e R. 
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If G is the open set G := ( -1, 1), then the direct image under f is f(G) = (1, 2), which 
is not open in R. See the exercises for additional examples. 

~rvationofCompacm~ --------------------------------------

In Section 5.3 we proved that a continuous function takes a closed, bounded interval [a, b] 

onto a closed, bounded interval [m, M], where m and Mare the minimum and maximum 
values off on [a, b], respectively. By the Heine-BorelTheorem, these are compact subsets 
of R, so that Theorem 5.3.8 is a special case of the following theorem. 

11.3.4 ~rvation of Compacmess If K is a compact subset of R and iff : K -+ R 
is continuous on K, then f (K) is compact. 

Proof. Let g = { G l.} be an open cover of the set f (K). We must show that g has a finite 
subcover. Since /(K) c U Gl., it follows that K ~ U f- 1(Gl.). By Theorem 11.3.2, for 
each Gl. there is an open set Hl. such that Hl. n K = f- 1(Gl.). Then the collection {Hl.} 
is an open cover of the set K. Since K is compact, this open cover of K contains a finite 
subcover {Hl. , Hl. , · · ·, Hl. }. Then we have 

I 2 II 

II 

From this it follows that U Gl.. 2 /(K). Hence we have found a finite subcover of Q. 
i=l I 

Since Q was an arbitrary open cover of f(K), we conclude that f(K) is compact. Q.E.D. 

11.3.5 Some Apptications We will now show how to apply the notion of compactness 
(and the Heine-Borel Theorem) to obtain alternative proofs of some important results that 
we have proved earlier by using the Bolzano-Weierstrass Theorem. In fact, these theorems 
remain true if the intervals are replaced by arbitrary nonempty compact sets in R. 

(1) The Boundedness Theorem 5.3.2 is an immediate consequence of Theorem 11.3.4 
and the Heine-Borel Theorem 11.2.5. Indeed, if K c R is compact and iff: K-+ R is 
continuous on K, then /(K) is compact and hence bounded. 

(Z) The Maximum-Minimum Theorem 5.3.4 also is an easy consequence of Theorem 
11.3.4 and the Heine-Borel Theorem. As before, we find that f(K) is compact and hence 
bounded in R, so that s• :=sup /(K) exists. If /(K) is a finite set, then s• e /(K). If 
f(K) is an infinite set, then s• is a cluster point of f(K) [see Exercise 11.2.6]. Since 
f(K) is a closed set, by the Heine-Borel Theorem, it follows from Theorem 11.1.8 that 
s• e /(K). We conclude that s• = f(x•) for some x• e K. 

(3) We can also give a proof of the Uniform Continuity Theorem 5.4.3 based on the notion 
of compactness. To do so, let K c R be compact and let f : K -+ R be continuous on K. 
Then given e > 0 and u e K, there is a number 8, := 8 (!e, u) > 0 such that if x e K and 

lx- ul < 8, then 1/(x)- /(u)l < !e. For each u e K, let G, := (u- !8,, u + !8,) so 
that G, is open; we consider the collection Q = { G, : u e K}. Since u e G, for u e K, 
it is trivial that K c U G,. Since K is compact, there are a finite number of sets, say 

uEK 
G, , · · · , G, whose union contains K. We now· define 

I M 

8(£) := ! inf{&, ' ... ' &, }, 
1 M 



so that cS(e) > 0. Now if x, u e K and lx- ul < cS(e), then there exists some ulc with 

k = I,···, M such that x e G "k; therefore lx- ulc I < ~cS"k. Since we have cS(e} ~ !cS., 
it follows that • 

lu- u1cl ~ lu -xl + lx- u1cl < cSuk· 

But since cS" = cS (~e. ulc) it follows that both 
k 

lf(x)- f(ulc)l < ~e and 

Therefore we have 1/(x)- /(u)l <e. 
We have shown that if e > 0, then there exists cS(e) > 0 such that if x, u are any points 

inK with lx- ul < cS(e), then 1/(x) - /(u)l <e. Since e > 0 is arbitrary, this shows that 
f is uniformly continuous on K, as asserted. 0 

We conclude this section by extending the Continuous Inverse Theorem 5.6.5 to func
tions whose domains are compact subsets of 1R, rather than intervals in 1R. 

11.3.6 Theorem If K is a compact subset of 1R and f: K ~ iRis injective and contin
uous, then f- 1 is continuous on f(K). 

Proof. Since K is compact, then Theorem 11.3.4 implies that the image f(K) is compact. 
Since f is injective by hypothesis, the inverse function f- 1 is defined on f(K) to K. Let 
(yn) be any convergent sequence in /(K), and let y0 = lim(yn). To establish the continuity 
of f- 1

, we will show that the sequence (/-1 (yn)) converges to /- 1 (y0). 

Let xn := /-1 (yn) and, by way of contradiction, assume that (xn) does not converge to 

x0 := f- 1(y0). Then there exists an E > 0 and a subsequence (x~) such that lx~- x0 1 2:: E 

for all k. Since K is compact, we conclude from Theorem 11.2.6 that there is a subsequence 
(x;') of the sequence (x~) that converges to a point x• of K. Since lx* - x0 l 2:: E, we 
have x• # x0 • Now since f is continuous, we have lim(f(x;)) = f(x*). Also, since the 
subsequence (y;) of (yn) that corresponds to the subsequence (x;) of (xn) must converge 
to the same limit as (y n) does, we have 

lim(/ (x;)) = lim(y;) = Yo = f (x0). 

Therefore we conclude that f(x*) = f(x0). However, since f is injective, this implies that 
x• = x0, which is a contradiction. Thus we conclude that f- 1 takes convergent sequences 
in f(K) to convergent sequences inK, and hence f- 1 is continuous. Q.E.D. 

Exercises for Section 11.3 

1. Let f: 1R ~ 1R be defined by f(x) = x2 for x e 1R. 
(a) Show that the inverse image f- 1 (/)of an open interval/ := (a. b) is either an open interval. 

the union of two open intervals, or empty, depending on a and b. 
(b) Show that if I is an open interval containing 0, then the direct image f (I) is not open. 

2. Let f: 1R ~ 1R be defined by f(x) := 1/(1 + x2
) for x e 1R. 

(a) Find an open interval (a, b) whose direct image under f is not open. 
(b) Show that the direct image of the closed interval [0, oo) is not closed. 

3. Let I:= [1, oo) and let f(x) := .JX=-r for x e /.For each £-neighborhood G =(-e. +e) of 
0, exhibit an open setH such that H n I= f- 1(G). 
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4. Let h : R ~ R be defined by h(x) := 1 ifO ~ x ~ 1, h(x) := 0 otherwise. Find an open set G 
such that h- 1 (G) is not open, and a closed set F such that h- 1 (F) is not closed. 

5. Show that iff: R ..... R is continuous, then the set (x e R: l(x) <a} is open in R for each 
a eR. 

6. Show that if I: R ..... 1R is continuous, then the set (x e R: 1 (x) ~ a} is closed in R for each 
a eR. 

7. Show that if I : R ..... R is continuous, then the set {x e R: l(x) = k} is closed in 1R for each 
k e JR. 

8. Give an example of a function I: R ..... R such that the set (x e R: l(x) = 1} is neither open 
nor closed in R. 

9. Prove that I : R ..... 1R is continuous if and only if for each closed set F in lR, the inverse image 
I- 1 (F) is closed. 

10. Let I := [a, b) and let I : I ~ Rand g : I ..... R be continuous functions on I. Show that the 
set {x e I : f(x) = g(x)} is closed in R. 

Section 11.4 Metric Spaces 

This book has been devoted to a careful study of the real number system and a number of 
different limiting processes that can be defined for functions of a real variable. A central 
topic was the study of continuous functions. At this point, with a strong understanding of 
analysis on the real line, the study of more general spaces and the related limit concepts 
can begin. It is possible to generalize the fundamental concepts of real analysis in several 
different ways, but one of the most fruitful is in the context of metric spaces, where a metric 
is an abstraction of a distance function. 

In this section, we will introduce the idea of metric space and then indicate how certain 
areas of the theory developed in this book can be extended to this new setting. We will 
discuss the concepts of neighborhood of a point, open and closed sets, convergence of 
sequences, and continuity of functions defined on metric spaces. Our purpose in this brief 
discussion is not to develop the theory of metric spaces to any great extent, but to reveal how 
the key ideas and techniques of real analysis can be put into a more abstract and general 
framework. The reader should note how the basic results of analysis on the real line serVe 
to motivate and guide the study of analysis in more general contexts. 

Generalization can serve two important purposes. One purpose is that theorems derived 
in general settings can often be applied in many particular cases without the need of a 
separate proof for each special case. A second purpose is that by removing the nonessential 
(and sometimes distracting) features of special situations, it is often possible to understand 
the real significance of a concept or theorem. 

Metrics 

On the real line, basic limit concepts were defined in terms of the distance lx - y I between 
two points x, y in IR, and many theorems were proved using the absolute value function. 
Actually, a careful study reveals that only a few key properties of the absolute value were 
required to prove many fundamental results, and it happens that these properties can be 
extracted and used to define more general distance functions called "metrics". 
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11.4.1 Definition A metric on a set S is a function d: S x S ~ 1R that satisfies the 
following properties: 

(a) d (x, y) ~ 0 for all x, y e S (positivity); 

(b) d(x, y) = 0 if and only if x = y (definiteness); 

(c) d(x, y) = d(y, x) for all x, yeS (symmetry); 

(d) d(x, y) ~ d(x, z) + d(z, y) for all x, y, z e S (triangle inequality). 

A metric space ( S, d) is a set S together with a metric d on S. 

We consider several examples of metric spaces. 

11.4.2 Examples (a) The familiar metric on 1R is defined by 

d(x, y) := lx- Yl for x, y e R. 

Property 11.4.1 (d) for d follows from the Triangle Inequality for absolute value because 
we have 

d (x, y) = lx - y I = I (x - z) + (z - y) I 
~ lx - zl + lz- yl = d(x, z) + d(z, y), 

for all x, y, z e IR. 

(b) The distance function in the plane obtained from the Pythagorean Theorem provides 
one example of a metric in IR2. That is, we define the metric d on IR2 as follows: if 
P1 := (x 1, y 1) and P2 := (x2, y2) are points in 1R2, then ) )I_·, ... ~ ' __ ·.-. --:--. 

d(PI' P2~ == J<x1 - x2)
2 + (y1 - y2)

2 

(c) It is possible to define several different metrics on the same set. On 1R2, we can also 
define the metric d1 as follows: 

d1 (Pt' P2) := lxt - x2l + IYt - Y2l 

Still another metric on 1R2 is d
00 

defined by 

d00 (PI' P2) := sup { lx1 - x21 , IY1 - y21}. 
The verifications that d1 and d

00 
satisfy tht properties of a metric are left as exercises. 

(d) Let C[O, 1] denote the set of all continuous functions on the interval [0, 1] to 1R. For 
f, gin C[O, 1], we define 

d
00

(/, g) := sup{lf(x)- g(x)l: x E [0, 1]}. 

Then it can be verified that d
00 

is a metric on C[O, 1]. This metric is the uniform norm of 
f- g on [0, 1] as defined in Section 8.1; that is, d

00
(f, g)= II/- gil, where 11/11 denotes 

the uniform norm off on the set [0, 1]. 

(e) We again consider C[O, 1], but we now define a different metric d1 by 

d1(f. g):= {If- gl for f, g e C[O, 1]. 

The properties of the integral can be used to show that this is indeed a metric on C[O, 1]. 
The details are left as an exercise. · 



(f) Let S be any nonempty set. For s, t e S, we define 

d(s, t) := {~ if s = t, 
if s :Ft. 
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It is an exercise to show that d is a metric on S. This metric is called the discrete metric 
on the setS. 0 

We note that if (S, d) is a metric space, and if T c S, then d' defined by d'(x, y) := 
d (x, y) for all x, y e T gives a metric on T, which we generally denote by d. With this 
understanding, we say that (T, d) is also a metric space. For example, the metric don 1R 
defined by the absolute value is a metric on the set Q of rational numbers, and thus (Q, d) 
is also a metric space. 

Neighborhoods and Convergence 

The basic notion needed for the introduction of limit concepts is that of neighborhood, and 
- this is defined in metric spaces as follows. 

11.4.3 Definition Let (S, d) be a metric space. Then fore > 0, the £-neighborhood of 
a point x0 in S is the set 

V£(x0) := {x e S: d(x0 , x) < e}. 

A neighborhood of x0 is any set U that contains an £-neighborhood of x0 for some E > 0. 

Any notion defined in terms of neighborhoods can now be defined and discussed in 
the context of metric spaces by modifying the language appropriately. We first consider the 
convergence of sequences. 

A sequence in a metric space (S, d) is a function X: N--+ S with domain Nand range 
inS, and the usual notations for sequence are used; we write X = (x,.), but now x,. e S for 
all n e N. When we replace the absolute value by a metric in the definition of sequential 
convergence, we get the notion of convergence in a metric space. 

11.4.4 Definition Let (x,.) be a sequence in the metric space (S, d). The sequence (x,.) 
is said to converge to x in S if for any e > 0 there exists K e N such that x,. e V£ (x) for 
alln ~ K. 

Note that since x,. e VE(x) if and only if d(x,., x) < E, a sequence (x,.) converges to x 
if and only if for any e > 0 there exists K such that d (x,., x) < e for all n ~ K. In other 
words, a sequence (x,.) in (S, d) converges to x if and only if the sequence of real numbers 
(d(x,., x)) converges to 0. 

11.4.5 Examples (a) Consider 1R2 with the metric d defined in Example 11.4.2(b). H 
P,. = (x,., y,.) e 1R2 for each n eN, then we claim that the sequence (P,.) converges to 
P = (x, y) with respect to this metric if and only if the sequences of real numbers (x,.) and 
(y,.) converge to x and y, respectively. 

First, we note that the inequality lx,. - xl ~ d(P,., P) implies that if (P,.) converges 
toP with respect to the metric d, then the sequence (xn) converges to x; the convergence 

of (y,.) follows in a similar way. The converse follows from the inequality d(P,., P) ~ 
lx,. - xI + I y,. - y I, which is readily verified. The details are left to the reader. 
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(b) Let d00 be the metric on C[O, 1] defined in Example 11.4.2(d). Then a sequence(/.) 
in C[O, 1] converges to I with respect to this metric if and only if <In> converges to j 
uniformly on the set [0, 1]. This is established in Lemma 8.1.8 in the discussion of the 
uniform norm. 0 

Cauchy Sequences 

The notion of Cauchy sequence is a significant concept in metric spaces. The definition is 
formulated as expected, with the metric replacing the absolute value. 

11.4.6 Definition Let (S, d) be a metric space. A sequence (xn) in S is said to be a 
Cauchy sequence if for each e > 0, there exists HeN such that d(xn, xm) < e for all 
n, m :::: H. 

The Cauchy Convergence Theorem 3.5.5 for sequences in R states that a sequence in 
1R is a Cauchy sequence if and only if it converges to a point of JR. This theorem is not true 
for metric spaces in general, as the examples that follow will reveal. Those metric spaces 
for which Cauchy sequences are convergent have special importance. 

11.4.7 Definition A metric space (S, d) is said to be complete if each Cauchy sequence 
in S converges to a point of S. 

In Section 2.3 the Completeness Property of 1R is stated in terms of the order properties 
by requiring that every nonempty subset of 1R that is bounded above has a supremum in JR. 
The convergence of Cauchy sequences is deduced as a theorem. In fact, it is possible to 
reverse the roles of these fundamental properties of IR: the Completeness Property of 1R 
can be stated in terms of Cauchy sequences as in 11.4.7, and the Supremum Property can 
then be deduced as a theorem. Since many metric spaces do not have an appropriate order 
structure, a concept of completeness must be described in terms of the metric, and Cauchy 
sequences provide the natural vehicle for this. 

11.4.8 Examples (a) The metric space (Q, d) of rational numbers with the metric 
defined by the absolute value function is not complete. 

For example, if (xn) is a sequence of rational numbers that converges to ,J2, then it is 
Cauchy in Q, but it does not converge to a point of Q. Therefore (Q, d) is nof a complete 
metric space. 

(b) The space C[O, 1] with the metric d
00 

defined in 11.4.2(d) is complete. 
To prove this, suppose that <In> is a Cauchy sequence in C[O, 1] with respect to the 

metric d
00

• Then, given e > 0, there exists H such that 

(1) 

for all x e [0, 1] and all n, m ::::H. Thus for each x, the sequence <ln(x)) is Cauchy in IR, 
and therefore converges in JR. We define I to be the pointwise limit of the sequence; that is, 
I (x) : = lim(ln (x)) for each x e [0, 1 ]. It follows from ( 1) that for each x e [0, 1] and each 
n :::: H, we have lln(x)- l(x)l ~e. Consequently the sequence <In> converges uniformly 
to 1 on [0, 1]. Since the uniform limit of continuous functions is also continuous (by 8.2.2), 
the function I is in C[O, 1]. Therefore the metric space (C[O, 1], d

00
) is complete. 

(c) H d1 is the metric on C[O, 1] defined in 11.4.2(e), then ihe metric space (C[O, 1], d1) 

is not complete. 



F 
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To prove this statement, it suffices to exhibit a Cauchy sequence that does not have a 
limit in the space. We define the sequence(/,.) for n ~ 3 as follows (see Figure 11.4.1): 

1
1 for 0 ~ x ~ 1/2, 

/,.(x) := 1 + n/2- nx for 1/2 < x ~ 1/2 + 1/n, 
0 for 1/2 + 1 In < x ~ 1. 

Note that the sequence(/,.) converges pointwise to the discontinuous function f(x) := 1 
for 0 ~ x ~ 1/2 and /(x) := 0 for 1/2 < x ~ 1. Hence f ~ C[O, 1]; in fact, there is no 
function g e C[O, 1] such that d 1 (/,.,g)~ 0. 0 

1 1 1 1 - -+-2 2 n 

Figure 11.4.1 The sequence (/n) 

Open Sets and Continuity -------------------

With the notion of neighborhood defined, the definitions of open set and closed set read the 
same as for sets in lR. 

11.4.9 Definition Let (S, d) be a metric space. A subset G of Sis said to be an open set 
in S if for every point x e S there is a neighborhood U of x such that U s; G. A subset F 
of S is said to be a closed set in S if the complement S\ F is an open set in S. 

Theorems 11.1.4 and 11.1.5 concerning the unions and intersections of open sets 
and closed sets can be extended to metric spaces without difficulty. In fact, the proofs 
of those theorems carry over to metric spaces with very little change: simply replace the 
£-neighborhoods (x - £, x + £) in R. by £-neighborhoods V, (x) in S. 

We now can examine the concept of continuity for functions that map one metric space 
(S1, d1) into another metric space (S2 , d2). Note that we modify the property in 5.1.2 of 
continuity for functions on 1R by replacing neighborhoods in R. by neighborhoods in the 
metric spaces. 

11.4.10 Definition Let (S1, d1) and (S2, d2) be metric spaces, and let I : S1 ~ S2 be a 
function from S 1 to S2• The function f is said to be continuous at the point c in S1 if for 
every £-neighborhood V,(/(c)) of f(c) there exists a 8-neighborhood V,(c) of c such that 
if x E V,(c), then /(x) E V,(f(c)). 

The £-~ formulation of continu~ can be stated as follows: f : S1 ~ S2 is continuous 
at c if and only if for each £ > 0 there exists 8 > 0 such that d1 (x, c) < 8 implies that 
dz(f(x), /(c)) <e. 
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The Global Continuity Theorem can be established for metric spaces by appropriately 

modifying the argument for functions on ~. 

11.4.11 Global Continuity Theorem If (S1, d1) and (S2, d2) are metric spaces, then a 

function f : S1 -+ S2 is continuous on S1 if and only if f- 1(G) is open inS whenever G 

is open in s2. 

The notion of compactness extends immediately to metric spaces. A metric space (S, d) 

is said to be compact if each open cover of S has a finite subcover. Then by modifying the 

proof of 11.3 .4, we obtain the following result. 

11.4.12 Preservation of Compactness If (S, d) is a compact metric space and if the 

function f : S -+ R is continuous, then f (S) is compact in JR. 

The important properties of continuous functions given in 11.3 .5 then follow imme

diately. The Boundedness Theorem, the Maximum-Minimum Theorem, and the Uniform 

Continuity Theorem for real-valued continuous functions on a compact metric space are 

all established by appropriately modifying the language of the proofs given in 11.3.5. 

Semimetrics 

11.4.13 Definition A semimetric on a setS is a function d : S x S ~ 1R that satisfies 

all of the conditions in Definition 11.4.1, except that condition (b) is replaced by the weaker 

condition 

(b') d(x, y) = 0 if X= y. 

A semimetric space (S, d) is a setS together with a semimetric donS. 

Thus every metric is a semimetric, and every metric space is a semimetric space. 

However, the converse is not true. For example, if P1 := (x1, y1) and P2 := (x2 , y2 ) are 

points in the space JR2
, the function d 1 defined by 

d1 (P1, P2 ) := lx1 - x2 1, 

is easily seen to be a semimetric, but it is not a metric since any two points with the same 

first coordinate have "d1-distance" equal to 0. 

Somewhat more interestingly, iff, g are any functions in .C[a, b], we have defined (in 

Definition 1 0.2.9) the distance function: 

dist(f, g) := 1b if - gi. 

Here it is clear that any two functions that are equal except at a countable set of points will 

have distance equal to 0 from each other (in fact, this is also true when the functions are 

equal almost everywhere). 
The reader can retrace the discussion in the present section and see that most of what 

we have done remains true for semimetrics and semimetric spaces. The main difference 

is that a sequence in a semimetric space does not necessarily converge to a unique limit. 

While this seems to be rather unusual, it is actually not a very serious problem and one 

can learn to adjust to this situation. The other alternative is to "identify" points that have 

distance 0 from each other. This identification procedure is often invoked, but it means one 
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is dealing with "equivalence classes" rather than individual points. Often this cure is worse 
than the malady. 

Exercises for Section 11.4 

1. Show that the functions d 1 and d
00 

defined in 11.4.2( c) are metrics on R2
• 

2. Show that the functions d
00 

and d1 defined in 11.4.2(d, e) are metrics on C[O, 1]. 

3. Verify that the discrete metric on a setS as defined in 11.4.2(f) is a metric. 

4. If P, := (x,, y,) e R2 and d
00 

is the metric in 11.4.2(c), show that (P,) converges toP := (x, y) 
with respect to this metric if and only if (x,) and (y,) converge to x andy, respectively. 

S. Verify the conclusion of Exercise 4 if d
00 

is replaced by d1• 

6. Let S be a nonempty set and let d be the discrete metric defined in 11.4.2(f). Show that in the 
metric space (S, d), a sequence (x,) in S converges to x if and only if there is a K e N such that 
x, = x for all n 2: K. 

7. Show that if d is the discrete metric on a set S, then every subset of S is both open and closed 
in (S, d). 

8. Let P := (x, y) and 0 := (0, 0) in R2
• Draw the following sets in the plane: 

(a) {P e R2 : d1 (0, P) !:: 1}, 
(b) {P e R2 : d

00
(0, P) !:: 1}. 

9. Prove that in any metric space, an £-neighborhood of a point is an open set. 

10. Prove Theorem 11.4.11. 

11. Prove Theorem 11.4.12. 

12. If (S, d) is a metric space, a subset A ~ Sis said to be bounded if there exists x0 e Sand a 
number B > 0 such that A~ {xeS: d(x, x0)!:: B}. Show that if A is a compact subset of S, 
then A is closed and bounded. 



APPENDIX A 

LOGIC AND PROOFS 

Natural science is concerned with collecting facts and organizing these facts into a coherent 
body of knowledge so that one can understand nature. Originally much of science was 
concerned with observation, the collection of information, and its classification. This clas
sification gradually led to the formation of various "theories" that helped the investigators 
to remember the individual facts and to be able to explain and sometimes predict natural 
phenomena. The ultimate aim of most scientists is to be able to organize their science into 
a coherent collection of general principles and theories so that these principles will enable 
them both to understand nature and to make predictions of the outcome of future experi
ments. Thus they want to be able to develop a system of general principles (or axioms) for 
their science that will enable them to deduce the individual facts and consequences from 
these general laws. 

Mathematics is different from the other sciences: by its very nature, it is a deductive 
science. That is not to say that mathematicians do not collect facts and make observations 
concerning their investigations. In fact, many mathematicians spend a large amount of time 
performing calculations of special instances of the phenomena they are studying in the 
hopes that they will discover "unifying principles". (The great Gauss did a vast amount of 
calculation and studied much numerical data before he was able to formulate a conjecture 
concerning the distribution of prime numbers.) However, even after these principles and 
conjectures are formulated, the work is far from over, for mathematicians are not satisfied 
until conjectures have been derived (i.e., proved) from the axioms of mathematics, from the 
definitions of the terms, and from results (or theorems) that have previously been proved. 
Thus, a mathematical statement is not a theorem until it has been carefully derived from 
axioms, definitions, and previously proved theorems. 

A few words about the axioms (i.e., postulates, assumptions, etc.) of mathematics are 
in order. There are a few axioms that apply to all of mathematics-the "axioms of set 
theory"-and there are specific axioms within different areas of mathematics. Sometimes 
these axioms are stated forinally, and sometimes they are built into definitions. For example, 
we list properties in Chapter 2 that we assume the real number system possesses; they are 
really a set of axioms. As another example, the definition of a "group" in abstract algebra 
is basically a set of axioms that we assume a set of elements to possess, and the study of 
group theory is an investigation of the consequences of these axioms. 

Students studying real analysis for the first time usually do not have much experience 
in understanding (not to mention constructing) proofs. In fact, one of the main purposes 
of this course (and this book) is to help the reader gain experience in the type of critical 
thought that is used in this deductive process. The purpose of this appendix is to help the 
reader gain insight about the techniques of proof. 

Statements and Their Combinations 

All mathematical proofs and arguments are based on statements, which are declarative 
sentences or meaningful strings of symbols that can be classified as being true or false. It is 
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not necessary that we know whether a given statement is actually true or false, but it must 
be one or the other, and it cannot be both. (This is the Principle of the Excluded Middle.) 
For example, the sentence "Chickens are pretty" is a matter of opinion and not a statement 
in the sense of logic. Consider the following sentences: 

• It rained in Kuala Lumpur on June 2, 1988. 

• Thomas Jefferson was shorter than John Adams. 

• There are infinitely many twin primes. 

• This sentence is false. 

The first three are statements: the first is true, the second is false, and the third is either true 
or false, but we are not sure which at this time. The fourth sentence is not a statement; it 
can be neither true nor false since it leads to contradictory conclusions. 

Some statements (such as "1 + 1 = 2") are always true; they are called tautologies. 
Some statements (such as "2 = 3") are always false; they are called contradictions or 
falsities. Some statements (such as "x2 = 1 ") are sometimes true and sometimes false 
(e.g., true when x = 1 and false when x = 3). Or course, for the statement to be completely 
clear, it is necessary that the proper context has been established and the meaning of the 
symbols has been properly defined (e.g., we need to know that we are referring to integer 
arithmetic in the. preceding examples). 

Two statements P and Q are said to be logicaUy equivalent if P is true exactly when 
Q is true (and hence Pis false exactly when Q is false). In this case we often write P = Q. 
For example, we write 

(x is Abraham Lincoln) = (x is the 16th president of the United States). 

There are several different ways of forming new statements from given ones by using 
logical connectives. 

If P is a statement, then its negation is the statement denoted by 

not P 

which is true when P is false, and is false when P is true. (A common notation for the 
negation of P is ...,p .) A little thought shows that 

P = not(not P). 

This is the Principle of Double Negation. 
If P and Q are statements, then their conjunction is the statement denoted by 

Pand Q 

which is true when both P and Q are true, and is false otherwise. (A standard notation for 
the conjunction of P and Q is P 1\ Q.) It is evident that 

(P and Q) = (Q and P). 

Similarly, the disjunction of P and Q is the statement denoted by 

PorQ 

which is true when at least one of P and Q is true, and false only when they are both false. 
In legal documents "or" is often denoted by "and/or'' to make it clear that this disjunction 
is also true when both P and Q are true. (A standard notation for the disjunction of P and 
Q is P v Q .) It is also evident that 

(P or Q) = ( Q or P). 
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To contrast disjunctive and conjunctive statements, note that the statement "2 < -Ji and 
../2 < 3" is false, but the statement "2 < ../2 or ../2 < 3" is true (since ../2 is approximately 
equal to 1.4142· .. ). 

Some thought shows that negation, conjunction, and disjunction are related by DeMor
gan's lAws: 

not (P and Q) = (not P) or (not Q), 

not (P or Q) = (not P) and (not Q). 

The first of these equivalencies can be illustrated by considering the statements 

P :x=2, Q :yeA. 

The statement (P and Q) is true when both (x = 2) and (yeA) are true, and it is false 
when at least one of (x = 2) and (y e A) is false; that is, the statement not( P and Q) is 
true when at least one of the statements (x '# 2) and (y ~ A) holds. 

lmpUcations 

A very important way of forming a new statement from given ones is the impUcation (or 
conditional) statement, denoted by 

(P => Q), (if P then Q), or (P implies Q). 

Here P is called the hypothesis, and Q is called the conclusion of the implication. To help 
understand the truth values of the implication, consider the statement 

If I win the lottery today, then I'll buy Sam a car. 

Clearly this statement is false if I win the lottery and don't buy Sam a car. What if I don't 
win the lottery today? Under this circumstance, I haven't made any promise about buying 
anyone a car, and since the condition of winning the lottery did not materialize, my failing 
to buy Sam a car should not be considered as breaking a promise. Thus the implication is 
regarded as true when the hypothesis is not satisfied. 

In mathematical arguments, we are very much interested in implications when the 
hypothesis is true, but not much interested in them when the hypothesis is false. The 
accepted procedure is to take the statement P => Q to be false only when P is true and Q 
is false; in all other cases the statement P => Q is true. (Consequently, if P is false, then 
we agree to take the statement P => Q to be true whether or not Q is true or false. That 
may seem strange to the reader, but it turns out to be convenient in practice and consistent 
with the other rules of logic.) 

We observe that the definition of P => Q is logically equivalent to 

not ( P and (not Q) ), 

because this statement is false only when Pis true and Q is false, and it is true in all other 
cases. It also follows from the first DeMorgan Law and the Principle of Double Negation 
that P => Q is logically equivalent to the statement 

(not P) or Q, 

since this statement is true unless both (not P) and Q are false; that is, unless Pis true and 
Q is false. 

< 
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Contrapositive and Converse -------------------

As an exercise, the reader should show that the implication P ~ Q is logically equivalent 
to the implication 

(not Q) =*(not P), 

which is called the contrapositive of the implication P ~ Q. For example, if P ~ Q is 
the implication 

HI am in Chicago, then I am in Dlinois, 

then the contrapositive (not Q) ~ (not P) is the implication 

If I am not in Dlinois, then I am not in Chicago. 

The equivalence of these two statements is apparent after a bit of thought. In attempting 
to establish an implication, it is sometimes easier to establish the contrapositive, which is 
logically equivalent to it. (This will be discussed in more detail later.) 

If an implication P ~ Q is given, then one can also form the statement 

Q=*P, 

which is called the converse of P ~ Q. The reader must guard against confusing the 
converse of an implication with its contrapositive, since they are quite different statements. 
While the contrapositive is logically equivalent to the given implication, the converse is 
not. For example, the converse of the statement 

If I am in Chicago, then I am in Dlinois, 

is the statement 

If I am in Dlinois, then I am in Chicago. 

Since it is possible to be in Dlinois but not in Chicago, these two statements are evidently 
not logically equivalent. 

There is one final way of forming statements that we will mention. It is the double 
implication (or the biconditional) statement, which is denoted by 

or P if and only if Q, 

and which is defined by 

(P =* Q) and.(Q =* P). 

It is a straightforward exercise to show that P <===> Q is true precisely when P and Q are 
both true, or both false. 

Context and Quantifiers 

In any form of communication, it is important that the individuals have an appropriate 
context in mind. Statements such as "I saw Mary today" may not be particularly informative 
if the hearer knows several persons named Mary. Similarly, if one goes into the middle of 
a mathematical lecture and sees the equation x 2 = 1 on the blackboard, it is useful for the 
viewer to know what the writer means by the letter x and the symbol1. Is x an integer? A 
function? A matrix? A subgroup of a given group? Does 1 denote a natural number? The 
identity function? The identity matrix? The trivial subgroup of a group? 

Often the context is well understood by the conversants, but it is always a good idea to 
establish it at the start of a discussion. For example, many mathematical statements involve 
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one or more variables whose values usually affect the truth or the falsity of the statemen~ 
so we should always make clear what the possible values of the variables are. 

Very often mathematical statements involve expressions such as "for all", "for every'\ 
"for some", "there exists", "there are", and so on. For example, we may have the statements 

For any integer x, x 2 = 1 

and 

There exists an integer x such that x 2 = 1. 

Clearly the first statement is false, as is seen by taking x = 3; however, the second statement 
is true since we can take either x = 1 or x = -1. 

If the context has been established that we are talking about integers, then the above 
statements can safely be abbreviated as 

For any x, x 2 = 1 

and 

There exists an x such that x 2 = 1. 

The first statement involves the universal quantifier "for every", and is making a statement 
(here false) about all integers. The second statement involves the existential quantifier 
"there exists", and is making a statement (here true) about at least one integer. 

These two quantifiers occur so often that mathematicians often use the symbol V to 
stand for the universal quantifier, and the symbol 3 to stand for the existential quantifier. 
That is, 

V denotes "for every", 

3 denotes "there exists". 

While we do not use these symbols in this book, it is important for the reader to know how 
to read formulas in which they appear. For example, the statement 

(i) (Vx)(3 y)(x + y = 0) 

(understood for integers) can be read 

Similarly the statement 

(ii) 

can be read 

For every integer x, there exists 

an integer y such that x + y = 0. 

(3 y)(Vx)(x + y = 0) 

There exists an integer y, such that 

for every integer x, then x + y = 0. 

These two statements are very different; for example, the first one is true and the second one 
is false. The moral is that the order of the appearance of the two different types of quantifiers 
is very important. It must also be stressed that if several variables appear in a mathematical 
expression with quantifiers, the values of the later variables should be assumed to depend on 
all of the values of the variables that are mentioned earlier. Thus in the (true) statement (i) 
above, the value of y depends on that of x; here if x = 2, then y = -2, while if x = 3, then 
y=-3. 
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It is important that the reader understand how to negate a statement that involves 
quantifiers. In principle, the method is simple. 

(a) To show that it is false that every element x in some set possesses a certain property 
'P, it is enough to produce a single counter-example (that is, a particular element in 
the set that does not possess this property); and 

(b) To show that it is false that there exists an element y in some set that satisfies a certain 
property 1', we need to show that every element y in the set fails to have that property. 

Therefore, in the process of forming a negation, 

not (Vx)'P becomes (3x) not 1' 

and similarly 

not (3 y)'P becomes (Vy) not 'P. 

When several quantifiers are involved, these changes are repeatedly used. Thus the negation 
of the (true) statement (i) given previously becomes in succession 

not (Vx) (3 y) (x + y = 0), 

(3x) not (3y) (x + y = 0), 

(3 x) (Vy) not (x + y = 0), 

(3 x) (Vy) (x + y :f: 0). 

The last statement can be rendered in words as: 

There exists an integer x, such that 

for every integer y, then x + y :f: 0. 

(This statement is, of course, false.) 
Similarly, the negation of the (false) statement (ii) given previously becomes in suc

cession 

not (3 y) (Vx) (x + y = 0), 

(Vy) not (Vx) (x + y = 0), 

(Vy) (3x) not (x + y = 0), 

(Vy) (3x) (x + y :f: 0). 

The last statement is rendered in words as 

For every integer y, there exists 

an integer x such that x + y :f: 0. 

Note that this statement is true, and that the value (or values) of x that make x + y :/= 0 
depends on y, in general. 

Similarly, the statement 

For every 8 > 0, the interval ( -8, 8) 

contains a point belonging to the set A, 

can be seen to have the negation 

There exists 8 > 0 such that the interval 

( -8, 8) does not contain any point in A. 
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The first statement can be symbolized 

(V~ > 0) (3y E A) (y E (-~, ~)), 

and its negation can be symbolized by 

(3~ > 0) (Vy e A) (y ~ (-~, ~)) 

or by 

(3~ > 0) (An(-~,~)= {tj). 

It is the strong opinion of the authors that, while the use of this type of symbolism 
is often convenient, it is not a substitute for thought. Indeed, the readers should ordinarily 
reason for themselves what the negation of a statement is and not rely slavishly on symbol
ism. While good notation and symbolism can often be a useful aid to thought, it can never 
be an adequate replacement for thought and understanding. 

Di~tPToo~ -----------------------------------------------------------------------------------------------------

Let P and Q be statements. The assertion that the hypothesis P of the implication P ==* Q 
implies the conclusion Q (or that P => Q is a theorem) is the assertion that whenever the 
hypothesis P is true, then Q is true. 

The construction of a direct proof of P => Q involves the construction of a string of 
statements R 1, R2, • • • , Rn such that 

Rn => Q. 

(The Law of the Syllogism states that if R1 => R2 and R2 => R3 are true, then R1 ==* R3 
is true.) This construction is usually not an easy task; it may take insight, intuition, and 
considerable effort. Often it also requires experience and luck. 

In constructing a direct proof, one often works forward from P and backward from Q. 
We are interested in logical consequences of P; that is, statements Q1, • • ·, Qk such that 
P => Q;. And we might also examine statements P1, • • • , P, such that Pi => Q. If we 
can work forward from P and backward from Q so the string "connects" somewhere in 
the middle, then we have a proof. Often in the process of trying to establish P => Q one 
finds that one must strengthen the hypothesis (i.e., add assumptions to P) or weaken the 
conclusion (that is, replace Q by a nonequivalent consequence of Q). 

Most students are familiar with "direct" proofs of the type described above, but we 
will give one elementary example here. Let us prove the following theorem. 

Theorem 1 The square of an odd integer is also an odd integer. 

If we let n stand for an integer, then the hypothesis is: 

P : n is an odd integer. 

The conclusion of the theorem is: 

Q : n2 is an odd integer. 

We need the definition of odd integer, so we introduce the statement 

R1 : n = 2/c- 1 for some integer k. 
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Then we have P => R1• We want to deduce the statement n 2 =2m- 1 for some integer 
m, since this would imply Q. We can obtain this statement by using algebra: 

R2 : n 2 = (2k-1)2 =4k2 -4k+ 1, 

R3 : n 2 = (4k2
- 4k + 2)- 1, 

R4 : n 2 = 2(2k2
- 2k + 1)- 1. 

If we let m = 2k2 
- 2k + 1, then m is an integer (why?), and we have deduced the statement 

\ Thus we have P => R1 => R2 => R3 => R4 => R5 => Q, and the theorem is proved. 
Of course, this is a clumsy way to present a proof. Normally, the formal logic is 

1 suppressed and the argument is given in a more conversational style with complete English 
\ sentences. We can rewrite the preceding proof as follows. 

1 Proof of Theorem 1. If n is an odd integer, then n = 2k - 1 for some integer k. Then 
\the square of n is given by n2 = 4k2

- 4k + 1 = 2(2k2
- 2k + 1)- 1. If we let m = 

. 2k2
- 2k + 1, then m is an integer (why?) and n2 =2m- 1. Therefore, n2 is an odd 

\integer. Q.E.D. 

1 

At this stage, we see that we may want to make a preliminary argument to prove that 
2k2 

- 2k + 1 is an integer whenever k is an integer. In this case, we could state and prove 
this fact as a Lemma, which is ordinarily a preliminary result that is needed to prove a 
theorem, but has little interest by itself. 

Incidentally, the letters Q.E.D. stand for quod erat demonstrandum, which is Latin for 
"which was to be demonstrated". 

Indirect Proofs 

There are basically two types of indirect proofs: (i) contrapositive proofs, and (ii) proofs by 
contradiction. Both types start with the assumption that the conclusion Q is false, in other 

: words, that the statement "not Q" is true. 

(i) Contra positive proofs. Instead of proving P => Q, we may prove its logically equiv
alent contrapositive: not Q => not P. 

Consider the following theorem. 

Theorem 2 If n is an integer and n 2 is even, then n is even. 

The negation of "Q : n is even" is the statement "not Q : n is odd". The hypothesis 
l "P : n2 is even" has a similar negation, so that the contrapositive is the implication: If n is 
odd, then n2 is odd. But this is exactly Theorem 1, which was proved above. Therefore this 
~provides a proof of Theorem 2. 

The contrapositive proof is often convenient when the universal quantifier is involved, 
J for the contrapositive form will then involve the existential quantifier. The following theo
' rem is an example of this situation. 

~Theorem 3 Let a ~ 0 be a real number. If, for every e > 0, we have 0 ::=: a < e, then 
a= 0. 

1 



Proof. If a = 0 is false, then since a ~ 0, we must have a > 0. In this case, if we choose 
e0 =!a, then we have E0 > 0 and Eo <a, so that the hypothesis 0 ~a < E for all E > o 
is false. Q.E.D. 

Here is one more example of a contrapositive proof. 

Theorem 4 If m, n are natural numbers such that m + n ~ 20, then either m ~ 10 or 
n ~ 10. 

Proof. If the conclusion is false, then we have both m < 10 and n < 10. (Recall De
Morgan's Law.) Then addition gives us m + n < 10 + 10 = 20, so that the hypothesis is 
false. Q.E.D. 

(H) Proof by contradiction. This method of proof employs the fact that if C is a contra-
diction (i.e., a statement that is always false, such as "1 = 0"), then the two statements 

(P and (not Q)) => C, P=>Q 

are logically equivalent. Thus we establish P => Q by showing that the statement 
( P and (not Q)) implies a contradiction. 

Theorem 5 Let a > 0 be a real number. If a > 0, then 11a > 0. 

Proof. We suppose that the statement a > 0 is true and that the statement 1 I a > 0 is false. 
Therefore, 1 I a ~ 0. But since a > 0 is true, it follows from the order properties of 1R that 
a(lla) ~ 0. Since 1 = a(lla), we deduce that 1 ~ 0. However, this conclusion contradicts 
the known result that 1 > 0. Q.E.D. 

There are several classic proofs by contradiction (also known as reductio ad absurdum) 
in the mathematical literature. One is the proof that there is no rational number r that 
satisfies r 2 = 2. (This is Theorem 2.1.4 in the text.) Another is the proof of the infinitude 
of primes, found in Euclid's Elements. Recall that a natural number pis prime if its only 
integer divisors are 1 and p itself. We will assume the basic results that each prime number 
is greater than 1 and each natural number greater than 1 is either prime or divisible by a 
prime. 

Theorem 6 (Euclid's Elements, Book IX, Proposition 20.) There are infinitely many 
prime numbers. 

Proof. If we suppose by way of contradiction that there are finitely many prime numbers, 
then we may assume that S = { p 1, • • • , p,.} is the set of all prime numbers. We let m = 
p 1 • • • p,., the product of all the primes, and we let q = m + 1. Since q > P; for all i, we 
see that q is not in S, and therefore q is not prime. Then there exists a prime p that is a 
divisor of q. Since p is prime, then p = pi for some j, so that p is a divisor of m. But if P 
divides both m and q = m + 1, then p divides the difference q - m = 1. However, this is 
impossible, so we have obtained a contradiction. Q.E.D. 

---------



APPENDIXB 

FINITE AND COUNTABLE SETS 

We will establish the results that were stated in Section 1.3 without proof. The reader should 
refer to that section for the definitions. 

The first result is sometimes called the "Pigeonhole Principle". It may be interpreted as 
saying that if m pigeons are put into n pigeonholes and if m > n, then at least two pigeons 
must share one of the pigeonholes. This is a frequently-used result in combinatorial analysis. 
It yields many useful consequences. 

B.1 Theorem Let m, n EN with m > n. Then there does no{exist an injection from Nm 
intoNn. 

Proof. We will prove this by induction on n. 
If n = 1 and if g is any map of Nm(m > 1) into Nl' then it is clear that g(1) = · · · · 

g (m) = 1, so that g is not injective. 
Assume that k > 1 is such that if m > k, there is no injection from Nm into Nk. We 

will show that if m > k + 1, there is no function h : Nm ~ Nk+1 that is an injection. 

Case 1: If the range h (N m) c N k c N k+ 1 , then the induction hypothesis implies that h is 
not an injection of Nm into Nk, and therefore into Nk+1• 

Case 2: Suppose that h(Nm) is not contained in Nk. If more than one element in Nm 
is mapped into k + 1, then h is not an injection. Therefore, we may assume that a single 
p E Nm is mapped into k + 1 by h. We now define h 1 : Nm_ 1 ~ Nk by 

h (q) . - { h ( q) if q = 1' ... ' p - 1' 
1 ·- h (q + 1) if q = p, · · · , m - 1. 

Since the induction hypothesis implies that h 1 is not an injection into N k, it is easily seen 
that his not an injection into Nk+ 1• Q.E.D. 

We now show that a finite set determines a unique number in N. 

1.3.2 Uniqueness Theorem If S is a finite set, then the number of elements in S is a 
unique number in N. 

Proof. If the set S has m elements, there exists a bijection ! 1 of Nm onto S. If S also 
has n elements, there exists a bijection / 2 of Nm onto S. If m > n, then (by Exercise 19 
of Section 1.1) ! 2-

1 o / 1 is a bijection of Nm onto Nn, which contradicts Theorem B.l. 
If n > m, then ! 1-

1 o / 2 is a bijection of Nn onto Nm, which contradicts Theorem B.l. 
Therefore we have m = n. Q.E.D. 

B.2 Theorem Ifn eN, there does not exist an injection from N into Nn. 

Proof. Assume that f : N ~ Nn is an injection, and let m := n + 1. Then the restriction 
off to Nm c N is also in injection into Nn. But this contradicts Theorem B.l. Q.E.D. 

. ..., 
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1.3.3 Theorem The set N of natural numbers is an infinite set. 

Proof. If N is a finite set, there exists some n eN and a bijection f of Nn onto N. In this 
case the inverse function /-1 is a bijection (and hence an injection) of N onto Nn. But this 
contradicts Theorem B.2. Q.E.D. 

We will next establish Theorem 1.3.8 by defining a bijection of N x N onto N. We 
will obtain an explicit formula for the counting procedure of N x N that is displayed in 
Figure 1.3.1; the reader should refer to that figure during the ensuing discussion. The set 
N x N is viewed as a collection of diagonals; the first diagonal has I point, the second 
has 2 points, · · · , and the kth diagonal has k points. In view of Example 1.2.4(a), the total 
number of points in diagonals I through k is therefore given by 

1/l(k) := 1 + 2 + ... + k =! k(k + 1). 

The fact that 1/1 is strictly increasing follows from Mathematical Induction and 

(I) 1/l(k + I) = 1/l(k) + (k + 1) for keN. 

The point (m, n) in N x N lies in the kth diagonal when k = m + n - 1, and it is the 
mth point in that diagonal as we move downward from left to right. (For example, the point 
(3, 2) lies in the 4th diagonal (since 3 + 2- 1 = 4) and is the 3rd point in that diagonal.) 
Therefore, in the counting scheme shown in Figure 1.3.1, we count the point (m, n) by first 
counting the points in the first k - I = m + n - 2 diagonals and then adding m. According 
to this analysis, our counting function h : N x N -+ N is given by 

(2) h(m, n) := 1/f(m + n - 2) + m for (m, n) e N x N. 

(For example, the point (3, 2) iscountedasnumberh(3, 2) = 1/1(5- 2) + 3 = 1/1(3) + 3 = 
6 + 3 = 9, as in Figure 1.3.1. Also, the point (17, 25) is counted as number h(17, 25) = 
1/1(40) + 17 = 837.) While this geometric argument has been suggestive and has led to the 
counting formula (2), we must now prove that h is in fact a bijection of N x N onto N. 

1.3.8 Theorem The set N x N is denumerable. 

Proof. We will show that the function h defined in (2) is a bijection. 

(a) We first show that h is injective. If (m, n) :j:. (m 1
, n'), then either (i) m + n #= 

I I c···) I I d 4 I m +n,or 11 m+n=m +nan mrm. 
In case (i), we may suppose m + n < m' + n'. Then, using formula (1), the fact that 1/1 

is increasing, and m' > 0, we have 

h(m, n) = 1/f(m + n - 2) + m ~ 1/f(m + n - 2) + (m + n - 1) 

= 1/f(m +n -1) ~ 1/f(m' +n'- 2) 

< 1/f(m' + n'- 2) + m1 = h(m', n'). 

In case (ii), if m + n = m1 + n1 and m ::/: m1
, then 

h(m, n)- m = 1/f(m + n- 2) = 1/f(m1 + n'- 2) = h(m', n')- m', 

whence h(m, n) ::/: h(m1
, n'). 

(b) Next we show that h is surjective. 
Clearly h(1, 1) = 1. If peN with p ~ 2, we will find a pair (mP, n ) eN x N with 

h(mP, nP) = p. Sin~e p < 1/f(p), then the set EP :={keN: p ~ 1/l(k)} is nonempty. 
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Using the Well-Ordering Property 1.2.1, we let k > 1 be the least element in E . (This 
means that plies in the kPth diagonal.) Since p :=::P2, it follows from equation (1) ~at 

1/l(kp - 1) < p ~ 1/l(kp) = 1/l(kp - 1) + kp. 

Let<mp := p -1/l(kP-=_ 1) ~o that 1 ~ mP < kP, and let nP := kP- mP + 1 so that 1 ~ 
nP _ kP and mP + nP 1- kn. Therefore, 

h(mP, nP) = 1/l(mP + nP - 2) + mP = 1/f(kP- 1) + mP = p. 

Thus h is a bijection and N x N is denumerable. Q.E.D. 

The next result is crucial in proving Theorems 1.3.9 and 1.3.10. 

B.3 Theorem If A c Nand A is infinite, there exists a function f/J: N--+ A such that 
rp(n + 1) > rp(n) :=:: n for all n eN. Moreover, rp is a bijection of N onto A. 

Proof. Since A is infinite, it is not empty. We will use the Well-Ordering Property 1.2.1 
of N to give a recursive definition of rp. 

Since A :1: 0, there is a least element of A, which we define to be rp(1); therefore, 
rp( 1) ::: 1. 

Since A is infinite, the set A 1 :=A \{rp(1)} is not empty, and we define rp(2) to be least 
element of A1• Therefore rp(2) > rp(1) :=:: 1, so that rp(2) ::: 2. 

Suppose that rp has been defined to satisfy rp(n + 1) > rp(n) :=:: n for n = 1, · · ·, k- 1, 
whence rp(k) > rp(k - 1) :=:: k - 1 so that rp(k) ::: k. Since the set A is infinite, the set 

Ak :=A \{rp(1), · · ·, rp(k)} 

is not empty and we define cp(k + 1) to be the least element in Ak. Therefore rp(k + 1) > 
rp(k), and since rp(k) :=:: k, we also have rp(k + 1) :=:: k + 1. Therefore, rp is defined on all 
of N. 

We claim that rp is an injection. If m > n, then m = n + r for some r eN. If 
r = 1, then cp(m) = rp(n + 1) > rp(n). Suppose that cp(n + k) > cp(n); we will show that 
rp(n + (k + 1)) > rp(n). Indeed, this follows from the fact that cp(n + (k + 1)) = qJ((n + 
k) + 1) > rp(n + k) > cp(n). Since rp(m) > cp(n) whenever m > n, it follows that rp is an 
injection. 

We claim that rp is a surjection of N onto A. If not, the set A := A \f{J(N) is not empty, 
and we let p be the least element in A. We claim that p belongs to the set {rp(1), · · ·, f/J(p)}. 
Indeed, if this is not true, then 

p e A\ {cp(1), · · ·, rp(p)} = AP, 

so that rp(p + 1), being the least element in AP, must satisfy cp(p + 1) ~ p. But this 

contradicts the fact that cp(p + 1) > rp(p) :=:: p. Therefore A is empty and cp is a surjection 
onto A. Q.E.D. 

B.4 Theorem If A c N, then A is countable. 

Proof. If A is finite, then it is countable, so it suffices to consider the case that A is infinite. 
In this case, Theorem B.3 implies that there ~xists a bijection f/J of N onto A, so that A is 
denumerable and, therefore, countable. Q.E.D. 
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1.3.9 Theorem Suppose tbat S and T are sets and that T c S. 
(a) If S is a countable set, then T is a countable set. 
(b) If T is an uncountable set, then S is an uncountable set. 

Proof. (a) If S is a finite set, it follows from Theorem 1.3.5(a) that T is finite, and therefore countable. If S is denumerable, then there exists a bijection 1/1 of S onto N. Since 1/f(S) c N, Theorem B.4 implies that 1/f(S) is countable. Since the restriction of 1/1 toT is a bijection onto 1/1 (T) and 1/1 (T) c N is countable, it follows that T is also countable. (b) This assertion is the contrapositive of the assertion in (a). Q.E.D. 



APPENDIXC 

THE RIEMANN AND 
LEBESGUE CRITERIA 

We will give here proofs of the Riemann and Lebesgue Criteria for a function to be Riemann 
integrable. First we will give the Riemann Criterion, which is interesting in itself, and also 
leads to the more incisive Lebesgue Criterion. 

C.l Riemann Integrability Criterion Let f : [a, b] -+ R be bounded. Then the follow
ing assertions are equivalent: 
(a) f e R[a, b]. 
(b) For evezy e > 0 there exists a partition P, such that if P., ~ are any tagged partitions 
having the same subintervals asP,, then 

(1) IS(f; P.> - S(f; ~)I < E. 

(c) For evezy e > 0 there exists a partition P, = {1;}?=1 = {[xi-1' x;H?=t such that if 
m; := inf{/(x): x e I;} and M; := sup{f(x): x e I;} then 

II 

(2) L (M; - m;)(x; - X;_ 1) < 2E. 
i=l 

Proof. (a) =>(b) Given E > 0, let '1, > 0 be as in the Cauchy Criterion 7.2.1, and let 
P, be any partition with liP, II < 'le· Then if P., ~are any tagged partitions with the same 
subintervals as P,, then II P. II < 71 e and II~ II < 711 and so ( 1) holds. 

(b) =>(c) Given E > 0, let P, ={I; l?=t be a partition as in (b) and let m; and M; be 
as in the statement of (c). Since m; is an infimum and M; is a supremum, there exist points 
u. and v. in 1. with .. ' ' 

E 
f(u;) < m; + 2(b- a) and 

E 
M;- 2(b- a) < f(v;), 

so that we have 
E 

M; - m; < f(v;)- f(u;) + (b _a) for i = 1 , · · · , n. 

Hwe multiply these inequalities by (x;- X;_1) and sum, we obtain 

II II 

L (M; - m;)(x; - X;_1) < L (f(v;) - f(u;))(x; - X;_1) +E. 
i=l i=l 

We let Q1 := {(li' u;)}f=t and~ := {(li' v;)}f=1, so that these tagged partitions have the 
same subintervals asP, does. Also, the sum on the right side equals S(f; ~)- S(f; Q1). 

Hence it follows from (1) that inequality (2) holds. 
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(c) =>(a) Define the step functions a
8 

and w
8 

on [a, b] by 

ae(x) := m; and we(x) := M; for x E (x;_1, X;), 

and a 8 (x;} := l(x;} =: we(x;} for i = 0, 1, · · ·, n; then a,(x) ~ l(x) ~ w,(x) for x e 
[a, b]. Since ae and we are step functions, they are Riemann integrable and 

l
b ,. 

a = "'""'m.(x.- x. 1) £ ~ I I 1-
Q i=1 

and 

Therefore it follows that 

If we apply (2), we have that 

lb (w, -a,) < 2e. 

Since e > 0 is arbitrary, the Squeeze Theorem implies that I e 'R.[a, b]. Q.E.D. 

We have already seen that every continuous function on [a, b] is Riemann integrable. 
We also saw in Example 7.1.6 that Thomae's function is Riemann integrable. Since 
Thomae's function has a countable set of points of discontinuity, it is evident that con
tinuity is not a necessary condition for Riemann integrability. Indeed, it is reasonable to 
ask "how discontinuous" a function may be, yet still be Riemann integrable. The Riemann 
Criterion throws some light on that question in showing that sums of the form (2) must be 
arbitrarily small. Since the terms (M; - m;)(x; - x;_1) in this sum are all~ 0, it follows 
that each of these terms must be small. Such a term will be small if (i) the difference 
M; - m; is small (which will be the case if the function is continuous on the interval 
[x;_ 1, x;]), or if (ii) an interval where the difference M; - m; is not small has small length. 

The Lebesgue Criterion, which we will discuss next, makes these ideas more precise. 
But first it is convenient to have the notion of the oscillation of a function. 

C.2 Definition Let I : A .... lR be a bounded function. If S c A c lR, we define the 
oscillation of I on S to be 

(3) W(l; S) := sup{ll(x)- l(y)l: x, yeS}. 

It is easily seen that we can also write 

W(l; S) = sup{l(x)- l(y): x, yES} 
= sup{l(x) : x e S}- inf{l(x) : x e S}. 

It is also trivial that if S ~ T c A, then 

0 ~ W(l; S) ~ W(l; T) ~ 2 · sup{ll(x)l : x E A}. 

If r > 0, we recall that the r-neighborhood of c e A is the set 

V,.(c) := {x e A : lx- cl < r}. 

C.3 Definition If c e A, we define the osclUation of I at c by 

(4) w(l; c) := inf{W(I; V,.(c)) : r > 0} = lim W(l; V,.(c)). 
r-+0+ 
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Since r .-+ W(l; V,.(c)) is an increasing function for r > 0, this right-hand limit exists and 
equals the indicated infimum. 

C.4 Lemma HI : A ~ 1R is bounded and c e A, then I is continuous at c if and only 
if the osciDation w (I; c) = 0. 

Proof. ( ~) If I is continuous at c, given e > 0 there exists 8 > 0 such that if x e V,. ( c }, 
then ll(x)- l(c)l < ef2. Therefore,ifx, y e V,.(c), we have ll(x)- l(y)l < e, whence 
0 ~ w(l; c) ~ W(l; V,.(c)) ~e. Since e > 0 is arbitrary, this implies that w(l; c)= 0. 

(<=) If w(l; c)= 0 and e > 0, there exists s > 0 with W(l; ~(c)) <e. Thus, if 
lx- cl < s then ll(x)- l(c)l < e, and I is continuous at c. Q.E.D. 

We will now give the details of the proof of the Lebesgue Integrability Criterion. First 
we recall the statement of the theorem. 

Lebesgue's Integrability Criterion A bounded function 1: [a, b] ~ 1R is Riemann 
integrable if and only if it is continuous almost evezywhere on [a, b]. 

Proof. (~) Let e > 0 be given and, for each keN, let Hk := {x e [a, b]: w(l; x) > 
1 /2k}. We will show that Hk is contained in the union of a finite number of intervals having 
total length < e /2k. 

By the Riemann Criterion, there is a partition 'Pk = {[x:_1, xtU7~kl such that if m~ 
(respectively, Mt) is the infimum (resp., supremum) of I on the interval £xt_1, xtJ, then 

n(k) 

L (Mt- m~)(xt- x;_1) < ef4k. 
i=1 

If x e Hk n (x;_1, xt), there exists r > 0 such that V,.(x) c (x;_1, x;), whence 

l/2k ~ w(f; x) ~ W(f; V,.(x)) ~ Mt- m~. 

If we denote a summation over those i with Hk n (x;_1, xt> :f. 0 by I:', then 

n(k) 

( l/2k) ~'(x~ - x~ )· < ~ (M~ - m~)(x~ - x~· ) < ef4k L..J ' •-1 - L..J ' ' ' •-1 - ' 
i=1 

whence it follows that 

~' k k k L..J (X; - X;_ 1) ~ £/2 . 

Since Hk differs from the union of sets Hk n (xt - xt _1) by at most a finite number of 
the partition points, we conclude that Hk is contained in the union of a finite number of 
intervals with total length < e f2k. 

Finally, since D := {x e [a, b] : w(l; x) > 0} = U~1 Hk, it follows that the set D 
of points of discontinuity off e 'R[a, b] is a null set. 

( <=) Let ll(x)l ~ M for x e [a, b] and suppose that the set D of points of discon
tinuity of I is a null set. Then, given e > 0 there exists a countable set {Jk}~1 of open 
intervals with D c U:1 Jk and I::1 l(Jk) < ej2M. Following R. A. Gordon, we will 
define a gauge on [a, b] that will be useful. 
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(i) If t ~ D, then I is continuous at t and there exists tS(t) > 0 such that if x e Ya<r>(t) 
then ll(x)- l(t)l < £/2, whence 

0 ~ M, - m, := sup{l(x) : x e Ya<r>(t)}- inf{l(x) : x e Yacl)(t)} ~e. 

(ii) If t e D, we choose tS(t) > 0 such that V,<l)(t) c Jlc for some k. For these values of 
t, we have 0 ~ M,- m, ~2M. 

Thus we have defined a gauge tS on [a, b]. If P = {([x;_1, X;], 1;)}7=1 is a 8-fine 
partition of [a, b], we divide the indices i into two disjoint sets 

and S d : = { i : t; e D}. 

If P is 8-fine, we have [x;_1, X;] c ~(,.)(t;), whence it follows that M; - m; ~ M,. -
m, .. Consequently, if i eSc then M; - ,;,; ~£,while if i e Sd we have M;- m; ~ iM. 

I 

However, the collection of intervals [x; _1, X;] with i e S d are contained in the union of the 
intervals { Jlc} whose total length is < £/2M. Therefore 

,. 
L (M; - m;)(x; - X;_ 1) 
i=l 

= L (M; - m;)(x; - X;_1) + E (M; - m;)(x; - X;_1) 

ieSc iESd 

~ L E(X; - X;_1) + L 2M(x; - X;_1) 

ieSc ieSd 

~ e(b- a)+ 2M· (ef2M) ~ e(b- a+ 1). 

Since£ > 0 is arbitrary, we conclude that I e 'R.[a, b]. Q.E.D. 

< 

J. 

; 



APPENDIXD 

APPROXIMATE INTEGRATION 

We will supply here the proofs of Theorems 7 .4.3, 7 .4.6 and 7 .4.8. We will not repeat the 
statement of these results, and we will use the notations introduced in Section 7.4 and refer 
to numbered equations there. It will be seen that some important results from Chapters 5 
and 6 are used in these proofs. 

Proof of Theorem 7.4.3. If k = 1, 2, · · ·, n, let ak :=a + (k - 1)h and let q;k : [0, h] ~ 
1R be defined by 

forte [0, h]. Note that q;k(O) = 0 and that (by Theorem 7.3.6) 

q;;(t) = 4 [f(ak) + f(ak + t)] + 4 tf'(ak + t)- f(ak + t) 

= 4 [f(ak)- f(ak + t)] + 4 tf'(ak + t). 

Consequently q;; (0) = 0 and 

q;{(t) = -4 f'(ak + t) + 4 f'(ak + t) + 4 tf"(ak + t) 

= 4 tf" (ak + t). 

Now let A, B be defined by 

A := inf{/"(x) : x e [a, b]}, B := sup{/"(x): x e [a, b]} 

so that we have 4At ~ q;;'(t) ~ 4 Bt fort e [0, h], k = 1, 2, · · ·, n. Integrating and apply
ing Theorem 7.3.1, we obtain (since q;;(O) = 0) that !At2 ~ q;;(t) ~ !Bt2 fort e [0, h], 
k = 1, 2, · · ·, n. Integrating again and taking t = h, we obtain (since q;k(O) = 0) that 

112 Ah3 ~ q;k(h) ~ l2 Bh3 

for k = 1, 2, · · · , n. If we add these inequalities and note that 

t. rpk(h) = Tk(f) -1b f(x) dx, 

we conclude that 1~Ah3n ~ Tn(f)- J: f(x)dx ~ 1~Bh3n. Since h = (b-a)fn, we 
have 

1~A(b- a)h2 :S Tn(f) -1b f(x)dx :S 1~B(b- a)h2
• 

Since f" is continuous on [a, b], it follows from the definitions of A and Band Bolzano's 
Intermediate Value Theorem 5.3.7 that there exists a point c in [a, b] such that equation (4) 
in Section 7.4 holds. Q.E.D. 
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ProofofTheorem 7.4.6. lfk = 1, 2, · · ·, n,letct :=a+ (k- !>h,and 1/lt: [0, !h1-+ R 
be defined by 

fort e [0, !hJ. Note that 1/lt(O) = 0 and that since 

we have 

l ck+t lck-t 
1/lt(t) := f(x)dx- f(x)dx- f(clc)2t, 

ck ck 

1/l~(t) = f(ct + t) - f(ct - t)( -1) - 2/(ct) 
= [f(clc + t) + f(ct - t)] - 2f(ct>· 

Consequently 1/1~(0) = 0 and 

1/1; (t) = !' (ct + t) + f' (ct - t)( -1) 

= f'(ci + t)- f'(clc- t). 

By the Mean Value Theorem 6.2.4, there exists a point ct,t with lc1c- c1c.,l < t such that 
1/l;(t) = 2tf"(clc,,). If we let A and B be as in the proof of Theorem 7.4.3, we have 
2t A ~ t; (t) ~ 2t B for t e [0, h /2], k = 1, 2, · · · , n. It follows as before that 

iAt3 ~ 1/l~c(t) ~ iBt3 

for all t e [0, !hJ, k = 1, 2, · · ·, n.lfwe putt= !h, we get 

_!_ Ah3 < .,, (lh) < _!_ Bh3 
24 - 'I' i 2 - 24 . 

If we add these inequalities and note that 

" lb ~ Vtk {!h)= a f(x)dx- M,.(/), 

we conclude that 

. . 
If we use the fact that h = (b- a)/n and apply Balzano's Intermediate Value Theorem 
5.3.7 to !" on [a, b] we conclude that there exists a point y e [a, b] such that (7) in 
Section 7.4 holds. Q.E.D. 

Proof of Theorem 7.4.8. If k = 0, 1, 2, · · ·, !n- 1, let ct :=a+ (2k + 1)h, and let 
'P1c : [0, h] ~ R be defined by 

l
ck+t 

'Pt(t) := it [f(clc- t) + 4f(ct) + f(ck + t)]- f(x) dx. 
ck-t 

Evidently 'P1c (0) = 0 and 

rp;(t) = it [- f'(clc- t) + f'(ck + t)]- ~ [f(ck - t)- 2 f(clc) + f(ck + t)], 

so that rp~ (0) = 0 and 

rp;'(t) =it [f"(ck- t) + f"(ck + t)]- i [- f'(ck- t) + f'(ck + t)], 



so that f/J~' (0) = 0 and 

(/)~11 (t) = lt [!"' (ck + t) - !"' (ck - t)]. 

Hence it follows from the Mean Value Theorem 6.2.4 that there is a Y~c,r with leA: - Y~c,,l ::: t 

such that f/J:" (t) = ~t2 t<4>(Y~c, 1 ). If we let A and B be defined by 

A := inf{/<4>(x) : x e [a, b]} and B := sup{J<4>(x) : x e [a, b]}, 

then we have 

~ At2 
::: q;:'' (t) ::: ~ Bt2 

fort e [0, h], k = 0, 1, · · ·, !n - 1. After three integrations, this inequality becomes 

_!.._ Ats < mL (t) < _!.._ B ts 
90 - T'A - 90 

for all t e [0, h], k = 0, 1, · · ·, !n - 1. If we putt = h, we get 

1 1 
90 Ahs ::: q;A:(h) ::: 90 Bh' 

fork= 0, 1, · · ·, !n- 1.1f we add these !n inequalities and note that 

!n-1 b 

L ({)/c(h) = Sn(f) -1 f(x)dx, 
k=O a 

we conclude that 

_!._Ahs~ < S (/) -1b f(x)dx < _!._Bhs~. 
90 2 - n a - 90 2 

Since h = (b- a)fn, it follows from Bolzano's Intermediate Value Theorem 5.3.7 (applied 

to t<4>) that there exists a point c e [a, b] such that the relation (10) in Section 7.4 holds. 
Q.E.D. 



APPENDIXE 

TWO EXAMPLES 

In this appendix we will give an example of a continuous function that has a derivative at 
no point and of a continuous curve in R2 whose range contains the entire unit square of R2

• 

Both proofs use the Weierstrass M-Test 9.4.6. 

A Continuous Nowhere Differentiable Function 

The example we will give is a modification of one due to B. L. van der Waerden in 1930. 
Let lo : R --. R be defined by 10(x) := dist(x, Z) = inf{lx - kl : k e Z}, so that / 0 is a 
continuous "sawtooth" function whose graph consists of lines with slope± 1 on the intervals 
[k,'2, (k + 1)/2], k e Z. For each meN, let lm(x) := (1/4m)/0 (4mx), so that 1m is also 
a continuous sawtooth function whose graph consists of lines with slope ± 1 and with 
0 ~ lm(x) ~ 1/(2 · 4m). (See Figure E. I.) 

0 1 
16 

1 
4 

1 
2 

3 
4 

Figure E.l Graphs of 10 , 11, and 12 • 

1 

We now define g : R --. R by g(x) := L~=O 1m (x). The Weierstrass M-Test implies 
that the series is uniformly convergent on R; hence g is continuous on R. We will now 
show that g is not differentiable at any point of R. 

Fix x e R. For each n eN, let hn := ±1/4n+l, with the sign chosen so that both 4nx 
and 4n(x + hn) lie in the same interval [k/2, (k + 1)/2]. Since / 0 has slope ±1 on this 
interval, then 

ln(x + hn)- ln(x) 10 (4nx + 4nhn)- 10 (4nx) 
E := = = ±1. 

n h ~h n n 

In fact if m < n, then the graph of I m also has slope ± 1 on the interval between x and 
X+ hn and SO 

for m < n. 
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On the other hand, if m > n, then 4m(x + hn)- 4mx = ±4m-n-l is an integer, and since 

/ 0 has period equal to 1, it follows that 

fm(x + hn)- fm(x) = 0. 

Consequently, we have 

g(x + hn)- g(x) = ~ fm(x + hn)- fm(x) = ~ 
h ~ h ~~' 

n m=O n m=O 

whence the difference quotient (g(x + hn)- g(x))/ hn is an odd integer if n is even, and 

an even integer if n is odd. Therefore, the limit 

1
. g(x +h) - g(x) 
tm------

h-+0 h 

does not exist, so g is not differentiable at the arbitrary point x e IR. 

A Space-Filling Curve ---------------------

We will now give an example of a space-filling curve that was constructed by I. J. Schoenberg 

in 1936. Let cp : IR ~ IR be the continuous, even function with period 2 given by 

1
0 for 0 ~ t ~ 1/3, 

cp(t) := 3
1
t - 1 for 1/3 < t < 2/3, 

for 2/3 ~ t ~ 1. 

(See Figure E.2.) Fort e [0, 1], we define the functions 

00 cp(32kt) 
t<t> == L lc+l 

lc=O 2 
and 

00 cp(32k+lt) 
g<t> == L lc+l · 

lc=O 2 

Since 0 ~ cp(x) ~ 1 and is continuous, the Weierstrass M-Test implies that f and g are 

continuous on [0, 1]; moreover, 0 ~ f(t) ~ 1 and 0 ~ g(t) ~ 1. We will now show that an 

arbitrary point (x0 , y0) in [0, 1] x [0, 1] is the image under(/, g) of some point t0 e [0, 1]. 

Indeed, let x0 and y0 have the binary(= base 2) expansions: 

and 

where each ale equals 0 or 1. It will be shown that x0 = f(t0 ) and y0 = g(t0 ), where t0 has 

the ternary ( = base 3) expansion 

~ 2alc 2ao 2at 2a2 2a3 
to = ~ 31c+t = 3 + 32 + J3 + 34 + .... 

A:=O 

0 1 2 1 
3 3 

Figure E.l Graph of cp. 
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First, we note that the above formula does yield a number in [0, 1]. We also note that 
if a0 = 0, then 0 :::: t0 :::: 1/3 so that f)(t0) = 0, and if a0 = 1, then 2/3 :::: t0 :::: 1 so that 
(J'(t0) = 1; therefore, in both cases f)(a0) = a0• Similarly, it is seen that for each n e N there 
exists m n e N such that 

3n10 =2m + 2an + 2an+l + ... 
n 3 32 ' 

whence it follows from the fact that f) has period 2 that (J'(3nt0) =an. Finally, we conclude 
that 

and 
oo f)(32k+lr > oo au 1 

g(to> = L 2A:+t 
0 

= L 2A::t = Yo· 
A:=O i=:O 

Therefore x0 = f (t0) and y0 = g(t0) as claimed. 

-
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HINTS FOR SELECTED EXERCISES 

Reader: Do not look at these hints unless you are stymied. However, after putting a consid
erable amount of thought into a problem, sometimes just a little hint is all that is needed. 
Many of the exercises call for proofs, and there is usually no single approach that is correct, 
so even if you have a totally different argument, yours may be correct. Very few of the 
following hints give much detail, and some may seem downright cryptic at first. Somewhat 
more detail is presented for the earlier material. 

Section 1.1 
1. Show that if A~ B, then A= An B. Next show that if A= An B, then A~ B. 

2. Show that if x e A \ (B n C), then x e (A \ B) u (A \ C). Next show that if y e (A \ B) u 
(A\ C), then yeA\ (B n C). Since the sets A\ (B n C) and A\ (B n C) contain the same 
elements, they are equal. 

5. (a) A1 n A2 = {6, 12, 18, 24, · · ·} = {6k: keN}= A5• 

(b) UA,. = N \ {1} and nA,. = 0. 

7. No. For example, both (0, 1) and (0, -1) belong to C. 

9. (a) /(E) = [2, 3], so h(E) = g(f(E)) = g([2, 3]) = [4, 9]. 
(b) g-1 (G)= [ -2, 2], so h-1 (G) = [ -4, 0]. 

13. If x e /- 1 (G) n /-1 (H), then x e /- 1 (G) and x e /- 1 (H), so that f(x) e G and 
f(x) e H. Then /(x) e G n H, and hence x e f- 1(G n H). This shows that f- 1(G) n 
/- 1 (H) ~ /- 1 (G n H). 

15. One possibility is /(x) := (x- a)/(b- a). 

19. If g(/(x1)) = g(f(x2)), then /(x1) = f(x2), so that x 1 = x 2, which implies that go f is 
injective. If w e C, there exists y e B such that g(y) = w, and there exists x e A such that 
f(x) = y. Then g(/(x)) = w, so that go f is surjective. Thus go f is a bijection. 

20. (a) If /(x1) = /(x2), then g(f(x1)) = g(f(x2)), which implies x 1 = x2, since go f is injec
tive. Thus f is injective. 

Section 1.2 
1. Note that 1/(1 · 2) = 1/(1 + 1). Also k/(k + 1) + 1/[(k + 1)(k + 2)] = (k + 1)/(k + 2). 

2. £!k<k + nf + <k + 1>3 = r!<k + 1><k + 2>1
2

• 

4. !<4k3
- k) + (2k + 1)2 = j£4(k + 1)3

- (k + 1)]. 

6. (k + 1)3 + 5(k + 1) = (k3 + 5k) + 3k(k + 1) + 6 and k(k + 1) is always even. 

8. 5'=+• - 4(k + 1) - 1 = 5 . 5k - 4k- 5 = (5'= - 4k - 1) + 4(5'= - n. 
13. If k < 2'=, then k + 1 < ic + 1 < 2/c + 2/c = 2(2/c) = 2lc+l. 

16. It is true for n = 1 and n ~ 5, but false for n = 2, 3, 4. 

18. -If+ 1/v'f+I = <-lkv'k+I + 1)/v'f+I > (k + 1)/v'f+I = v'f+I. 

359 
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Section 1.3 
1. Use Exercise 1.1.19 ( = Exercise 19 of Section 1.1 ). 

2. Part (b) Let f be a bijection of Nm onto A and let C = {/(k)} for some k e Nm. Define g on 
Nm-l by g(i) := f(i) fori= 1, · · ·, k- 1, and g(i) := f(i + 1) fori= k, · · ·• m- 1. Then 
g is a bijection of Nm-l onto A\ C. 

3. (a) There are 6 = 3 · 2 · 1 different injections of S into T. 
(b) There are 3 surjections that map a into 1, and there are 3 other surjections that map a 

into2. 

7. If T1 is denumerable, take T2 = N. If f is a bijection of T1 onto T2, and if g is a bijection of T
2 

onto N, then (by Exercise 1.1.19) go f is a bijection of T1 onto N, so that T1 is denumerable. 

9. If S n T = 0 and f: N ~ S, g: N ~ Tare bijections onto SandT, respectively, let h(n) := 
f((n + 1)/2) if n is odd and h(n) := g(n/2) if n is even. 

10. (a) 'P((l. 2}) = {0, {1}, {2}, {1, 2}} has 22 = 4 elements. 
(c) 'P({ I. 2, 3, 4}) has 24 = 16 elements. 

11. Let Sn+l := {xI, · · ·, Xn' Xn+l} = Sn U {xn+l} haven + 1 elements. Then a SUbset Of Sn+l either 
(i)con~nsxn+t'or(ii)doesnotcontainxn+l. Thereisatotalof2" + 2" = 2 · 2" = 2"+1 subsets 

of sn+t• 

12. For each m e N, the collection of all subsets of Nm is finite. Note that F(N) = U~=t 'P(Nm). 

Section 2.1 
1. (a) Justify the steps in: b = 0 + b = (-a+ a) + b = -a+ (a+ b) = -a + 0 = -a. 

(c) Apply (a) to the equation a+ ( -l)a =a (I + ( -1)) =a· 0 = 0. 

2. (a) -(a+ b)= (-l)(a +b)= (-l)a + (-1)b =(-a)+ (-b). 
(c) Note that (-a)( -(1/a)) = a(lfa) = 1. 

3. (a) 3/2 
(c) 2, -2 

(b) 0, 2 
(d) I. -2 

6. Note that if q e Z and if 3q2 is even, then q 2 is even, so that q is even. 

7. If peN, then there are three possibilities: for some m e N U {0}, (i) p =3m, 
(ii) p = 3m + 1, or (iii) p = 3m + 2. 

10. (a) If c = d, then 2.1.7(b) implies a+ c < b +d. If c < d, then a+ c < b + c < b +d. 

13. If a ::!= 0, then 2.1.8(a) implies that a2 > 0; since b2 ~ 0, it follows that a2 + b2 > 0. 

15. (a) If 0 <a < b, then 2.1.7(c) implies that 0 < a2 < ab < b2
• Then by Example 2.1.13(a), 

we infer that a = fa2 < v'iib < Jil = b. 

16. (a) {x: x > 4 or x < -1}. (b) {x : 1 < x < 2 or -2 < x < -1}. 
(C) {X : -1 < X < 0 or X > 1}. (d) {X : X < 0 Or X > 1}. 

19. The inequality is equivalent to 0 ~ a2
- 2ab + b2 =(a- b)2

• 

20. (a) Use 2.1.7(c). 

21. (a) LetS := {n e N : 0 < n < 1}. If Sis not empty, the Well-Ordering Property of N implies 
there is a least element min S. However, 0 < m < 1 implies that 0 < m2 < m, and since 
m 2 is also in S, this is a contradiction of the fact that m is the least element of S. 

22. (a) Let x := c- 1 > 0 and apply Bernoulli's Inequality 2.1.13(c). 

24. (a) If m > n, then k := m - n e N, and clc ~ c > 1 which implies that c"' > en. Conversely, 
the hypotheses that ~ > c" and m ~ n lead to a contradiction. 
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25. Let b := c 1/mn and show that b > 1. Exercise 24(a) implies that c 1'" = bm > b" = c1fm if and 
only ifm > n. 

26. Fix m e N and use Mathematical Induction to prove that am+n = am a" and (am)" = am" for all 
n e N. Then, for a given n e N, prove that the equalities are valid for all m e N. 

Section 2.2 

1. (a) If a~ 0, then lal =a= N; if a< 0, then lal =-a= N. 
(b) It suffices to show that 111bl = 1llbl for b :f: 0 (why?). Consider the cases b > 0 and 

b <0. 

3. If x !:: y!:: z, then lx- yl + IY- zl = (y- x) + (z- y) = z- x = lz- xl. To establish the 
converse, show that y < x and y > z are impossible. For example, if y < x !:: z, it follows from 
what we have shown and the given relationship that lx - y 1 = 0, so that y = x, a contradiction. 

6. (a) -2 !:: X !:: 912 (b) -2!:: X !:: 2. 

7. x = 4 or x = -3. 

8. (a) x < 0 (b) -312 <X < 112. 

10. {x : -3 < x < -512 or 312 < x < 2}. 

11. {x : 1 < x < 4}. 

12. (a) {(x, y): y = ± x}. (c) The hyperbolas y = 2/x andy= -2/x. 

13. (a) If y ~ 0, then -y !:: x !:: y and we get the region in the upper half-plane on or between 
the lines y = x andy= -x. 

16. (a) Suppose that a =:: b. 

17. If a !:: b!:: c, then mid{a, b, c} = b = min{b, c, c} = min{max{a, b}, max{b, c}, max{c, a}}. 
The other cases are similar. 

Section 2.3 
1. Since 0 !:: x for all x e S1, then u = 0 is a lower bound of S1• If v > 0, then v is not a lower 

bound of S 1 because v 12 e S 1 and v /2 < v. Therefore inf S 1 = 0. 

3. Since 11n !:: 1 for all n eN, then 1 is an upper bound for S3• 

4. sup s4 = 2 and inf s4 = 112. 

6. Let u e S be an upper bound of S. If v is another upper bound of S ,.then u !:: v. Hence u = sup S . . 

9. Let u := sup A, v := sup B and w := sup{u, v}. Then w is an upper bound of AU B, because 
if x e A, then x !:: u !:: w, and if x e B, then x !:: v!:: w. If z is any upper bound of AU B, 
then z is an upper bound of A and of B, so that u !:: z and v =:: z. Hence w =:: z. Therefore, 
w = sup(A U B). 

11. Consider two cases: u ~ s• and u < s•. 

Section 2.4 
1. Since 1 - 1 In < 1 for all n e N, 1 is an upper bound. To show that 1 is the supremum, it must 

be shown that for each e > 0 there exists n e N such that 1 - 1 In > 1 - e, which is equivalent 
to 11n <e. Apply the Archimedean Property 2.4.3 or 2.4.5. 

2. inf S = -1 and sup S = 1. 

4. (a) Letu :=supS and a > 0. Thenx!:: u forallx e S, whence ax!:: au forallx e S, whence 
it follows that au is an upper bound of aS. If v is another upper bound of aS, then ax !:: v 



362 HINTS FOR SELECTED EXERCISES 

for all x e S, whence x ~ vfa for all xeS, showing that vfa is an upper bound for S so 

that u ~ vfa, from which we conclude that au ~ v. Therefore au = sup(aS). 

S. Let u :=sup /(X). Then /(x) ~ u for all x e X, so that a+ f(x) ~a+ u for all x e X, 

whence sup{a + f(x): x eX}~ a+ u. If w <a+ u, then w- a < u, so that there exists 

xw e X with w -a < f(xw>' whence w < a+ f<xw>' and thus w is not an upper bound for 

{a + f (x) : x e X}. 

7. Ifu := sup/(X)andv := supg(X),thenf(x) ~ uandg(x) ~ vforallx e X,whence/(x) + 
g(x) ~ u + v forallx eX. 

9. (a) /(x) = 1 for x eX. (b) g(y) = 0 for y e f. 

11. Let S := {h(x, y): x eX, y e Y}. We have h(x, y) ~ F(x) for all x eX, y e Y so that 

supS~ sup{F(x) : x e X}. If w < sup{F(x) : x e X}, then there exists x0 e X with w < 

F(x0) = sup{h(x0 , y) : y e Y}, whence there exists y0 e Y with w < h(x0 , y0). Thus w is not 

an upper bound of S, and so w < supS. Since this is true for any w such that w < sup{ F (x) : 

x eX}, we conclude that sup{F(x): x eX}~ supS. 

13. Note that n < 2" (whence 1/2" < 1/n) for any n eN. 

14. Let s3 := {s e R: 0 ~ S, s2 < 3}. Show that s3 is nonempty and bounded by 3 and let y := 

sup s3. If y2 < 3 and 1/n < (3- y2)/(2y + 1) show that y + 1/n e s3. If y2 ~)and 1/m < 

(y2
- 3)/2y show that y- 1/m e s3. Therefore y2 = 3. 

17. If x < 0 < y, then we can take r = 0. If x < y < 0, we apply 2.4.8 to obtain a rational number 

between - y and - x. 

Section 2.5 

2. S has an upper bound band a lower bound a if and only if Sis contained in the interval [a, b]. 

4. Because z is neither a lower bound nor an upper bound of S. 

S. If z e R, then z is not a lower bound of S so there exists xz e S such that xz!:: z. Similarly, 

there exists y z e S such that z ~ y z· 

8. If x > 0, then there exists n e N with 1/n < x, so that x ~ 1,. If y ~ 0, then y ~ 11• 

10. Let 11 := inf{b, : n e N}; we claim that a, ~ 11 for all n. Fix n e N; we will show that a, is a 

lower bound for the set {b1 : k e N}. We consider two cases. G> If n ~ k, then since I, 2 /1 , we 

have a, !:: ale ~ blc. (jj) If k < n, then since lie 2 I,, we have a, ~ b, ~ b1• Therefore a, ~ b1 

for all k e N, so that a, is a lower bound for {b1 : k e N} and so a, ~ 11· In particular, this shows 

that 11 e [a,, b,] for all n, so that, en/, .. 

12. ~ = (.011000· · ·)2 = (.010111· · ·>r i6 = (.0111000· · ·)2 = (.0110111· · ·>r 
13. (a) ~ ~ (.0101)2" (b) ~ = (.010101 · · ·)2, the block 01 repeats. 

16. 1/7 = .142 857 · · ·, the block repeats. 2/19 = .1 OS 263 157 894 736 842 · · ·, the block repeats. 

17. 1.25 137···137··. = 31253/24975, 35.14653· ··653··· = 3511139/99900. 

Section 3.1 

1. (a) 0,2,0,2,0 (c) 1/2, 1/6, 1/12, 1/20, 1/30 

3. (a) 1,4, 13,40,121 (c) 1, 2, 3, 5,4. 

s. (a) We have 0 < nf(n2 + 1) < nfn2 = 1/n. Given£> 0, let K(£) ~ 1/£. 

(c) We have 1(3n + l)/(2n + 5)- 3/21::: 13/(4n + 10) < 13f4n. Given £ > 0, let 

K(£) ~ 13/4£. 

6. (a) 1/.Jn + 7 < 1/../ft (b) 12n/(n + 2)- 21 = 4/(n + 2) < 4/n 

(c) ../ft/(n + 1) < 1/ Jn (d) l(-1)"n/(n2 + 1)1 ~ 1/n . 
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9. O<.;r,.<e ~ O<x"<£2
• 

11. 11/n - 1/(n + 1)1 = 1/n(n + 1) < 1/n2 ~ 1/n. 

13. Let b := 1/(1 +a) where a > 0. Since (1 +a)" > !n(n - 1)a2
, we have that 

0 < nb" ~ nf£!n<n- l)a2
) ~ 2/[(n - 1)a2

]. Thus lim(nb") = 0. 

15. If n > 3, then 0 < n2 /n! < n/(n- 2)(n- 1) < 1/(n- 3). 

Section 3.2 

1. (a) lim(x") = 1 

3. Y = (X+ f) -X. 

(c) x" :::=: n/2, so the sequence diverges. 

6. (a) 4 (b) 0 (c) 1 

8. In (3) the exponent k is fixed, but in (1 + 1/n)" the exponent varies. 

9. lim(yn) = 0 and lim(Jii"yn) = !· 
11. b. 

13. 

15. 

18. 

20. 

21. 

(a) 1 

(a) L=a 

(a) Converges to 0 

(a) (1) 

Yes. (Why?) 

(b) L =b/2 

(b) 

(c) 

(c) 

(b) 

22. From Exercise 2.2.16, u" = !<xn + Yn + lxn- Ynl>· 

1. 

L = 1/b 

Converges to 0. 

(n). 

23. Use Exercises 2.2.16(b), 2.2.17, and the preceding exercise. 

Section 3.3 
I. (x") is a bounded decreasing sequence. The limit is 4. 

(d) 0. 

(d) L = 8/9. 

2. The limit is 1. 3. The limit is 2. 4. The limit is 2. 

5. (y") is increasing. The limit is y = !O + Jl + 4p). 

7. (x") is increasing. 

10. (s") is decreasing and (t") is increasing. Also t" ~ x" ~ s" for n eN. 

11. Note Yn = 1/(n + 1) + 1/(n + 2) + · · · + 1/2n < 1/(n + 1) + 1/(n + 1) + · · · + 1/(n + 1) 
= n/(n + 1) < 1. 

13. (a) e (c) e (d) 1/e. 

14. Note that if n :::=: 2, then 0 ~ s" - -/2 ~ s; - 2. 

15. Note that 0 ~ s"-~ ~ (s;- 5)/~ ~ (s;- 5)/2. 

16. e2 = 2.25, e4 = 2.441406, e8 = 2.565 785, e 16 = 2.637 928. 

17. eso = 2.691588, e100 = 2.704814, e1000 = 2.716924. 

Section 3.4 

1. For example x2n-t := 2n - 1 and x2n := 1/2n. 

3. L = !<I + ~). 
7. (a) e 
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8. (a) 1 

12. Choose n 1 ::::: 1 so that 1xn
1
1 > 1, then choose n2 > n 1 so that 1xn

2
1 > 2, and, in general, choose 

nJc > nJc-l so that lxn I > k. 
k 

13. (x2n_ 1) = (-1, -113, -115, .. ·). 

14. Choose n 1 ::::: 1 so that xn ::::: s- 1, then choose n2 > n 1 so that xn > s- 112, and, in general, 
I 2 

choose nJc > nJc-l so that xn > s- 11 k. 
k 

Section 3.5 
1. For example, (( -l)n). 

3. (a) Note that I( -l)n - ( -l)n+ll = 2 for all n eN. 
(c) Take m = 2n, so xm- xn = x2n- xn = ln2n -Inn= ln2 for all n. 

5. lim(.Jii"+T- Jn) = 0. But, if m = 4n, then~- Jn = Jn for all n. 

8. Let u := sup{xn : n e N}. If£ > 0, let H be such that u - £ < x H ~ u. If m ::::: n ::::: H, then 
u - e < xn ~ xm ~ u so that lxm - xn I < e. 

10. lim(xn) = (113)x1 + (213)x2• 12. The limit is .Ji - 1. 

13. The limit is 1 + .Ji. 
14. Four iterations giver = 0.20164 to 5 places. 

Section 3.6 
1. If {xn : n e N} is not bounded above, choose nJc+l > nk such that xn ::::: k fork e N. 

k 

3. Note that lxn - 01 < £if and only if llxn > 11£. 

4. (a) [Jn >a] <==> [n > a 2
] (c) ~::::: .;nr1. when n ::::: 2. 

8. (a) n < (n2 + 2) 1
'
2

• 

(c) Sincen < (n2 + 1)1
'
2

, thenn 112 < (n2 + 1) 1121n 112• 

9. (a) Sincexn1Yn ~ oo,thereexistsK1 suchthatifn::::: K 1,thenxn::::: Yn·NowapplyTheorem 
3.6.4(a). 

Section 3.7 
1. The partial sums of L b n are a subsequence of the partial sums of L an. 

3. (a) Since 11(n + 1)(n + 2) = 11(n + 1) - 11(n + 2), the series is telescoping. 

6. (a) The sequence (cos n) does not converge to 0. 
(b) Since l(cosn)ln2 1 ~ 11n2

, theconvergenceofi:(cosn)ln2 followsfromExample3.7.6(c) 
and Theorem 3.7.7. 

7. The "even" sequence (s2n) is decreasing, the "odd" sequence (s2n+I) is increasing, and -1 ~ 

sn ~ 0. Also 0 ~ s2n - s2n+l = ll J2n + 1. 

9. L 1 In 2 is convergent, but L 1 In is not. 

11. Show that bJc ::::: a11 k fork eN, whence b1 + · · · + bn ::::: a1 (1 + · · · + 11n). 

12. Evidently 2a(4) ~ a(3) + a(4) and 22a(8) ~ a(5) + · · · + a(8), etc. Alsoa(2) + a(3) ~ 2a(2) 
and a(4) + · · · + a(7) ~ 22a(22

), etc. The stated inequality follows by addition. Now apply the 
Comparison Test 3. 7. 7. 

14. (a) The terms are decreasing and 2n 12n ln(2n) = 11(n ln2). Since L 11n diverges, so does 
L 11(n Inn). 
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15. (a) The terms are decreasing and 2"/2"(ln2")c = (ljnc) · (l/ln2t. Now use the fact that 
EO/nc) converges when c > 1. 

Section 4.1 

1. (a-c) Iflx- 11 ~ 1, then lx +II~ 3 so that lx2
- 11 ~ 31x- 11. Thus, lx- 11 < 1/6assures 

that lx2 
- 11 < 1/2, etc. 

(d) If lx- 11 < 1, then lx3
- 11 ~ 71x -II. 

2. (a) Since I.Ji- 21 = lx - 41/(Jx" + 2) ~ !lx - 41, then lx - 41 < 1 implies that we have 

IJx" -21 < 4· 
(b) If lx- 41 < 2 x 10-2 = .02, then I.Ji- 21 < .01. 

5. If 0 < x <a, then 0 < x + c <a+ c < 2a, so that lx2
- c2 1 = lx + cllx- cl ~ 2alx- cl. 

Given e > 0, take 8 := ej2a. 

8. If c :f. 0, show that IJx"- Jcl ~ (1/ Jc)lx - cl, so we can take 8 := eJc. If c = 0, we can 
take 8 := e2

• 

9. (a) If lx- 21 < 1/2 show that 11/(1- x) + 11 = l(x- 2)/(x- 1)1 ~ 21x- 21. Thus we can 
take 8 := inf{l/2, e/2}. 

(c) If x :f:. 0, then lx 2 /lxl - 01 = lxl. Take 8 :=e. 

10. (a) If lx - 21 < I, then lx2 + 4x - 121 = lx + 611x - 21 < 91x - 21. We may take 8 := 
inf{l, £/9}. 

(b) If lx + 11 < 1/4, then l(x + 5)/(3x + 2) - 41 = 71x + ll/12x + 31 < 141x + II, and we 
may take 8 := inf{l/4, e/14}. 

11. (a) 

13. (b) 

Letxn := 1/n. (c) Letxn := 1/n and Yn := -1/n. 

If f(x) := sgn(x), then lim(f(x))2 = 1, but lim f(x) does not exist. 
x-o x-o 

Since 1/(x) - 01 ~ lxl, we have lim /(x) = 0. 
x-o 

14. (a) 

(b) If c :f. 0 is rational, let (xn) be a sequence of irrational numbers that converges to c; then 
/(c) = c :f. 0 = lim(f(xn)). What if cis irrational? 

16. The restriction of sgn to [0, 1] has a limit at 0. 

Section 4.2 

1. (a) 10 (b) -3 (c) 1/12 

2. (a) l (b) 4 (c) 2 

3. Multiply the numerator and denominator by Jt + 2x + Jt + 3x. 

(d) 1/2. 

(d) 1/2. 

4. Consider xn := 1/21rn and cos(lfxn) = 1. Use the Squeeze Theorem 4.2.7. 

8. If lxl ~ 1, keN, then lxkl = lxlk ~ I, whence -x2 ~ xk+2 ~ x 2
• 

11. (a) No limit (b) 0 (c) No limit (d) 0. 

Section 4.3 
2. Let f(x) := sin(ljx) for x < 0 and f(x) := 0 for x > 0. 

3. Given a > 0, ifO < x < 1/a2
, then .Ji < lja, and so f(x) >a. 

5. (a) If a> I and 1 < x < aj(a- 1), then a < xj(x- 1), hence we have 
lim xj(x - 1) = oo. 

x-1+ 
(c) Since (x + 2)/ .Ji > 2/ Jx", the limit is oo. 
(e) If x > 0, then 1/ .Ji < (JX+l')jx, so the right-hand limit is oo. 
(g) 1 (h) -1. 



366 HINTS FOR SELECTED EXERCISES 

8. Note that 1/(x)- Ll <£for x > Kif and only if 1/(1/z)- Ll < £for 0 < z < 1/ K. 

9. There exists a > 0 such that lxf(x)- Ll < 1 whenever x >a. Hence 1/(x)l < (ILl+ 1)/x 
forx >a. 

12. No. If h(x) := f(x) - g(x), then lim h(x) = 0 and we have 
x-oo 

/(x)/g(x) = 1 + h(x)fg(x) ~ 1. 

13. Suppose that 1/(x)- Ll <£for x > K, and that g(y) > K for y > H. Then 
If o g (y) - L I < £ for y > H. 

Section 5.1 

4. (a) Continuous if x :f: 0, ± 1, ± 2, · · · (b) Continuous if x :f: ± 1, ± 2, · · · 
(c) Continuous if sinx :f: 0, 1 (d) Continuous if x :f: 0, ± 1. ± 1/2, · · ·. 

7. Let£:= /(c)/2, and let~ > 0 be such that if lx- cl < &, then 1/(x)- f(c)l < £, which 
implies that f(x) > /(c) - £ = f(c)/2 > 0. 

8. Since f is continuous at x, we have f(x) = lim(f(x")) = 0. Thus x e S. 

10. Note that llxl- l~c.ll =:: lx- cl. 

13. Since lg(x) - 61 =:: sup(l2x - 61, lx - 31} = 21x - 31, g is continuous at x = 3. If c :F 3, let 
(x") be a sequence of rational numbers converging to c and let (y") be a sequence of irrational 
numbers converging to c. Then lim(g(x")) :f: lim(g(y")) 

Section 5.2 
1. (a) Continuous on R (c) Continuous for x :f: 0. 

2. Use 5.2.1 (a) and Induction; or, use 5.2.8 with g(x) := x". 

4. Continuous at every noninteger. 

7. Let f(x) := 1 if xis rational, and f(x) := -1 if xis irrational. 

12. First show that /(0) = 0 and /( -x) =-f(x) for all x e R; then note that f(x- x0) = 
f(x)- f(x0). Consequently f is continuous at the point x0 if and only if it is continuous at 0. 
Thus, if f is continuous at x0 , then it is continuous at 0, and hence everywhere. 

13. First show that f (0) = 0 and (by Induction) that f (x) = ex for x e N, and hence also for x e Z. 
Next show that f (x) = ex for x e Q. Finally, if x ~ Q, let x = lim(r") for some sequence in Q. 

15. If /(x) ~ g(x), then both expressions give h(x) = f(x); and if /(x) =:: g(x), then h(x) = g(x) 
in both cases. 

Section 5.3 
1. Apply either the Boundedness Theorem 5.3.2 to 1//, or the Maximum-Minimum Theorem 

5.3.4 to conclude that inf f (/) > 0. 

3. Choose a sequence (x") such that 1/(xn+t)l =:: ilf(x")l =:: <i>"lf(x1)1. Apply the Bolzano
Weierstrass Theorem to obtain a convergent subsequence. 

4. Suppose that p has odd degree n and that the coefficient a" of x" is positive. By 4.3.16, 
lim p(x) = oo and lim p(x) = -oo. 

x-oo x--oo 

5. In the intervals [1.035, 1.040] and [-7.026, -7.025]. 

7. In the interval [0.7390, 0.7391]. 

8. In the interval [1.4687, 1.4765]. 
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9. (a) 1 (b) 6. 

10. 1/2" < 10-s implies that n > (51n 10)/ In 2 ~ 16.61. Taken = 17. 

11. If f ( w) < 0, then it follows from Theorem 4.2.9 that there exists a &-neighborhood V6 ( w) such 
that f(x) < 0 for all x e V

6
(w). 

14. Apply Theorem 4.2.9 to fJ - f(x). 

15. If 0 < a < b ~ oo, then /((a, b)) = (a 2 , b2); if -oo ~ a < b < 0, then f((a, b)) = (b2 , a2). 

If a < 0 < b, then f((a, b)) is not an open interval, but equals [0, c) where c := sup(a2 , b2
}. 

Images of closed intervals are treated similarly. 

16. For example, if a < 0 < b and c := inf(1/(a2 + 1), 1/(b2 + 1)}, then g((a, b)) = (c, 1]. If 
0 <a < b, then g((a, b))= (lf(b2 + 1), lf(a2 + 1)). Also g([-1, 1]) = [1/2, 1]. If a < b, 
then h((a, b)) = (a3 , b3) and h((a, b]) = (a3 , b3]. 

17. Yes. Use the Density Theorem 2.4.8. 

19. Consider g(x) := 1/x for x e J := (0, 1). 

Section 5.4 
1. Since 1/x - 1/u = (u - x)fxu, it follows that 11/x - 1/ul ~ (lfa2 )1x - ul for x, u e [a, oo). 

3. (a) Let xn := n + 1/n, un := n. 
(b) Let xn := 1/2n7r, un := 1/(2n7r + tr/2). 

6. If M is a bound for both f and g on A, show that lf(x)g(x) - f(u)g(u)l ~ Mlf(x) -
/(u)l + Mlg(x)- g(u)l for all x, u eA. 

8. Given£ > 0 there exists &1 > 0 such that IY- vi < &1 implies 1/(y)- /(v)l <£.Now choose 
&

8 
> 0 so that lx- ul < &

8 
implies lg(x)- g(u)l < &r 

11. If lg(x)- g(O)I ~ Klx- 01 forallx e [0, 1], then ,Ji ~ Kx for x e [0, 1]. But if xn := 1/n2, 

then K must satisfy n ~ K for all n e N, which is impossible. 

14. Since f is bounded on [0, p], it follows that it is bounded on R. Since f is continuous on 
J := [ -1, p + 1 ], it is uniformly continuous on J. Now show that this implies that f is 
uniformly continuous on R. 

Section 5.5 

1. (a) The &-intervals are £-!.!1. £!.~],and £i.Jl. 
(b) The third &-interval does not contain£!, 1]. 

2. (a) Yes. (b) Yes. 

3. No. The first &2-interval is[- 1~. 1~] and does not contain [0, ll· 

4. (b) If t e <!. 1) then [t- &(t), t + &(t)] = l-! + !t.! + !tl c (~. 1). 

6. We could have two subintervals having c as a tag with one of them not contained in the &-interval 
around c. 

• • I 

7. If1' :=(([a, x1], t1), • • • ([xk-l' c], tk), ([c, xk+1], tk+1), • • ·, ([xn' b], tn)} is&*-fine, then 1' := 
(([a, x1], t1), • • ·, ([xk-l, c], tk)} is a&' -fine partition of [a, c] and P" := (([c, xk+1], tk+ 1), • • ·, 

([xn' b], tn)} is a&" -fine partition of [c, b]. 

9. The hypothesis that f is locally bounded presents us with a gauge&. If {([x;_1, X;], t;>l7= 1 is a 
&-finepartitionof[a, b] andM; is a bound for 1/1 on [x;_1, X;], letM := sup{M; : i = 1, · · ·, n}. 
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Section 5.6 
1. If x e [a, b], then /(a) ~ f(x). 

4. IfO ~ /(x1) ~ /(x2) and 0 ~ g(x1) ~ g(x2), then /(x1)g(x1) ~ /(x2)g(x1) ~ /(x
2
)g(x

2
). 

6. If f is continuous at c, then lim(/(x,.)) = /(c), since c = lim(x,.). Conversely, since 
0 ~ j1 (c) ~ f(x2n)- f(x2n+t>' it follows that j1 (c) = 0, so f is continuous at c. 

7. Apply Exercises 2.4.4, 2.4.5 and the Principle of the Iterated Infima (analogous to the result in 
Exercise 2.4.11). 

8. Let x1 e I be such that y = /(x1) and x2 e I be such that y = g(x2). If x2 ~ xl' then y = 
g(y2) < /(x2) ~ /(x1) = y, a contradiction. 

11. Note that f- 1 is continuous at every point of its domain [0, 1] U (2, 3]. 

14. Let y := x Jfn and z := x l/q so that y" = x = z q, whence (by Exercise 2.1.26) y"P = xP = z qp. 

Since np = mq, show that (x 1'">m = (x 11q)P, or xmfn = xPiq. Now consider the case where 
m,peZ. 

15. Use the preceding exercise and Exercise 2.1.26. 

Section 6.1 
1. (a) /'(x) = lim[(x + h)3

- x 3
]/ h = lim(3x2 + 3xh + h2

) = 3x2
, 

h-o h-o 

(c) h'(x) =lim ,JX+h- .../X= lim 
1 = -

1
-. 

h-o h h-o Jx + h +.../X 2.../X 
4. Note that 1/(x)/xl ~ lxl for x e JR. 

5. (a) /' (x) = (1 - x2)/(1 + x2) 2 

(c) h'(x) = mkxk- 1(cosxk)(sinxk)m-l 
(b) g'(x) = (x- l)j,/5- 2x + x 2 

(d) k'(x) = 2x sec2(x2). 

6. The function/' is continuous for n ~ 2 and is differentiable for n ~ 3. 

8. (a) /'(x) = 2 for x > 0, /'(x) = 0 for -1 < x < 0, and /'(x) = -2 for x < -1, 
(c) h'(x) = 21xl for all x e R, 

10. If x =F 0, then g'(x) = 2x sin(ljx2)- (2/x) cos(l/x2). Moreover, 
g'(O) = lim h sin(l/ h2

) = 0. Consider x,. := 1/../iim. 
h-o 

11. (a) /' (x) = 2/(2x + 3) (b) g' (x) = 6(L(x2))2 fx 
(c) h'(x) = 1/x (d) k'(x) = 1/(xL(x)). 

14. 1/ h' (0) = 1/2, 1/ h' (1) = 1/5, and 1/ h' ( -1) = tiS. 

16. D[Arctan y] = 1/ D[tanx] = 1/ sec2 x = ·1/(1 + y2
). 

Section 6.2 
1. (a) Increasing on [3/2, oo), decreasing on ( -oo, 3/2], 

(c) Increasing on (-oo, -1] and [1, oo) 

2. (a) Relative minimum at x = 1; relative maximum at x = -1, 
(c) Relative maximum at x = 2/3. 

3. (a) Relative minima at x = ± 1; relative maxima at x = 0, ± 4, 
(c) Relative minima at x = -2, 3; relative maximum at x = 2. 

6. If x < y there exists c in (x, y) such that I sinx- sinyl =I cosclly- xl. 

9. f(x) = x4(2 + sin(l/x)) > 0 for x :f: 0, so f has an absolute minimum at x = 0. Show that 
/'(1/2n7r) < 0 for n ~ 2 and /'(2/(4n + l)1r) > 0 for n ~ 1. 
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10. g'(O) = lim (I+ 2x sin(l/x)) = 1 + 0 = 1, and if x :/: 0, then g'(x) = 1 + 4x sin(l/x)-
x-o 

2cos(l/x). Now show that g'(l/2nn) < 0 and that we have g'(2/(4n + 1)n) > 0 for n eN. 

14. Apply Darboux's Theorem 6.2.12. 

17. Apply the Mean Value Theorem to the function g- f on [0, x]. 

20. (a, b) Apply the Mean Value Theorem. 
(c) Apply Darboux's Theorem to the results of (a) and (b). 

Section 6.3 

I. A= B(lim f(x)/g(x)) = 0. 
x-c 

4. Note that f' (0) = 0, but that f' (x) does not exist if x :/: 0. 

6. (a) 1 (b) 1 (c) 0 

7. (a) 1 (b) 00 (c) 0 

8. (a) 0 (b) 0 (c) 0 

9. (a) 1 (b) (c) e3 

10. (a) 1 (b) (c) 1 

Section 6.4 

(d) 1/3. 

(d) 0. 

(d) 0. 

(d) 0. 

(d) 0. 

1. t<2n-l>(x) = (-1)11a2n-l sin ax and t<2n>(x) = (-l) 11 a2n cos ax for n eN. 

4. Apply Taylor's Theorem to f(x) := .Jf+'X at x0 := 0 and note that R1 (x) < 0 and R2(x) > 0 

for x > 0. 

5. 1.095 < .Jf.2 < 1.1 and 1.375 < ,.j2 < 1.5. 

6. R2 (0.2) < 0.0005 and R2 (1) < 0.0625. 

11. With n = 4, In 1.5 = 0.40; with n = 7,ln 1.5 = 0.405. 

17. Apply Taylor's Theorem to fat x0 = c to show that f(x) ~ f(c) + j'(c)(x- c). 

19. Since f (2) < 0 and f (2.2) > 0, there is a zero off in [2.0, 2.2]. The value of x4 is approximately 

2.0945515. 

20. r 1 ~ 1.45262688and r2 ~ -1.16403514. 21. r ~ 1.324 71796. 

22. r 1 ~ 0.15859434 and r 2 ~ 3.146193 22. 23. r 1 ~ 0.5 and r 2 ~ 0.80901699. 

24. r ~ 0.739 085 13. 

Section 7.1 ; 

1. (a) IIP1 11 =2 (b) II'P2 11 =2 (c) IIP3 11 = 1.4 -- (d) IIP4 11 =2. 

2. (a) o2 . 1 + 12 
• 1 + 22 

• 2 = 0 + 1 + 8 = 9 
(b) 37 (c) 13 (d) 33. 

5. (a) If u e [x;-1' X;]• then x;_ 1 :S u so that c1 :S t; :S X; :S X;_ 1 + 11P11 whence c1 - 11P11 :S 

x;_ 1 :S u. Also u :S X; so that X; - 11P11 :S X;_ 1 :S t; :S c2, whence u :S X; :S c2 + liP II. 
10. g is not bounded. Take rational tags. 

12. Let p n be the partition of [0, 1] into n equal parts. If p n is this partition with rational tags, then 

S (f; P,.) = 1, while if Q,. is this partition .with irrational tags, then S (/; Q,.) = 0. 

13. Argue as in Example 7.1.3(d). 
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15. If UP II < [,t := e/4a, then the union of the subintervals in p with tags in [c, d) contains 
the interval [c + lJ,, d- lJ£] and is contained in [c- lJ,, d + lJ

6
]. Therefore a(d- c- U ) ~ 

• • I 

S(tp; 1') ~ a(d- c + 2lJE), whence IS(tp; 1')- a(d- c) I ~ 2alJ, <e. 

16. (b) In fact. (xf + X;X;_ 1 + xf_1) • (x;- X;_ 1) = xl- xl_ 1• 

(c) The terms in S(Q; Q) telescope. 

18. Let P = { ([x;_ 1, X;], t;> };=I be a tagged partition of [a, b) and let 

Q := { ([x;_1 + c, X; +c), t; +c) };=I so that Q is a tagged partition of [a+ c, b +c) and 

IIQII = uPn. Moreover, S(g; Q) = S(f; P> so that IS(g; Q)- I: II= IS(/; P>- I: II< e 

when II Qll < lJE. 

Section 7.2 
2. If the tags are all rational, then S(h; P> ~ 1, while if the tags are all irrational, then S(h; P) = 0. 

3. Let P,. be the partition of [0. 1] into n equal subintervals with t1 = 1/n and Q,. be the same 
subintervals tagged by irrational points. 

5. If c 1 , • • · • c n are the distinct values taken by tp, then tp -I ( ci) is the union of a finite collection 

{ Ji 1 • • • • • J1 
r } of disjoint subintervals of [a, b]. We can write lp = L,j = 1 Lf= 1 ci tp 1 ·t • 
J J 

6. Not necessarily. 

8. If /(c) > 0 for some c e (a, b), there exists lJ > 0 such that f(x) > ~f(c) for lx- cl ~ lJ. 

Then I: f ~ Icc~aa f ~ (2lJ)~/(c) > 0. If cis an endpoint, a similar argument applies. 

10. Use Balzano's Theorem 5.3.7. 

12. Indeed, lg(x)l ~ 1 and is continuous on every interval [c. 1] where 0 < c < 1. The preceding 
exercise applies. 

13. Let f(x) := 1/x for x e (0. 1] and /(0) := 0. 

16. Let m := inf f(x) and M :=sup f. By Theorem 7.1.4(c), we have 
m(b- a) ~I: f ~ M(b- a). By Bolzano's Theorem 5.3.7, there exists c e [a, b) such that 

/(c) = <I: /)/(b- a). 

19. <a> Let Pn be a sequence of tagged partitions of ro, a] with uP,.u--+ o and let P: be the 

corresponding "symmetric" partition of [-a, a]. Show that S(f; P:> = 2S(f; P ,.) --+ 
2I; f. . 

21. Note that x .,.... /(x2
) is an even continuous function. 

22. Let X; := i (:r /2) fori = 0. 1, · · ·, n. Then we have that 

(1r/2n) L,7,:-~ /(cosx;) = (1r/2n) L,~=l /(sinxk). 

Section 7.3 

1. Suppose that E :={a= c0 < c1 < · · · <em= b} contains the points in [a, b) where the 
derivative F' (x) either does not exist, or does not equal f (x). Then f e R.[ C; _ 1 , C;] and 
J:c; f = F(c.)- F(c. 1 ). Exercise 7.2.14 and Corollary 7.2.10 imply that f e R.[a, b) and c

1
_

1 
1 ,_ 

that I: f = L,~ 1 (F(c;)- F(c;_ 1)) = F(b)- F(a). 

2. E = 0. 3. Let E := {-1, 1}. If x j E, G'(.r) ~ g(.r). 

4. Indeed, B'(x) = lxl for all x. 

7. Let h be Thomae's function. There is no function H: [0, 1]--+ R such that H'(x) = h(x) 
for x in some nondegenerate open interval; otherwise Darboux's Theorem 6.2.12 would be 
contradicted on this interval. 
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9. (a) G(x) = F(x) - F(c), (b) H(x) = F(b)- F(x), (c) S(x) = F(sinx)- F(x). 

10. Use Theorem 7.3.6 and the Chain Rule 6.1.6. 

11. (a) F'(x) = 2x(l + x6
)-

1 (b) F'(x) = (1 + x2
)

1
'
2

- 2x(l + x4
)

112
• 

13. g'(x) = f(x +c)- f(x- c). 

16. (a) Take (/)(1) = 1 + 1
2 to get j(23' 2 - 1). 

(b) Take lf'(l) = 1 + 13 to get~· 
(c) Take lf'(l) = 1 + .Jt to get ~ (3312 - 23/

2
). 

(d) Take lf'(l) = 1112 to get 2(sin2- sin 1). 

18. (a) Takex = lp(l) = 1
1
'
2

, so 1 = Y,(x) = x2 to get4(1-ln(5/3)). 
(b) Take x = lp(l) =(I+ 1)1

'
2

, sot= Y,(x) = x2 - 1 to get ln(3 + 2.J2) -In 3. 
(c) Take x = lf'(l) = 11

'
2 to get 2(3/2 + 1n 3/2). 

(d) Take x = (/)(1) = t 1
'
2 to get Arctan 1 - Arctan(l/2). 

19. In (a)- (c) lf''(O) does not exist. For (a), integrate over [c, 4] and let c ~ 0+. For (c), the 

integrand is even so the integral equals 2 I0
1 

( 1 + 1) 1' 2 d 1. 

20. (b) U,. Z,. is contained in U,.,A: 1: and the sum of the lengths of these intervals is 

21. (a) 
(b) 
(c) 

(d) 

!5 L,. e/2,. =e. 

The Product Theorem 7.3.16 applies. 

We have =f21 I: fg =::; 1
2 I: f 2 +I: 82. 

Let I ~ 00 in (b). 
b 2 ( b 2 b 2) l/

2 
0 

If fa I :1: o, let 1 = fa g I fa I m (b >· 
22. Note that sgn o h is Dirichlet's function, which is not Riemann integrable. 

Section 7.4 
1. Use (4) with n = 4, a= 1, b = 2, h = 1/4. Here 1/4 =::;/"(c)=::; 2, so T4 ~ 0.69702. 

3. T4 ~ 0. 782 79. 

4. The index n must satisfy 2/12n2 < 10-6
; hence n > 1000/.J6 ~ 408.25. 

5. S4 ~ o.785 39. 

6. The index n must satisfy 96/180n4 < 10-6 ; hence n ~ 28. 

12. The integral is equal to the area of one quarter of the unit circle. The derivatives of h are 

unbounded on [0, 1]. Since h" (x) =::; 0, the inequality is T,. (h) < 1r /4 < M,. (h). See Exercise 8. 

13. Interpret K as an area. Show that h" (x) = .:...(1 - x2
)

3
'
2 and that 

h<4>(x) = -3(1 + 4x2)(1- x2
)-

7
'
2

• To eight decimal places, 1r = 3.14159265. 

14. Approximately 3.65348449. 15. Approximately 4.821159 32. 

16. Approximately 0.83564885. 17. Approximately 1.85193705. 

18. 1. 19. Approximately 1.19814023. 

20. Approximately 0.904 524 24. 

Section 8.1 
1. Note that 0 =::; /,.(x) =::; x/n ~ 0 as n ~ oo. 

3. If x > 0, then 1/,.(x)- 11 < 1/(nx). 

5. If x > 0, then 1/,.(x)l =::: 1/(nx) ~ 0. 

7. If x > 0, then 0 < e-:x < 1. 
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9. If x > 0, then 0 :S x 2e-nx = x 2(e-x)n ..... 0, since 0 < e-x < I. 

10. If x e Z, the limit equals 1. If x ' Z, the limit equals 0. 

11. If x e [0, a], then lln(x)l :S afn. However, ln(n) = 1/2. 

14. If x e [0, b], then lln(x)l :S b". However, 1n(2-l/n) = 1/3. 

15. If x e [a, oo), then lln(x)l :S 1/(na). However, ln(lfn) =!sin 1 > 0. 

18. The maximum of In on [0, oo) is at x = 1/n, so II In II[O.oo> = 1/(ne). 

20. lfn is sufficiently large, 111n11[a,oo) = n2a2fe"a. However, lllnll[o.oo) = 4/e2
• 

23. Let M be a bound for (/n(x)) and (gn(x)) on A, whence also ll(x)l ~ M. The Triangle 
Inequality gives lln(x)gn(x)- l(x)g(x)l :S M(lln(x)- l(x)l + lgn(x)- g(x)l) for x EA. 

Section 8.2 
1. The limit function is l(x) := 0 for 0 ~ x < 1, 1(1) := 1/2, and l(x) := 1 for 1 < x ~ 2. 

4. If e > 0 is given, let K be such that if n ~ K, then II In - 111 1 < e/2. Then II" (x") - l(x0)1 ~ 
lin (xn) - l(xn)l + ll<xn)- l(x0)1 :S £/2 + ll(xn)- l(x0)1. Since I is continuous (by The
orem8.2.2)andxn ..... x0,t!tenll(x")- l(x0 )1 < ej2forn ~ K',sothatl/n(x")- l(x0)1 < e 
for n ~ max(K, K'}. 

6. Here 1(0) = 1 and l(x) = 0 for x e (0, 1]. The convergence is not uniform on [0, 1]. 

7. Given e := 1, there exists K > 0 such that if n ~ K and x e A, then lln(x)- l(x)l < 1, so 
that lln(x)l :S IIK(x)l + 1 for all x EA. Let M := max(III.IIA' · · ·, IIIK-tiiA' IIIK IIA + 1}. 

8. ln(l/vfn) = vfn/2. 
10. Here (g") converges uniformly to the zero function. The sequence (g~) does not converge 

uniformly. 

11. Use the Fundamental Theorem 7.3.1 and Theorem 8.2.4. 

13. If a > 0, then II In 11ra,11'] :S 1/(na) and Theorem 8.2.4 applies. 

15. Here llg" llro.IJ :S 1 for all n. Now apply Theorem 8.2.5. 

20. Let ln(x) := x" on [0, 1). 

Section 8.3 
1. Let A:= x > 0 and let m-+ oo in (5). For the upper estimate one, take x = 1 and n = 3 to 

obtain le- 2jl < 1/12, so e < 2~. 

2. Note that if n ~ 9, then 2/(n + 1)! < 6 x 10-7 < 5 x 10-6• Hence e ~ 2.71828. 

3. Evidently En(x) ~~for x ~ 0. To obtain the other inequality, apply Taylor's Theorem 6.4.1 
to [0, a]. 

5. Note that 0 ~ t" /(1 + t) :S t" fort e [0, x]. 

6. In 1.1 ~ 0.0953 and In 1.4 ~ 0.3365. Taken> 19,999. 

7. ln2 ~ 0.6931. 

10. L' (1) = lim[L(l + 1/n) - L(l)]/(1/n) =lim L((1 + 1/n)") = L(lim(1 + 1/n)") = 
L(e) = 1. 

11. (c) (xy)a = E(aL(xy)) = E(aL(x) + aL(y)) = E(aL(x)) · E(aL(y)) = xa · ya. 

12. (b) (xa)~ = E(IJL(xa)) = E(fJaL(x)) = xa~, and similarly for (x~)a. 

15. Use 8.3.14 and 8.3.9(vii). 

--- - ---------------- --
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17. Indeed, we have loga x = (lnx)f(lna) = [(lnx)/(lnb)] · [(lnb)/(lna)] if a:/: 1, b :/: 1. Now 

take a = 10, b = e. 

Section 8.4 
1. If n > 21xl, then I cosx- C

11
(x)l !:: (16/15)1xl2n /(2n)!, so cos(0.2) ~ 0.980067, cos 1 ~ 

0.549 302. Similarly, sin(0.2) ~ 0.198 669 and sin 1 ~ 0.841471. 

4. We integrate 8.4.8(x) twice on [0, x]. Note that the polynomial on the left has a zero in the 

interval [1.56, 1.57], so 1.56 !:: 1r /2. 

5. Exercise 8.4.4 shows that C 4 (x) !:: cos x !:: C 3 (x) for all x e R. Integrating several times, we get 

S4 (x)!:: sinx!:: S5 (x)forallx > O.ShowthatS4 (3.05) > OandS
5
(3.15) < O.(Thisprocedure 

can be sharpened.) 

6. If lxl !:: A and m > n > 2A, then lcm(x)- C
11

(x)l < (16/15)A2n /(2n)!, whence the conver

gence of (c
11

) to cis uniform on each interval [-A, A]. 

7. D[(c(x))2 - (s(x))2] = 0 for all x e R. For uniqueness, argue as in 8.4.4. 

8. Let g(x) := /(O)c(x) + /'(O)s(x) for x e IR, so that g"(x) = g(x), g(O) = /(0) and g'(O) = 
/'(0). Therefore h(x) := /(x)- g(x) has the property that h"(x) = h(x) for all x e R and 

h(O) = 0, h'(O) = 0. Thus g(x) = f(x) for all x e R, so that /(x) = /(O)c(x) + /'(O)s(x). 

9. If cp(x) := c( -x), show that cp"(x) = cp(x) and cp(O) = 1, cp'(O) = 0, so that cp(x) = c(x) for 

all x e R. Therefore c is even. 

Section 9.1 

1. Let S
11 

be the nth partial sum of L~ a
11

, let tn be the nth partial sum of L~ Ia" I, and suppose 

that a
11 

:::: 0 for n > P. If m > n > P, show that tm- t
11 

= sm- sn. Now apply the Cauchy 

Criterion. 

3. Take positive terms until the partial sum exceeds 1, then take negative terms until the partial 

sum is less than 1, then take positive terms until the partial sum exceeds 2, etc. 

5. Yes. 

6. If n:::: 2, then s" = -ln2 -Inn+ ln(n + 1). Yes. 

9. We have s2n - S11 :::: na2" = ~(2na2n), and s2n+l - s11 :::: ~(2n + 1)a2n+l" Consequently 
lim(na

11
) = 0. 

11. Indeed, if ln2a" I !:: M for all n, then lan I !:: M fn2
• 

13. (a) Rationalize to obtain Ex" where X
11 

:= [.Jri'(.Jii+T + .Jri')]-1 and note that X
11 
~ Yn := 

1/(2n). Now apply the Limit Comparison Test 3.7.8. 
(b) Rationalize and compare with L 1fn312• 

14. If La" is absolutely convergent, the partial sums of L la
11

1 are bounded, say by M. Evidently 

the absolute value of the partial sums of any subseries of a" are also bounded by M. 

Conversely, if every subseries of La" is convergent, then the subseries consisting of the 

strictly positive (and strictly negative) terms are absolutely convergent, whence it follows that 

E an is absolutely convergent. 

Section 9.2 
1. (a) Convergent; compare with L 1fn2

• (c) Divergent; note that 21
'" -+ 1. 

2. (a) Divergent; apply 9.2.1 with bn := 1/n. 
(c) Convergent; use 9.2.4 and note that (n/(n + 1))" -+ 1/e < 1. 

3. (a) (lnn)P < n for large n, by L'Hospital's Rule. 
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(c) Convergent; note that (lnn)1nn > n2 for large n. 
(e) Divergent; apply 9.2.6 or Exercise 3.7.12. 

4. (a) Convergent (b) Divergent (c) Divergent 
(d) Convergent; note that (Inn) exp( -n 1

'
2> < n exp( -n1

'
2

) < 1/n2 forlargen, byL'Hospital's 
Rule. 

(e) Divergent (t) Divergent. 

6. Apply the Integral Test 9.2.6. 

7. (a, b) Convergent (c) Divergent (d) Convergent. 

9. If m > n ~ K, then Ism- snl .=:: lxn+ll + · · · + lxml < rn+l /(1- r). Now let m-+ 00. 

12. (a) A crude estimate of the remainder is given by s- s4 < f5
00 x-2 dx = 1/5. Similarly 

s- s 10 < 1/11 ands- sn < 1/(n + 1),sothat999tennssufficetogets- s999 < 1/1000. 
(d) If n ~ 4, then xn+tfxn .=:: 5/8 so (by Exercise 10) Is- s4 1 ~ 5/12. If n ~ 10, then 

xn+tfxn .=:: 11/20 so that Is- s 101 .=:: (10/210)(11/9) < 0.012. If n = 14, then Is- s141 < 
0.00099. 

13. (b) Here :E~ 1 < /,.
00 

x-312dx = 2/Jn, so Is- s101 < 0.633 and Is- snl < 0.001 when 
n > 4 x 106

• 

(c) If n ~ 4, then Is - sn I .=:: (0.694)xn so that Is - s4 1 < 0.065. If n ~ 10, then 
Is- snl .=:: (0.628)xn so that Is- s 10 1 < 0.000023. 

14. Note that (s3n) is not bounded. 

16. Note that, for an integer with n digits, there are 9 ways of picking the first digit and 10 ways of 
picking each of the other n- 1 digits. There is one value of mlc from 1 to 9, there is one value 
from 10 to 19, one from 20 to 29, etc. 

18. Here lim(n(l - xn+tfxn)) =(c-a-b)+ 1, so the series is convergent if c >a+ band is 
divergent if c <a+ b. 

Section 9.3 
1. (a) Absolutely convergent 

(c) Divergent 
(b) Conditionally convergent 
(d) Conditionally convergent. 

2. Show by induction that s2 < s4 < s6 < · · · < s5 < s3 < s 1• Hence the limit lies between sn and 
sn+l so that Is- snl < lsn+t- snl = zn+l' 

5. Use Dirichlet's Test with (yn) := (+1, -1, -1, +1, +1, -1, -1, ···).Or, group the tenns in 
pairs (after the first) and use the Alternating Series Test. 

7. If /(x) := (lnx)P jxq, then j!(x) < 0 for x sufficiently large. L'Hospital's Rule shows that the 
terms in the alternating series approach 0. 

8. (a) Convergent (b) Divergent (c) Divergent (d) Divergent. 

11. Dirichlet's Test does not apply (directly, at least), since the partial sums of the series generated 
by (1, -1, -1, 1, 1, 1, ···)are not bounded. 

15. (a) Use Abel's Test with xn := 1/n. 
(b) Use the Cauchy Inequality with xn := /ii:,, Yn := 1/n, to get 

:E/ii:.Jn .=:: <:Ean) 1
'
2<E 1/n2

)
1
'
2

, establishing convergence. 
(d) Let an := [n(lnn)2

]-1, which converges by the Integral Test. However, bn := [Jnlnn]-1
, 

which diverges. 

Section 9.4 
1. (a) Take Mn := 1/n2 in the Weierstrass M-Test. 
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(c) Since I sin yl ~ lyl, the series converges for all x. But it is not uniformly convergent on R. 

If a > 0, the series is uniformly convergent for lxl ~a. 
(d) If 0 ~ x ~ 1, the series is divergent. If 1 < x < oo, the series is convergent. It is uniformly 

convergent on [a, oo) for a > 1. However, it is not uniformly convergent on (1, oo). 

4. If p = oo, then the sequence (Ia" 11
'") is not bounded. Hence if lx0 I > 0, then there are infinitely 

many keN with lakl > 1/lx01 so that lakx~l > 1. Thus the series is not convergent when 

x0 :f: 0. 

5. Suppose that L := lim( Ia" 1/lan+l D exists and that 0 < L < oo. It follows from the Ratio Test 

that 'Lanx" converges for lxl <Land diverges for lxl > L. The Cauchy-Hadamard Theorem 

implies that L = R. 

6. (a) R = oo 
(d) 1 

8. Use lim(n 1'"> = I. 

(b) R = oo 
(e) R = 4 

10. By the Uniqueness Theorem 9.4.13, a" = (-1)"a" for all n. 

(c) R = 1/e 
(f) R = 1. 

12. Ifn eN, there exists a polynomial P" such that t<">(x) = e-l/x
2 
P"(lfx) for x :f: 0. 

13. Let g(x) := 0 for x ~ 0 and g(x) := e-l/x
2 

for x < 0. Show that g<">(O) = 0 for all n. 

16. Substitute - y for x in Exercise 15 and integrate from y = 0 to y = x for lx I < 1, which is 

justified by Theorem 9.4.11. 

19. J; e-'
2
dt = "E:0 (-1)"x2n+ 1/n!(2n + 1) forx e R. 

12 2 rr 1 · 3 · 5 · · · (2n - 1) 
20. Apply Exercise 14 and fa" (sinx) "dx = - · 

6 
. 

2 2 · 4 · · · · 2n 

Section 10.1 

I. (a) Since t; - ~(t;) ~ X;_ 1 and X; ~ t; + ~(t;), then 0 ~X; - xi-l ~ U(t;). 
(b) Apply (a) to each subinterval. 

2. (b) Consider the tagged partition {([0, 1], 1), ([1, 2], 1), ([2, 3], 3), ([3, 4], 3)}. 

3. (a) If P = {([x;_ 1• X;], t;)}7= 1 and if tk is a tag for both subintervals [xk-l, xk] and [xk, xk+ 1], 

we must have tk = xk. We replace these two subintervals by the subinterval [xk-l' xk+l] 
with the tag tk, keeping the ~-fineness property. 

(b) No. 
(c) If tk e (xk-l, xk), then we replace [xk-l, xk] by the two intervals [xk-l, tk] and [tk, xk] both 

tagged by tk, keeping the ~-fineness property. 

4. If xk-l ~ 1 ~ xk and if tk is the tag for [xk-l, xk], then we cannot have tk > 1, since then tk -

~(tk) = !<tk + 1) > l.Similarly,wecannothavetk < 1,sincethentk +~(tk) = !<tk + 1) < 1. 
Therefore t k = 1. 

5. (a) Let ~(t) := 1 min{ It- 11.1t- 21, It- 31} if t :f: 1, 2, 3 and ~(t) := 1 fort= 1, 2, 3. 

(b) Let ~2 (t) := min{~(t), ~ 1 (t)}, where~ is as in part (a). 

7. (a) F1 (x) := (2/3)x312 + 2x 112, 

(b) F2(x) := (2/3)(1 - x)3
'
2

- 2(1 - x) 112
, 

(c) F3(x) := (2/3)x3'
2(lnx- 2/3) for x e (0, 1] and F3 (0) := 0, 

(d) F4 (x) := 2x 112(lnx- 2) for x e (0, 1] and F4 (0) := 0, 

(e) Fs(x) := -.J1- x 2 + Arcsinx. 

(f) F6(x) := Arcsin(x - 1). 

8. The tagged partition P z need not be ~8 -fine, since the value ~8 (z) may be much smaller than 

~E(xj). 
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9. If I were integrable, then Io1 I ~ Io1 
sn = 1/2 + 1/3 + · · · + 1/(n + 1). 

10. Weenumeratethenonzerorationalnumbersasrk = m1Jnk anddefine&e<m~c/nk) := ef(nlc2/c+l) 
and &

6
(x) := 1 otherwise. 

12. The function M is not continuous on [-2, 2]. 

13. L 1 is continuous and L~ (x) = 11 (x) for x ::f= 0, so Theorem 10.1.9 applies. 

15. We have c; (x) = (3/2)x 1
'
2 cos(l/x) + x-112 sin(l/x) for X > 0. Since the first term inc; has 

a continuous extension to [0, 1], it is integrable. 

16. We have Ci(x) = cos(l/x) + (1/x) sin(l/x) for x > 0. By the analogue of Exercise 7.2.12, 
the first term belongs to 'R.[O, 1]. 

17. (a) Take q>(t) := t 2 + t- 2 so Erp = 0 to get 6. 

(b) Take q>(t) := ../i so Erp = {0} to get 2(2 +In 3). 

(c) Take q>(t) := Ji-=1 so Erp = {1} to get 2 Arctan 2. 

(d) Take q>(t) := Arcsint so Erp = {1} to get ~7r. 

19. (a) In fact /(x) := F'(x) = cos(7r/x) + (7r/x) sin(7r/x) for x > 0. We set /(0) := 0, 
F'(O) := 0. Note that f is continuous on (0, 1]. 

(b) F(alc) = 0 and F(blc) = ( -1)/c I k. Apply Theorem 10.1.9. 

(c) If 1/1 e 'R.*[O, 1], then E~=l 1/ k !:: E~=l I:J: 1/1 !:: Io1 1/1 for all n e N. 
k 

20. Indeed, sgn(/(x)) = ( -1)/c = m(x) on [ale, b/c] so m(x) · f(x) = lm(x)/(x)l for x e [0, 1]. 
Since the restrictions of m and lml to every interval [c, 1] for 0 < c < 1 are step func
tions, they belong to R[c, 1]. By Exercise 7.2.11, m and lml belong to 'R[O, 1] and Io1 m = 

E:1(-1)/c/k(2k + 1) and Id lml = 1:~ 1 1/k(2k + 1). 

21. Indeed, q>(x) = <l>'(x) =I cos(7r/x)l + (7r/x) sin(7r/x) · sgn(cos(7r/x)) for x '- E by Exam
ple 6.1.7(c). Evidently qJ is not bounded near 0. If x e [alc,blc], then q>(x) = lcos(7r/x)l+ 

(7r/x)l sin(7r/x)l so that I:k l({Jl = <l>(bk)- <l>(ak) = 1/k, whence ll/>1 '- 'R*[O, 1]. 
k 

22. Here 1/f(x) = w'(x) = 2xl COS(7r/x)l + 1r sin(7r/X). sgn(cos(7r/x)) for X'- {0} u El by Ex
ample 6.1.7(b). Since 1/1 is bounded, Exercise 7.2.11 applies. We cannot apply Theorem 7.3.1 
to evaluate I: 1/1 since E is not finite, but Theorem 10.1.9 applies and 1/1 e 'R[O, 1]. Corollary 
7.3.15 implies that 11/11 e 'R[O, 1]. 

23. If p ~ 0, then mp!:: fp!:: Mf, where m and M denote the infimum and the supremum off 
on [a, b], so that m I: p !:: fa fp !:: M I: p. If I: p = 0, the result is trivial; otherwise, the 
conclusion follows from Bolzano's Intermediate Value Theorem 5.3.7. 

24. By the Multiplication Theorem 10.1.14, fg e 'R.*[a, b). If g is increasing, then g(a)f!:: fg!:: 
g(b)f so that g(a) I: I !:: I: fg !:: g(b) I: f. Let K(x) := g(a) I: f + g(b) I: f, so that K 
is continuous and takes all values between K(b) and K(a). 

Section 10.2 
2. (a) If G(x) := 3x 1

'
3 for x e [0, 1] then fc1 

g = G(l)- G(c) ~ G(l) = 3. 

(b) We have Ic1 (1/x) dx =Inc, which does not have a limit in R as c ~ 0. 

3. Here I; (1- x)- 1
'
2 dx = 2- 2(1- c) 112 ~ 2 as c ~ 1-. 

5. Because of continuity, g 1 e 'R.*[c, 1] for all c e (0, 1). If w(x) := x-112, then lg1 (x)l !:: w(x) 
for all x e [0, 1]. The "left version" of the preceding exercise implies that g1 e 'R.*[O, 1] and 
the above inequality and the Comparison Test 10.2.4 imply that g1 e .C[O, 1]. 

6. (a) The function is bounded on [0, 1] (use l'Hospital) and continuous in (0, 1). 
(c) If x e (0, 41 the integrand is dominated by l(ln !> lnxl. If x e £!, 1) the integrand is 

dominated by I (In 4) ln(l - x) 1. 
7. (a) Convergent (b, c) Divergent (d, e) Convergent (t) Divergent. 

-

1 

1 

1: 

1« 

1~ 
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10. By the Multiplication Theorem 10.1.4, fg e 'R.*[a, b]. Since 1/(x)g(x)l ~ Bl/(x)l, then fg e 

.C[a, b] and 11/gll ~ Bll/11. 

11. (a) Let f(x) := ( -1)k2k I k for x e [ck-l, ck) and /(1) := 0, where the ck are as in Example 

10.2.2(a). Then /+ := max{/, 0} ' 'R.*[O, 1]. 

(b) Use the first formula in the proof of Theorem 10.2.7. 

13. (.jj) If /(x) = g(x) for all x e [a, b], then dist(/, g) =I: If- gl = 0. 

(lli) dist(f, g)= I: If- gl =I: lg- /1 = dist(g, /). 

(jk) dist(f, h)= I: If- hi ~I: If- gl +I: lg- hi= dist(/, g)+ dist(g, h). 

16. If(/") converges to fin .C[a, b], given e > 0 there exists K(el2) such that if m, n :::=: K(el2) 

then 11/m- /II< el2and II/"- /II< e12. Therefore 11/m- /"II~ 11/m- /II+ II/- /"II< 

el2 + el2 =e. Thus we may take H(e) := K(el2). 

18. If m > n, then llgm- g" II ~ 11n +11m-+ 0. One can take g := sgn. 

19. No. 

20. We can take k to be the 0-function. 

Section 10.3 

1. Let b :::=: max{a, 11cS(oo)}. IfP is a cS-fine partition of [a, b], show that Pis a cS·-fine subpartition 

of [a, oo). 

3. Iff e .C[a, oo), apply the preceding exercise to 1/1. Conversely, if I; 1/1 < e for q > p :::=: 

K(e), then I Iaq I- I: !I ~I; 1/1 < e so both limy I: f and limy I: 1/1 exist; therefore 

f, 1/1 e 'R.*[a, oo) and so f e .C[a, oo). 

5. If/. g e .C[a, oo), then f, 1/1. g and lgl belong to 'R.*[a, oo), so Example 10.3.3(a) implies that 

f + g and 1/1 + lgl belong to 'R.*[a, oo) and that Ia00
(l/l + lgl) = Iaoo 1/1 + Iaoo lgl. Since 

1/ + gl ~ 1/1 + lgl, it follows that I: If+ gl ~ I: 1/1 +I: lgl ~ Iaoo 1/1 + Iaoo lgl, whence 

II/+ gil ~ 11/11 + llgll. 

6. Indeed, It ( 1 I x) dx = ln y, which does not have a limit as y -+ oo. Or, use Exercise 2 and the 

fact that J:P (llx) dx = ln 2 > 0 for all p :::=: 1. 

8. If y > 0, then It cos x dx = sin y, which does not have a limit as y -+ oo. 

9. (a) We have It e-sx dx = (lls)(l - e-sy) -+ 11s. 

(b) Let G(x) := -(lls)e-sx for x e [0, oo), so G is continuous on [0, oo) and G(x)-+ 0 as 

x -+.oo. By the Fundamental Theo~em 10.3.5, we have I; g = -G(O) = 11s. 

12. (a) If x :::=: e, then (lnx)lx :::=: 11x. 

(b) Integrate by parts on [ 1, y] and then let y -+ oo. 

13. (a) I sinxl :::=: 11.J2 > 112 and 11x > 11(n + 1)tr for x e (ntr + trl4, ntr + 3trl4). 

(b) If y > (n + 1)tr, then It IDI :::=: (114)(111 + 112 + · · · + 11(n + 1)). 

15. Let u = cp(x) = x 2• Now apply Exercise 14. 

16. (a) Convergent {b, c) Divergent (d) Convergent (e) Divergent 

(t) Convergent. 

17. (a) If / 1 (x) := sinx, then / 1 ''R.*[O, oo). In Exercise 14, take / 2(x) := x-1/ 2 sinx and 

cp2(x) := 11 -/X. 
(c) Take /(x) := x- 112 sinx and cp(x) := (x + 1)1x. 

18. (a) f(x) := sinx is in 'R.*[O, y], and F(x) := J; sint dt = 1 - cosx is bounded on [0, oo), 

and cp(x) := 11x decreases monotonely to 0. 

(c) F(x) := J; cost dt = sinx is bounded on [0, oo) and cp(x) := x-112 decreases mono

lonely to 0. 
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19. Let u = cp(x) := x 2
• 

20. (a) If y > 0, then fri e-x dx = 1 - e-Y ~ 1 so e-x e n.•[o, oo). Similarly e-lxl = 
ex E 'R* ( -oo, 0]. 

2 2 
(c) 0 ~e-x ~e-x for lxl ?:: I, so e-x e 'R•[o, oo). Similarly on (-oo, 0]. 

Section 10.4 

1. (a) Converges to 0 at x = 0, to 1 on (0, 1]. Not uniform. Bounded by I. Increasing. Limit= 1. 
(c) Converges to 1 on [0, 1), to~ at x = 1. Not uniform. Bounded by 1. Increasing. Limit= 1. 

2. (a) Converges to .fi on [0, 1]. Uniform. Bounded by I. Increasing. Limit= 2/3. 
(c) Converges to~ at x = 1, to 0 on (1, 2]. Not uniform. Bounded by 1. Decreasing. 

Limit= 0. 

3. (a) Converges to 1 at x = 0, to 0 on (0, 1]. Not uniform. Bounded by 1. Decreasing. 
Limit= 0. 

(c) Converges to 0. Not uniform. Bounded by 1/e. Not monotone. Limit= 0. 
(e) Converges to 0. Not uniform. Bounded by 1/.Jfe. Not monotone. Limit= 0. 

4. (a) The Dominated Convergence Theorem applies. 
(b) f~c(x) ~ 0 for x e [0, 1), bu_t (/k(l)) is not bounded. No obvious dominating function. 

Integrate by parts and use (a). The result shows that the Dominated Convergence Theorem 
does not apply. 

6. Suppose that (jk(c)) converges for some c e [a, b]. By the Fundamental Theorem, f~c(x)

f~c(c) = fcx J;. By the Dominated Convergence Theorem, fcx 1; ~ J; g, whence (flc(x)) con

verges for all x e [a, b]. Note that if fk(x) := (-l)k, then (/Jc(x)) does not converge for any 
X E [a, b). 

7. Indeed, g(x) := sup{/Jc(x): keN} equals 1/k on (k -1, k], so that fon g = 1 + ~ + · · · + ~· 
Hence g ~ 'R*[O, oo). 

10. (a) If a > 0, then l(e-rx sinx)/xl ~ e-ax fortE Ja :=(a, oo). If tk E Ja and tic~ t0 E Ja' 

then the argument in 10.4.6(d) shows that E is continuous at t0 • Also, if tic ~ 1, then 
l(e-'~:x sinx)/xl ~e-x and the Dominated Convergence Theorem implies that E(tlc) ~ 0. 
Thus E(t) ~ 0 as t ~ oc. 

(b) It follows as in 10.4.6(e) that E' (t0) = - J0
00 

e-tox sinx dx = -1/(t~ + 1). 

(c) By 10.1.9, E(s)- E(t) = f/ E'(t)dt =- f/(t 2 + l)- 1dt = Arctant- Arctans for 
s, t > 0. But E(s) ~ 0 and Arctans ~ 7r/2 ass~ oo. 

(d) We do not know that E is continuous as t ~ 0+. 

I2: Fix x e /.As in 10.4.6(e), if t,t0 e [a,b], there exists tx between t,t0 such that f(t,x)

f(t0 , x) = (t- t0 )¥,(tx, x). Therefore a(x) ~ [f(t, x)- f(t0 , x)]/(t- t0) ~ cu(x) when 
t ::/= t0 . Now argue as before and use the Dominated Convergence Theorem 10.4.5. 

13. (a) If (sic) is a sequence of step functions converging to f a.e., and (tic) is a sequence of 
step functions converging to g a.e., Theorem 10.4.9(a) and Exercise 2.2.16 imply that 
(max(slc, tic}) is a sequence of step functions that converges to max(/, g} a.e. Similarly, 
for min(/, g}. 

14. (a) Since f1c e M[a, b] is bounded, it belongs to 'R*[a, b). The Dominated Convergence 
Theorem implies that f e 'R*[a, b]. The Measurability Theorem 10.4.11 now implies that 
f e M[a,b]. 

(b) Since t .,_. Arctan t is continuous, Theorem 10.4.9(b) implies that f1c :=Arctan o gk e 

M[a, b]. Further, 1/Jc(x)l ~ ~7r for x e [a, b). 
(c) If glc ~ g a.e., it follows from the continuity of Arctan that f1c -+ f a.e. Parts (a,b) imply 

that f e M[a, b) and Theorem 10.4.9(b) applied to cp =tan implies that g =tan of e 
M[a,b]. 

.... 
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15. (a) Since 1£ is bounded, it is in 'R.*[a, b] if and only if it is in M[a, b]. 

(C) 1 E' = 1 - 1 E. 

(d) 1£uF(x) = max{1£(x). 1F(x)} and 1EnF(x) = min{1£(x).1F(x)}. Further, E \ F = 
EnF'. 

(e) If (Ek) is an increasing sequence in M[a. b], then (1£ ) is an increasing sequence in 
k 

M[a. b] with 1£(x) =lim 1£ (x), and we can apply Theorem 10.4.9(c). Similarly, (1F) 

is a decreasing sequence in Nfla. b] and 1F(x) =lim 1F (x). A: 
k 

(f) Let An := u~=l Ek, so that (An) is an increasing sequence in M[a, b] with U~t An= E, 
so (e) applies. Similarly, if Bn := n~=t Fk, then (Bn) is a decreasing sequence in M[a, b] 

with n~1 Bn =F. 

16. (a) m(fl') =I: 0 = 0 and 0 ~ 1E ~ 1 implies 0 ~ m(E) =I: 1£ ~ b- a. 
(b) Since 1[c.dJ is a step function, then m([c, d))= d- c. 

(c) Since 1£' = 1 -1£, we have m(E') = I:o- 1£) = (b- a)- m(E). 

(d) Note that 1EuF + 1EnF = 1E + 1r 
(f) If (Ek) is increasing in M[a. b] to E, then (1£ ) is increasing in M[a, b] to 1E. The 

k 
Monotone Convergence Theorem 1 0.4.4 applies. 

(g) If (Ck) is pairwise disjoint and En := U~=l Clc for n e N, then m(En) = m(C1) + · · · + 
m(Cn). Since u:l ck = U~t En and (En) is increasing, (t) implies that m<U:t Ck) = 
limn m(En) =limn L~=l m(Ck) = L~l m(C,). 

Section 11.1 
1. If lx- ul < inf{x. 1- x}, then u < x + (1- x) = 1 and u > x- x = 0, so that 0 < u < 1. 

3. Sincetheunionoftwoopensetsisopen, thenG 1 U · · · U Gk U Gk+l = (G 1 U · · · U Gk) U Gk+l 

is open. 

5. The complement of N is the union ( -oo, 1) U (1. 2) U ···of open intervals. 

7. Corollary 2.4.9 implies that every neighborhood of x in Q contains a point not in Q. 

10. x is a boundary point of A ~ every neighborhood V of x contains points in A and points in 
C(a) ~ xis a boundary point of C(a). 

12. The sets F and C (F) have the same boundary points. Therefore F contains all of its boundary 
points ~ C(F) does not contain any of its boundary points ~ C(F) is open. 

13. x e A ::l ~ x belongs to an open set V 5; A ~ x is an interior point of A. 

15. Since A- is the intersection of all closed sets containing A, then by 11.1.5(a) it is a closed 
set containing A. Since C (A-) is open, then z e C (A-) ~ z has a neighborhood V, (z) in 
C(A -) ~ z is neither an interior point nor a boundary point of A. 

19. If G :F fl' is open and x e G, then there exists E > 0 such that V, (x) s; G, whence it follows 
that a : = x - E is in Ax. 

21. If ax < y < x then since ax := inf Ax there exists a' e Ax such that ax <a' ~ y. Therefore 
(y. x] 5; (a', x] 5; Gandy e G. 

23. If x e 1F and n eN, the interval In in Fn containing x has length 1/3n. Let Yn be an endpoint of 

In with Yn :/: x. Then Yn e 1F (why?) and Yn -+ x. 

24. As in the preceding exercise, take zn to be the midpoint of ln. Then zn 'F (why?) and zn-+ x. 

Section 11.2 

1. Let Gn := (1 + 1/n, 3) for n eN. 

3. Let G n := (1/2n, 2) for n e N. 
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5. If g 1 is an open cover of K 1 and g 2 is an open cover of K 2 , then g 1 U g 2 is an open cover of 
K 1 UK2 • 

7. Let K,. := [0, n] for n eN. 

10. SinceK :1= 0isbounded,itfollowsthatinf K existsinR.If K,. := {k e K: k ~ (inf K) + 1/n}, 
then K,. is closed and bounded, hence compact. By the preceding exercise n K,. ::/= ll', but if 
Xo En K,., then Xo E K and it is readily seen that Xo = inf K. [Alternatively, use Theorem 
11.2.6.] 

12. Let 0 :1= K s; R be compact and let c e R. If n eN, there exists x,. e K such that 
sup{lc- xl: x e K}- 1/n < lc- x,.l· Now apply the Bolzano-Weierstrass Theorem. 

15. Let F1 := {n : n e N} and F2 := {n + 1/n : n e N, n ~ 2}. 

Section 11.3 
1. (a) If a < b ~ 0, then /-1 

(/) = 0. If a < 0 < b, then f- 1 
(/) = ( -.../b, ../b). If 0 ~a < b, 

then /-1
(/) =(-../b. -Ja> U (vfa, ../b). 

3. /- 1(G) = /-1([0, e))= [1, 1 + e2
) = (0, 1 + e2

) n 1. 

4. Let G := (1/2, 3/2). Let F := [ -1/2, 1/2]. 

8. Let f be the Dirichlet Discontinuous Function. 

9. First note that if A s; Rand x e R, then we have x e /- 1 (R \A) <===> f(x) e R \A <==> 
f(x) ~ A <===> x ~ /- 1 (A) <==> x e R \ f- 1 (A); therefore, /-1 (R \A) = R \ f- 1 (A). 
Now use the fact that a set F s; R is closed if and only if R \ F is open, together with 
Corollary 11.3.3. 

Section 11.4 
1. If P; := (x;, Y;) fori= 1, 2, 3, then d 1 (P1, P2) ~ (lx1 - x31 + lx3 - x21) + (ly1 - Y31 + IY3 -

y2 1) = d 1 (P1• P3) + d1 (P3, P2). Thus d 1 satisfies the Triangle Inequality. 

2. Since 1/(x)- g(x)l ~ 1/(x)- h(x)l + lh(x)- g(x)l ~ d
00

(/, h)+ d
00

(h, g) forallx E [0, 1], 
it follows that d

00
(/. g)~ d

00
(/, h)+ d

00
(h, g) and d

00 
satisfies the Triangle Inequality. 

3. We haves :1= t if and only if d(s, t) = 1. If s :1= t, the value of d(s, u) + d(u. t) is either 1 or 2 
depending on whether u equals s or t, or neither. 

4. Since d
00

(P,., P) = sup{lx,.- xi.IY,.- yl}, if d
00

(P,., P)-+ 0 then it follows that both 
lx,.- xl-+ 0 and IY,.- yl-+ 0, whence x,. -+ x and Y,. -+ y. Conversely, if x,. -+ x and 
Y,. -+ y, then lx,.- xl -+ 0 and IY,.- Yl-+ 0, whence d

00
(P,., P)-+ 0. 

6. If a sequence (X 
11

) in S Converges tO X relative tO the discrete metric d, then d (X 
11

, X) -+ 0 which 
implies that x,. = x for all sufficiently large n. The converse is trivial. 

7. Show that a set consisting of a single point is open. Then it follows that every set is an open set, 
so that every set is also a closed set. (Why?) 

10. Let G s; s2 be open in (S2, d2) and let X E ,-1(G) so that f(x) E G. Then there exists an 
£-neighborhood v£ (/ (x)) s; G. Since I is continuous at X' there exists a &-neighborhood vc5 (x) 

such that f(Vc5(x)) s; V£(/(x)). Since x e f- 1(G) is arbitrary, we conclude that /-1(G) is 
open in ( S 1 , d 1). The proof of the converse is similar. 

11. Let g = {Gal be a cover of /(S) s; R by open sets in R. It follows from 11.4.11 that each 
set f- 1(Ga) is open in (S, d). Therefore, the collection {/-1(Ga)} is an open cover of S. 

Since ( S, d) is compact, a finite subcollection { f- 1 ( G ) • · · · , f -l ( G ) } covers S, whence it 
al aN 

follows that the sets { G a • · · · , G a } must fonn a finite subcover of g for f ( S). Since Q was an 
• I N 

arbttrary open cover of /(S), we conclude that f(S) is compact. 

-----



INDEX 

A 
Abel's Lemma, 264 

Test, 265, 30 1 
Absolute: 

convergence,253ff. 
maximum, 130 
minimum, 130 
value, 31 

Absurdum, see Reductio, 342 
Additive function, 111, 129, 152 
Additivity Theorem, 206, 280 
Algebraic proper.ties of IR, 22 ff. 
Almost everywhere, 214 
Alternating series, 263 ff. 
And/or, 2, 335 
Antiderivative, 210 
Antipodal points, 135 
Approximate integration, 219 ff., 351 ff. 
Approximation theorems, 140 ff. 
Archimedean Property, 40 
Arithmetic Mean, 28, 246 
Axiom, 334 

B 
Base, 13, 245 
Basepoint, 212, 217 
Bernoulli, Johann, 176 
Bernoulli's Inequality, 29, 173 
Bernstein Approximation Theorem, 144 
Bessel functions, 172 
Biconditional, 337 
Bijection, 8 
Binary representation, 47 ff. 
Binomial expansion, 273 
Bisection method, 132 
Bolzano, Bernhard, 119 
Bolzano Intermediate Value Theorem, 

133 
Bolzano-Weierstrass Theorem: 

for infinite sets, 323 
forsequences, 78,322 

Bound: 
lower, 35 
upper, 35 

Boundary point, 318 
Bounded Convergence Theorem, 237 

function, 39, 105, 129, 147 
sequence,60 
set, 35, 333 

Boundedness Theorem, 200 
Bridge, 13 

c 
Canis lupus, 170 
Cantor, Georg, 21 

set IF, 317 
Theorem of, 21, 47, 50 

Caratheodory 's Theorem, 161 
Cartesian Product, 4 
Cauchy, A.-L., 52, 96, 121 

Condensation Test, 95 
Convergence Criterion, 82, 91, 203, 

232,268,279 
Inequality, 219 
Mean Value Theorem, 178 
Root Test, 257 
sequence, 81, 330 

Cauchy-Hadamard Theorem, 269 
Chain Rule, 162 
Change of Variable Theorem, 214, 218, 

283 
Chartier-Dirichlet Test, 301 
Closed interval, 44 

set, 313, 3 31 
Closed Set Properties, 314, 315 · 1 

Closure of a set, 319 
Cluster point, 97, 315 
Compact set, 319 ff. 
Compactness, Preservation of, 325, 332 
Comparison Tests, 93 ff., 290 
Complement of a set, 3 
Complete metric space, 330 
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Completeness Property of Ill, 34 ff., 
esp. 37 
Theorem, 293 

Composition of functions, 9, 127 
Composition Theorem, 216 
Conclusion, 336 
Conditional, 336 

convergence, 253 
Conjunction, 335 
Consistency Theorem, 277 
Continuity, 120 ff., 331 ff. 

global, 323 ff., 332 
uniform, 136 ff. 

Continuous Extension Theorem, 140 
Inverse Theorem, 152, 326 

Contractive sequence, 84 
Contradiction, 335 

proof by, 342 
Contrapositive, 337 

proof by, 341 
Convergence: 

absolute, 253 
interval of, 269 
in a metric space, 329 
radius of, 269 
of a sequence, 54 
of a sequence of functions, 227 ff. 
of a series, 89 
of a series of functions, 266 ff. 
of integrals, 301 ff. 
pointwise, 227 
uniform, 229 ff. 

Converse, 337 
Convex function, 187 ff. 
Cosine function, 249 
Countability: 

ofN x N, 18,344 
ofQ, 19 
of Z, 18 

Countable: 
additivity, 311 
set, 18 ff. 

Counter-example, 339 
Curve, space-filling, 355 
Cover, 319 

D 
D' Alembert's Ratio Test, 258 
Darboux Intermediate Value Theorem, 

174 
Decimal representation, 49 

periodic, 49 
Decreasing function, 149, 170 

sequence,69 
DeMorgan's Laws 3, 336 
Density Theorem, 42 
Denumerable set (see also countable set), 

18 
Derivative, 158 ff. 

higher order, 184 
second, 184 

Descartes, Rene, 157, 193 
Difference: 

symmetric, 11 
of two functions, 105 
of two sequences, 61 

Differentiable function, 158 
uniformly, 176 

Differentiation Theorem, 270 
Dini, Ulisse, 238 
Dini's Theorem, 238 
Direct image, 7 

proof, 340 
Dirichlet discontinuous function, 122, 

202,204,215,277,307 
integral, 297, 306 
test, 264, 301 

Discontinuity Criterion, 121 
Discrete metric, 329 
Disjoint sets, 3 
Disjunction, 335 
Distance, 33, 292 
Divergence: 

of a function, 98, 102 
of a sequence, 54, 77, 86 ff. 

Division, in IR, 24 
Domain of a function, 5 
Dominated Convergence Theorem, 303 ff. 
Double implication, 337 

negation,335 

E 
Element, of a set, 1 
Elliptic integral, 273 
Empty set 0, 3 
Endpoints of intervals, 44 
Equi-integrability, 302 

Theorem, 303 
Equivalence, logical, 335 
Euler, Leonhard, 7 4, 96 
Euler's constant C, 262 

number e, 73, 241 



Even function, 167, 209 
number, 2, 25 

Excluded middle, 335 
Existential quantifier 3, 338 
Exponential function, 239 ff. 
Exponents, 24 
Extension of a function, 139 ff. 
Extremum, absolute, 130 

relative, 168, 171, 187 

F 
1F ( = Cantor set), 317 
Falsity, 335 
Fermat, Pierre de, 157, 193 
Fibonacci sequence, 54 
Field, 23 
c5-Fine partition, 145, 275 
Finite set, 16 ff. 
First Derivative Test, 171 
Fluxions, 157 
Fresnel Integral, 300 
Function(s), 5 ff. 

additive, 111, 129, 152 
Bessel, 172 
bijective, 8 
bounded,39, 105, 129ff. 
composition of, 9, 127 
continuous, 120 ff., 331 ff. 
convex, 187 ff. 
decreasing, 149, 170 
derivative of, 158 
difference of, 105 
differentiable, 158 
direct image of, 7 
Dirichlet, 122, 2Q2, 204, 215, 277 
discontinuous, 120 
domain of, 5 
even, 167,209 
exponential, 239 ff. 
gauge, 145 
graph of, 5 
greatest integer, 124, 214 
hyperbolic, 252 
image of, 6 
increasing, 149, 170 
injective, 8 
integrable, 196, 276, 295 ff., 308 ff. 
inverse, 8, 152, 164 ff. 
inverse cosine, 10, 
inverse image of, 7 
inverse sine, 10 

jump of, 150 
limit of, 98 ff. 
Lipschitz, 138 
logarithm, 243 ff. 
measurable, 306 ff. 
metric, 328 
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monotone, 149, 170 
multiple of, 105 
nondifferentiable, 159, 354 
nth root, 42, 152 ff. 
odd, 167,209 
one-one, 8 
onto, 8 
oscillation, 348 
periodic, 144 
piecewise linear, 142 
polynomial, 108, 126, 143 
power, 154, 244 
product of, 105 
quotient of, 105 
range of, 5 
rational, 108, 126 
rational power, 154 
restriction of, 1 0 
sequence of, 227 ff. 
series of, 266 ff. 
signum, 102, 122 
square root, 10, 42 
step, 141, 205 
sum of, 105 
surjective, 8 
Tho mae's, 122, 200, 215 
Translate, 202 
trigonometric, 126, 246 ff. 
values of, 6 

Fundamental Theorems of Calculus, 
210 ff., 281 ff., 297 ff. 

G 
Gallus gallus, 335 
Gauge, 145 ff., 238, 275 ff., 350 
Generalized Riemann integral, 27 4 ff. 
Geometric Mean, 28, 246 

series, 90 
Global Continuity Theorem, 324, 332 
Graph, 5 
Greatest integer function, 124, 217 

lower bound ( = infimum), 36 

H 
Hadamard-Cauchy Theorem, 269 

.._ __ 



384 INDEX 

Hake's Theorem, 288, 295 ff. 
Half-closed interval, 44 
Half-open interval, 44 
Harmonic series, 70, 91, 253 
Heine-Borel Theorem, 321 
Henstock, Ralph, 275 
Higher order derivatives, 184 
Horizontal Line Tests, 8 
Hyperbolic functions, 252 
Hypergeometric series, 263 
Hypothesis, 336 

induction, 13 

I 
lmage,6, 7 
Implication, 336 
Improper integrals, 259, 274, 287 ff. 
Increasing function, 149, 170 

sequence,69 
Indefinite integral, 212, 217, 283 
Indeterminate foons, 176 ff. 
Indirect proofs, 341 
Induction, Mathematical, 12 ff. 
Inequality: 

Arithmetic-Geometric, 28, 246 
Bernoulli, 29, 173 
Schwarz, 219 
Triangle, 31, 3 28 

Infimum, 36 
Infinite limits, 114 ff. 

series, 89 ff., 253 ff. 
set, 16 ff. 

Injection, 8 
Injective function, 8 
Integers, 2 
Integral: 

Dirichlet, 297, 306 
elliptic, 273 
Fresnel, 300 
generalized Riemann, 27 4 ff. 
improper, 259,287 ff. 
indefinite, 212, 217, 283 
Lebesgue, 193,274,290ff. 
Riemann, 196 ff. 
Test, for series, 259 

Integration by parts, 216, 285 
Interchange Theorems: 

relating to continuity, 234 
relating to differentiation, 235 
relating to integration, 237, 301 ff. 

relating to sequences, 233 ff. 
relating to series, 267 ff. 

Interior Extremum Theorem, 168 
of a set, 318 
point, 318 

Intermediate Value Theorems: 
Bolzano's, 133 
Darboux 's, 17 4 

Intersection of sets, 3, 4 
lnterval(s), 44 ff. 

characterization of, 45 
of convergence, 269 
length of, 44 
nested, 45 ff. 
partition of, 145, 194 
Preservation of, 135 

Inverse function, 8, 152 ff., 164 ff. 
image, 7 

Irrational number, 24 
Iterated sums, 256 

suprema, 44 

J 
Jump, of a function, 150 

K 
K (£)-game, 56 
Kuala Lumpur, 335 
Kurzweil, Jaroslav, 275, 302 

L 
Lagrange, J.-L., 183 

form of remainder, 185 
Least upper bound ( = supremum), 35 
Lebesgue, Henri, 193,214,274,349 

Dominated Convergence Theorem, 304 
Integrability Theorem, 215, 349 
integral, 193, 274, 290 ff. 
measure, 311 

Leibniz, Gottfried, 97, 157, 193 
Alternating Series Test, 263 
Rule, 191 

Lemma,341 
Length, of an interval, 44 
L'Hospital, G. F., 176 

Rules, 176 ff. 
Limit: 

Comparison Test, 93,257 
of a function, 98 ff. 
inferior, 7 4 



infinite, 114 ff. 
one-sided, 111 
of a sequence, 54 
of a series, 89 
superior, 74, 269 

Line tests, 8 
Lipschitz condition, 138 
Location of Roots Theorem, 132, 147 
Logarithm, 243 ff. 
Logical equivalence, 335 
Lower bound, 35 

M 
M (=collection of measurable sets), 311 
M-Test, of Weierstrass, 268, 354 ff. 
Mapping, see Function 
Mathematical Induction, 12 ff. 
Maximum, absolute, 130 

relative, 168 
Maximum-minimum Theorem, 131, 147, 

325 
Mean Value Theorem: 

Cauchy form, 178 
for derivatives, 169 ff. 
for integrals, 209, 287 

Measurability Theorem, 308 
Measurable function, 306 ff. 

set, 311 
Measure, Lebesgue, 311 

zero, see Null set 
Meat grinder, 6 
Member of a set, 1 
Mesh ( = norm) of a partition, 195 
Metric function, 328 

space, 327 ff. 
Middle, excluded, 335 
Midpoint Rule, 222 ff., 352 
Minimum, absolute, 130 

relative, 168 
Monotone Convergence Theorem, 69, 304 

function, 149 ff. 
sequence,69 
Subsequence Theorem, 78 

Multiple of a sequence, 61 
Multiplication Theorem, 285 

N 
N ( = collection of natural numbers), 2 
Natural numbers, 2 
Negation, 335 

:r-
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Negative numbers, 25 
Neighborhood, 33, 312, 329 
Nested Intervals Property, 46, 80 
Newton, Isaac, 96, 157, 193 
Newton-Leibniz Formula, 274 
Newton's Method, 189 ff. 
Nondifferentiable functions, 159, 354 
Norm of a function, 230, 292 

of a partition, 195 
Null set, 214 
Number(s): 

0 

even,2, 15 
irrational, 24 
natural, 2 
rational, 2, 24 
odd,2, 15 
real, 2, 22 ff. 

Odd function, 167, 209 
number, 2, 25 

One-one function, 8 
One-sided limit, 111 
Onto, 8 
Open cover, 319 

interval, 44 
set,313,331 
Set Properties, 313, 315 

Order Properties of IR, 25 ff. 
Ordered pair, 4 
Oscillation, 348 ff. 

p 

P ( = positive class), 25 
Partial sum, 89, 267 

summation formula, 264 
Partition, 145, 194 

8-fine, 145, 275 
mesh of, 195 
norm of, 195 
tagged, 145, 195 

Peak, 78 
Periodic decimal, 49 

function, 144 
Piecewise linear function, 142 
Pigeonhole Principle, 343 
Point: 

boundary, 318 
cluster, 97, 315 
interior, 318 
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Pointwise convergence, 227 
Polynomial, Bernstein, 143 

functions, 126 
Taylor, 184 

Positive class P, 25 
Power, of a real number, 154, 244 

functions, 244 
series, 268 ff. 

Preservation: 
of Compactness, 325, 332 
of Intervals, 135 

Primitive of a function, 210 
Principle of Mathematical Induction, 

12 ff. 
Product: 

Cartesian, 4 
of functions, 105 
of sequences, 61 
of sets, 4 
Rule, 160 
Theorem, 216 

Proof: 
by contradiction, 342 
by contrapositive, 341 
direct, 340 
indirect, 341 

Proper subset, 1 
Properly divergent sequence, 86 ff. 
Property, 2 
p-series, 92 

Q 
Q ( = collection of rational numbers), 2 
Q.E.D., 341 
Quantifiers, 337 ff. 
Quod erat demonstratum, 341 
Quotient: 

R 

of functions, 105 
ofsequences,61 
Rule, 160 

1R ( = collection of real numbers}, 2, 22 ff. 
Raabe's Test, 260 
Radius of convergence, 269 
Range, of a function, 5 
Rational numbers Q, 2, 24 

function, 126 
power, 154 

Ratio Test, 66, 258 

Real numbers 1R, 2, 22 ff. 
power of, 154, 244 

Rearrangement Theorem, 255 
Reciprocal, 23 
Reductio ad absurdum, 342 
Remainder in Taylor's Theorem: 

integral form, 217, 285 
Lagrange form, 185 

Repeating decimals, 49 
Restriction, of a function, 10 
Riemann, Bernhard, 193,274 

Integrability Criterion, 347 
integral, 193 ff., esp. 196 
sum, 195 

Riesz-Fischer Theorem, 293 
Rolle's Theorem, 168 
Root(s): 

s 

existence of, 42, 152 ff. 
functions, 10, 42 
Location of, 132, 147 
Newton's Method, 189 ff. 
Test, 257 

Schoenberg, I. J ., 355 
Schwarz inequality, 219 
Second Derivative Test, 187 
Semimetric, 332 
Seminorm,292 
Sequence(s), 53 

bounded,60 
Cauchy 81, 330 
constant, 53 
contractive, 84 
convergent, 54 
difference of, 61 
divergent, 54, 86 
Fibonacci, 54 
of functions, 227 ff. 
inductive, 53 
limit of, 54 
monotone, 69 
multiple of, 61 
product of, 61 
properly divergent, 86 
quotient of, 61 
recursive, 53 
shuffted,80 
subsequence of, 75 
sum of, 61 



tail of, 57 
term of, 53 
unbounded,60 
uniform convergence of, 229 

Series, 89 ff., 253 ff. 
absolutely convergent, 253 
alternating, 263 
alternating harmonic, 92, 253 
conditionally convergent, 253 
convergent, 89 
of functions, 266 ff. 
geometric, 90 
grouping of, 254 
harmonic, 91, 253 
hypergeometric,263 
power, 268 ff. 
p-series, 92 
rearrangements of, 255 
sixless, 263 
Taylor, 271 ff. 
2-series, 91 
uniformly convergent, 267 ff. 

Set(s): 
boundary point of, 318 
bounded,35,333 
Cantor IF, 317 
Cartesian product of, 4 
closed, 313, 331 
closure of, 319 
cluster point of, 97, 315 
compact, 319 ff. 
complement of, 3 
contains/contained in, 1 
countable, 18, 343 ff. 
denumerable, 18 
disjoint, 3 
empty, 3 
equality of, 2 
finite, 16, 343 ff. 
inclusion of, 1 
infimum of, 36 
infinite, 16 
interior of, 318 
interior point of, 318 
intersection of, 3, 4 
intervals, 44 ff. 
measurable, 311 
nu11,214 
open,313,331 
relative complement of, 3 
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supremum of, 35 
symmetric difference, 11 
unbounded,35 
uncountable, 18 
union of, 2, 3 
void, see Empty set 

Shuffled sequence, 80 
Signum function, 102, 122 
Simpson's Rule, 223 ff., 352 
Sine function, 249 
Sixless series, 263 
Space-filling curve, 355 
Square root of 2: 

calculation of, 72 
existence of, 41 
irrationality of, 25 

Square root function, 10,42 
Squaring function, 10 
Squeeze Theorem, 64, 108, 204, 280 
Statement, 334 
Step function, 141 ff., 205 
Straddle Lemma, 167 
Strong Induction, 15 
Subcover, 319 
Subsequence, 75 
Subset, 1 
Substitution Theorems, 214, 218, 283 
Subtraction in JR, 24 
Sum: 

iterated, 256 
of functions, 105 
partial, 89 
Riemann, 195 
of sequences, 61 
of a series, 89 

Supremum, 35 
iterated, 44 
Property, 37 

Surjection, 8 
Surjective function, 8 
Syllogism, Law of, 340 
Symmetric difference, 11 

T 
Tagged partition, 145, 195 
Tail, of a sequence, 57 
Tautology, 335 
Taylor, Brook, 183 

polynomial, 184 
series, 271 ff. 
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Taylor's Theorem, 184, 217, 285 
Terminating decimal, 49 
Test: 

first derivative, 171 
for absolute convergence, 257 ff. 
for convergence of series, 91ff., 257 ff. 
nth derivative, 187 
nth Term, 91 

Thomae's function, 122, 200, 215, 307 
Translate, 202 
Trapezoidal Rule, 221 ff., 351 
Triangle Inequality, 31, 328 
Trichotomy Property, 25 
Trigonometric functions, 246 ff. 

u 
Ultimately, 57 
Uncountable, 18 
Uncountability of 1R, 47, 50 
Uniform continuity, 136 ff., 148 
Uniform convergence: 

of a sequence, 229 ff., 302 
of a series, 267 ff. 

Uniform differentiability, 176 
Uniform norm, 230 

Union of sets, 2, 3 
Uniqueness Theorem: 

for finite sets, 17, 343 
for integrals, 196, 276 
for power series, 271 

Universal quantifier V, 338 
Upper bound, 35 

v 
Value, of a function, 6 
van der Waerden, B. L., 354 
Vertical Line Test, 5, 8 
Void set, see Empty set 

w 
Well-ordering Property ofN, 12 
Weierstrass, Karl, 96, 119, 159 

z 

Approximation Theorem, 143 
M-Test, 268, 354 ff. 
nondifferentiable function, 159, 354 

Z ( = collection of integers), 2 
Zero element, 23 
Zero measure, see Null set 

------ - ----




	Introduction to Real Analysis
	PREFACE
	CONTENTS
	CHAPTER 1 PRELIMINARIES
	Section 1.1 Sets and Functions
	Section 1.2 Mathematical Induction
	Section 1.3 Finite and Infinite Sets

	CHAPTER 2 THE REAL NUMBERS
	Section 2.1 The Algebraic and Order Properties of R
	Section 2.2 Absolute Value and the Real Line
	Section 2.3 The Completeness Property of R
	Section 2.4 Applications of the Supremum Property
	Section 2.5 Intervals

	CHAPTER 3: SEQUENCES AND SERIES
	Section 3.1 Sequences and Their Limits ·
	Section 3.2 Limit Theorems
	Section 3.3 Monotone Sequences
	Section 3.4 ... Subsequences and the Bolzano-Weierstrass Theorem
	Section 3.5 The Cauchy Criterion
	Section 3.6 Properly Divergent Sequences
	Section 3. 7 Introduction to Infinite Series

	CHAPTER 4: LIMITS
	Section 4.1 Limits of Functions
	Section 4.2 Limit Theorems
	Section 4.3 Some Extensions of the Limit Conceptt

	CHAPTER 5: CONTINUOUS FUNCTIONS
	Section 5.1 Continuous Functions
	Section 5.2 Combinations of Continuous Functions
	Section 5.3 Continuous Functions on Intervals
	Section 5.4 Uniform Continuity
	Section 5.5 Continuity and Gauges
	Section 5.6 Monotone and Inverse Functions

	CHAPTER 6: DIFFERENTIATION
	Section 6.1 The Derivative
	Section 6.2 The Mean Value Theorem
	Section 6.3 L'Hospital's Rules
	Section 6.4 Taylor's Theorem

	CHAPTER 7: THE RIEMANN INTEGRAL
	Section 7.1 Riemann Integral
	Section 7.2 Riemann Integrable Functions
	Section 7.3 The Fundamental Theorem
	Section 7.4 Approximate Integration

	CHAPTER 8: SEQUENCES OF FUNCTIONS
	Section 8.1 Pointwise and Uniform Convergence
	Section 8.2 Interchange of Limits
	Section 8.3 The Exponential and Logarithmic Functions
	Section 8.4 The Trigonometric Functions

	CHAPTER 9: INFINITE SERIES
	Section 9.1 Absolute Convergence
	Section 9.2 Tests for Absolute Convergence
	Section 9.3 Tests for Nonabsolute Convergence
	Section 9.4 Series of Functions

	CHAPTER 10: THE GENERALIZED RIEMANN INTEGRAL
	Section 10.1 Definition and Main Properties
	Section 10.2 Improper and Lebesgue Integrals
	Section 10.3 Infinite Intervals
	Section 10.4 Convergence Theorems

	CHAPTER 11: A GLIMPSE INTO TOPOLOGY
	Section 11.1 Open and Closed Sets in R
	Section 11.2 Compact Sets
	Section 11.3 Continuous Functions
	Section 11.4 Metric Spaces

	APPENDICIES
	APPENDIX A: LOGIC AND PROOFS
	APPENDIX B: FINITE AND COUNTABLE SETS
	APPENDIXC: THE RIEMANN ANDLEBESGUE CRITERIA
	APPENDIX D: APPROXIMATE INTEGRATION
	APPENDIX E: TWO EXAMPLES

	REFERENCES
	PHOTO CREDITS
	HINTS FOR SELECTED EXERCISES
	INDEX



