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PREFACE

The study of real analysis is indispensible for a prospective graduate student of pure or
applied mathematics. It also has great value for any undergraduate student who wishes
to go beyond the routine manipulations of formulas to solve standard problems, because
it develops the ability to think deductively, analyze mathematical situations, and extend
ideas to a new context. In recent years, mathematics has become valuable in many areas,
including economics and management science as well as the physical sciences, engineering,
and computer science. Our goal is to provide an accessible, reasonably paced textbook in
the fundamental concepts and techniques of real analysis for students in these areas. This
book is designed for students who have studied calculus as it is traditionally presented in
the United States. While students find this book challenging, our experience is that serious
students at this level are fully capable of mastering the material presented here.

The first two editions of this book were very well received, and we have taken pains
to maintain the same spirit and user-friendly approach. In preparing this edition, we have
examined every section and set of exercises, streamlined some arguments, provided a few
new examples, moved certain topics to new locations, and made revisions. Except for the
new Chapter 10, which deals with the generalized Riemann integral, we have not added
much new material. While there is more material than can be covered in one semester,
instructors may wish to use certain topics as honors projects or extra credit assignments.

It is desirable that the student have had some exposure to proofs, but we do not assume
that to be the case. To provide some help for students in analyzing proofs of theorems,
we include an appendix on *“Logic and Proofs” that discusses topics such as implications,
quantifiers, negations, contrapositives, and different types of proofs. We have kept the
discussion informal to avoid becoming mired in the technical details of formal logic. We
feel that it is a more useful experience to learn how to construct proofs by first watching
and then doing than by reading about techniques of proof.

We have adopted a medium level of generality consistently throughout the book: we
present results that are general enough to cover cases that actually arise, but we do not strive
for maximum generality. In the main, we proceed from the particular to the general. Thus
we consider continuous functions on open and closed intervals in detail, but we are careful
to present proofs that can readily be adapted to a more general situation. (In Chapter 11
we take particular advantage of the approach.) We believe that it is important to provide
the student with many examples to aid them in their understanding, and we have compiled
rather extensive lists of exercises to challenge them. While we do leave routine proofs as
exercises, we do not try to attain brevity by relegating difficult proofs to the exercises.
However, in some of the later sections, we do break down a moderately difficult exercise
into a sequence of steps.

In Chapter 1 we present a brief summary of the notions and notations for sets and
functions that we use. A discussion of Mathematical Induction is also given, since inductive
proofs arise frequently. We also include a short section on finite, countable and infinite sets.
We recommend that this chapter be covered quickly, or used as background material,
returning later as necessary.
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Chapter 2 presents the properties of the real number system R. The first two sections
deal with the Algebraic and Order Properties and provide some practice in writing proofs
of elementary results. The crucial Completeness Property is given in Section 2.3 as the
Supremum Property, and its ramifications are discussed throughout the remainder of this
chapter.

In Chapter 3 we give a thorough treatment of sequences in R and the associated limit
concepts. The material is of the greatest importance; fortunately, students find it rather
natural although it takes some time for them to become fully accustomed to the use of &.
In the new Section 3.7, we give a brief introduction to infinite series, so that this important
topic will not be omitted due to a shortage of time.

Chapter 4 on limits of functions and Chapter 5 on continuous functions constitute
the heart of the book. Our discussion of limits and continuity relies heavily on the use of
sequences, and the closely parallel approach of these chapters reinforces the understanding
of these essential topics. The fundamental properties of continuous functions (on intervals)
are discussed in Section 5.3 and 5.4. The notion of a “gauge” is introduced in Section 5.5
and used to give alternative proofs of these properties. Monotone functions are discussed
in Section 5.6.

The basic theory of the derivative is given in the first part of Chapter 6. This important
material is standard, except that we have used a result of Carathéodory to give simpler
proofs of the Chain Rule and the Inversion Theorem. The remainder of this chapter consists
of applications of the Mean Value Theorem and may be explored as time permits.

Chapter 7, dealing with the Riemann integral, has been completely revised in this
edition. Rather than introducing upper and lower integrals (as we did in the previous
editions), we here define the integral as a limit of Riemann sums. This has the advantage that
itis consistent with the students’ first exposure to the integral in calculus and in applications;
since it is not dependent on order properties, it permits immediate generalization to complex-
and vector-valued functions that students may encounter in later courses. Contrary to
popular opinion, this limit approach is no more difficult than the order approach. It also is
consistent with the generalized Riemann integral that is discussed in detail in Chapter 10.
Section 7.4 gives a brief discussion of the familiar numerical methods of calculating the
integral of continuous functions.

Sequences of functions and uniform convergence are discussed in the first two sec-
tions of Chapter 8, and the basic transcendental functions are put on a firm foundation in
Section 8.3 and 8.4 by using uniform convergence. Chapter 9 completes our discussion of
infinite series. Chapters 8 and 9 are intrinsically important, and they also show how the
material in the earlier chapters can be applied.

Chapter 10 is completely new; it is a presentation of the generalized Riemann integral
(sometimes called the “Henstock-Kurzweil” or the “gauge” integral). It will be new to many
readers, and we think they will be amazed that such an apparently minor modification of
the definition of the Riemann integral can lead to an integral that is more general than the
Lebesgue integral. We believe that this relatively new approach to integration theory is both
accessible and exciting to anyone who has studied the basic Riemann integral.

The final Chapter 11 deals with topological concepts. Earlier proofs given for intervals
are extended to a more abstract setting. For example, the concept of compactness is given
proper emphasis and metric spaces are introduced. This chapter will be very useful for
students continuing to graduate courses in mathematics.

Throughout the book we have paid more attention to topics from numerical analysis
and approximation theory than is usual. We have done so because of the importance of
these areas, and to show that real analysis is not merely an exercise in abstract thought.
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We have provided rather lengthy lists of exercises, some easy and some challenging.
We have provided “hints” for many of these exercises, to help students get started toward a
solution or to check their “answer”. More complete solutions of almost every exercise are
given in a separate Instructor’s Manual, which is available to teachers upon request to the
publisher.

It is a satisfying experience to see how the mathematical maturity of the students
increases and how the students gradually learn to work comfortably with concepts that
initially seemed so mysterious. But there is no doubt that a lot of hard work is required on
the part of both the students and the teachers.

In order to enrich the historical perspective of the book, we include brief biographical
sketches of some famous mathematicians who contributed to this area. We are particularly
indebted to Dr. Patrick Muldowney for providing us with his photograph of Professors
Henstock and Kurzweil. We also thank John Wiley & Sons for obtaining photographs of
the other mathematicians.

We have received many helpful comments from colleagues at a wide variety of in-
stitutions who have taught from earlier editions and liked the book enough to express
their opinions about how to improve it. We appreciate their remarks and suggestions, even
though we did not always follow their advice. We thank them for communicating with us
and wish them well in their endeavors to impart the challenge and excitement of learning
real analysis and “real” mathematics. It is our hope that they will find this new edition even
more helpful than the earlier ones.

February 24, 1999 Robert G. Bartle
Ypsilanti and Urbana Donald R. Sherbert
THE GREEK ALPHABET
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CHAPTER 1

PRELIMINARIES

In this initial chapter we will present the background needed for the study of real analysis.
Section 1.1 consists of a brief survey of set operations and functions, two vital tools for all
of mathematics. In it we establish the notation and state the basic definitions and properties
that will be used throughout the book. We will regard the word “set” as synonymous with
the words “class”, “collection”, and *“‘family”, and we will not define these terms or give a
list of axioms for set theory. This approach, often referred to as “naive” set theory, is quite
adequate for working with sets in the context of real analysis.

Section 1.2 is concerned with a special method of proof called Mathematical Induction.
It is related to the fundamental properties of the natural number system and, though it is
restricted to proving particular types of statements, it is important and used frequently.’An
informal discussion of the different types of proofs that are used in mathematics, such as
contrapositives and proofs by contradiction, can be found in Appendix A.

In Section 1.3 we apply some of the tools presented in the first two sections of this
chapter to a discussion of what it means for a set to be finite or infinite. Careful definitions
are given and some basic consequences of these definitions are derived. The important
result that the set of rational numbers is countably infinite is established.

In addition to introducing basic concepts and establishing terminology and notation,
this chapter also provides the reader with some initial experience in working with precise
definitions and writing proofs. The careful study of real analysis unavoidably entails the
reading and writing of proofs, and like any skill, it is necessary to practice. This chapter is
a starting point.

Section 1.1 Sets and Functions

To the reader: In this section we give a brief review of the terminology and notation that
will be used in this text. We suggest that you look through quickly and come back later
when you need to recall the meaning of a term or a symbol.

If an element x is in a set A, we write

XeA
and say that x is a member of A, or that x belongs to A. If x is not in A, we write
x ¢ A.
If every element of a set A also belongs to a set B, we say that A is a subset of B and write
ACB or B2DA

We say that a set A is a proper subset of a set B if A C B, but there is at least one element
of B that is not in A. In this case we sometimes write

A CB.
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1.1.1 Definition Two sets A and B are said to be equal, and we write A = B, if they
contain the same elements.

Thus, to prove that the sets A and B are equal, we must show that
ACB and B c A.

A set is normally defined by either listing its elements explicitly, or by specifying a
property that determines the elements of the set. If P denotes a property that is meaningful
and unambiguous for elements of a set S, then we write

{x € S: P(x)}

for the set of all elements x in S for which the property P is true. If the set S is understood
from the context, then it is often omitted in this notation.

Several special sets are used throughout this book, and they are denoted by standard
symbols. (We will use the symbol := to mean that the symbol on the left is being defined
by the symbol on the right.)

+ The set of natural numbers N :={1,2,3,---},

« The set of integers Z := {0, 1, —1,2, =2, - -},

+ The set of rational numbers Q := {m/n : m,n € Z and n # 0},
+ The set of real numbers R.

The set R of real numbers is of fundamental importance for us and will be discussed
at length in Chapter 2.

1.1.2 Examples (a) The set

{xeN:x>-3x+2=0}

consists of those natural numbers satisfying the stated equation. Since the only solutions of
this quadratic equation are x = 1 and x = 2, we can denote this set more simply by {1, 2}.

(b) A natural number n is even if it has the form n = 2k for some k € N. The set of even
natural numbers can be written

{2k : k € N},

which is less cumbersome than {n € N : n = 2k, k € N}. Similarly, the set of odd natural
numbers can be written

{2k —1:k e N}. 0

Set Operations

We now define the methods of obtaining new sets from given ones. Note that these set
operations are based on the meaning of the words “or”, “and”, and “not”. For the union,
it is important to be aware of the fact that the word “or” is used in the inclusive sense,
allowing the possibility that x may belong to both sets. In legal terminology, this inclusive
sense is sometimes indicated by “and/or”.

1.1.3 Definition (a) The union of sets A and B is the set
AUB:={x:x€Aorx € B}.
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(b) The intersection of the sets A and B is the set
ANB:={x:x € Aandx € B}.
(c) The complement of B relative to A is the set

A\B:={x:xe€ Aandx ¢ B}.

Y

AUB (I ANB A A\B E

Figure1.1.1 (@ AUB (b)ANB  (c) A\B

The set that has no elements is called the empty set and is denoted by the symbol @.
Two sets A and B are said to be disjoint if they have no elements in common; this can be
expressed by writing AN B = @.

To illustrate the method of proving set equalities, we will next establish one of the
DeMorgan laws for three sets. The proof of the other one is left as an exercise.

1.1.4 Theorem IfA, B, C are sets, then

(@ A\(BUC) = (A\B) N (A\C),
(b) A\(BNC) = (A\B) U (A\C).

Proof. To prove (a), we will show that every element in A\(B U C) is contained in both
(A\B) and (A\C), and conversely.

If x is in A\(B U C), then x is in A, but x is not in BU C. Hence x is in A, but x
is neither in B nor in C. Therefore, x is in A but not B, and x is in A but not C. Thus,
x € A\B and x € A\C, which shows that x € (A\B) N (A\C).

Conversely, if x € (A\B) N (A\C), then x € (A\B) and x € (A\C). Hence x € A
and both x ¢ B and x ¢ C. Therefore, x € Aandx ¢ (BU C), so that x € A\(BUC).

Since the sets (A\B) N (A\C) and A\(B U C) contain the same elements, they are
equal by Definition 1.1.1. QED.

There are times when it is desirable to form unions and intersections of more than two
sets. For a finite collection of sets {A,, A,, ---, A,}, their union is the set A consisting of
all elements that belong to at least one of the sets A,, and their intersection consists of all
elements that belong to all of the sets A,. ‘

This is extended to an infinite collection of sets {A, A,, -+, A,, - - -} as follows. Their
union is the set of elements that belong to at least one of the sets A, . In this case we
write

o0
U A, :={x:x €A, forsomen € N}.

n=1
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Similarly, their intersection is the set of elements that belong to all of these sets A,,. In this
case we write

o0
[ A,:={x:xeA,forallneN}.

n=1

Cartesian Products

In order to discuss functions, we define the Cartesian product of two sets.

1.1.5 Definition If A and B are nonempty sets, then the Cartesian product A x B of A
and B is the set of all ordered pairs (a, b) witha € A and b € B. That s,

Ax B:={(a,b):a€c A,be B}.

Thusif A = {1, 2, 3} and B = {1, 5}, then the set A x B is the set whose elements are
the ordered pairs

(1,1, (1,5, @1, 25, @31, @G)5).

We may visualize the set A x B as the set of six points in the plane with the coordinates
that we have just listed.

We often draw a diagram (such as Figure 1.1.2) to indicate the Cartesian product of
two sets A and B. However, it should be realized that this diagram may be a simplification.
For example, if A:={x e R:1<x<2}and B:={yeR:0<y<lor2<y<3}
then instead of a rectangle, we should have a drawing such as Figure 1.1.3.

We will now discuss the fundamental notion of a function or a mapping.

To the mathematician of the early nineteenth century, the word “function” meant a
definite formula, such as f(x) := x2 + 3x — 5, which associates to each real number x
another number f(x). (Here, f(0) = -5, f(1) = —1, f(5) = 35.) This understanding
excluded the case of different formulas on different intervals, so that functions could not
be defined “in pieces”.

3 % 2
AXB i /////j
Bb ------- ¢ (a, b) AxB
| 1= % %
A 1 2

Figure 1.1.2 Figure 1.1.3
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As mathematics developed, it became clear that a more general definition of “function”
would be useful. It also became evident that it is important to make a clear distinction
between the function itself and the values of the function. A revised definition might be:

A function f from a set A into a set B is a rule of correspondence that assigns to
each element x in A a uniquely determined element f(x) in B.

But however suggestive this revised definition might be, there is the difficulty of interpreting
the phrase “rule of correspondence”. In order to clarify this, we will express the definition
entirely in terms of sets; in effect, we will define a function to be its graph. While this has
the disadvantage of being somewhat artificial, it has the advantage of being unambiguous
and clearer.

1.1.6 Definition Let A and B be sets. Then a function from A to B is a set f of ordered
pairs in A x B such that for each a € A there exists a unique b € B with (a, b) € f. (In
other words, if (a, b) € f and (a, b’) € f,thenb = b'.)

The set A of first elements of a function f is called the domain of f and is often
denoted by D(f). The set of all second elements in f is called the range of f and is
often denoted by R(f). Note that, although D(f) = A, we only have R(f) C B. (See
Figure 1.1.4.)

The essential condition that:

(a,b)e f and ab)ef implies that b="b

is sometimes called the vertical line test. In geometrical terms it says every vertical line
x = a with a € A intersects the graph of f exactly once.
The notation

f:A—> B

is often used to indicate that f is a function from A into B. We will also say that f is a
mapping of A into B, or that f maps A into B. If (a, b) is an element in f, it is customary
to write

b= f(a) or sometimes a— b.

4 A = D(f)

Figure 1.14 A function as a graph
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If b = f(a), we often refer to b as the value of f at a, or as the image of a under f.

Transformations and Machines

Aside from using graphs, we can visualize a function as a transformation of the set D(f) =
A into the set R(f) € B. In this phraseology, when (a, b) € f, we think of f as taking
the element a from A and “transforming” or “mapping” it into an element b = f(a) in
R(f) € B. We often draw a diagram, such as Figure 1.1.5, even when the sets A and B are
not subsets of the plane.

b = fla)
R()

Figure 1.1.5 A function as a transformation

There is another way of visualizing a function: namely, as a machine that accepts
elements of D(f) = A as inputs and produces corresponding elements of R(f) € B as
outputs. If we take an element x € D(f) and putitinto f, then out comes the corresponding
value f(x). If we put a different element y € D(f) into f, then out comes f(y) which may
or may not differ from f(x). If we try to insert something that does not belong to D(f)
into f, we find that it is not accepted, for f can operate only on elements from D(f). (See
Figure 1.1.6.)

This last visualization makes clear the distinction between f and f(x): the first is the
machine itself, and the second is the output of the machine f when x is the input. Whereas
no one is likely to confuse a meat grinder with ground meat, enough people have confused
functions with their values that it is worth distinguishing between them notationally.

i
3¢

Y

f &)
Figure 1.1.6 A function as a machine
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Direct and Inverse Images

Let f : A — B be a function with domain D(f) = A and range R(f) € B.

1.1.7 Definition If E is a subset of A, then the direct image of E under f is the subset
f(FE) of B given by

f(E):={f(x):x € E}.

If H is a subset of B, then the inverse image of H under f is the subset f~'(H) of A
given by

fUH):={xeA: f(x) € H}.

Remark The notation f ~1(H) used in this connection has its disadvantages. However,
we will use it since it is the standard notation.

Thus, if we are given a set E C A, then a point y, € B is in the direct image f(E)
if and only if there exists at least one point x, € E such that y, = f(x,). Similarly, given
a set H C B, then a point x, is in the inverse image f ~!(H) if and only if Y, = f(xy)
belongs to H. (See Figure 1.1.7.)

1.1.8 Examples (a) Let f : R — R be defined by f(x) := x2. Then the direct image
oftheset E :={x :0 <x <2}istheset f(E)={y:0<y <4}.

If G :={y : 0 < y < 4}, then the inverse image of G is the set f '(G) = {x : -2 <
x < 2}. Thus, in this case, we see that f ™' (f(E)) # E.

On the other hand, we have f (f~'(G)) = G. Butif H :={y:—1<y <1}, then
wehave f (f~'(H))={y:0<y<1}#H.

A sketch of the graph of f may help to visualize these sets.
(b) Let f: A — B,andlet G, H be subsets of B. We will show that

fUGNnH)C UGN I H).

For, if x € f~'(G N H), then f(x) € GN H, so that f(x) € G and f(x) € H. But this
implies thatx € f~'(G)andx € f~!(H), whence x € f~!(G) N f~'(H). Thus the stated
implication is proved. [The opposite inclusion is also true, so that we actually have set
equality between these sets; see Exercise 13.] O

Further facts about direct and inverse images are given in the exercises.

SE)

Figure 1.1.7 Direct and inverse images
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Special Types of Functions
The following definitions identify some very important types of functions.

1.1.9 Definition Let f : A — B be a function from A to B.

(a) The function f is said to be injective (or to be one-one) if whenever x, # x,, then
f(x)) # f(x,). If f is an injective function, we also say that f is an injection.

(b) The function f is said to be surjective (or to map A onto B) if f(A) = B; that is, if
the range R(f) = B.If f is a surjective function, we also say that f is a surjection.

(c) If f is both injective and surjective, then f is said to be bijective. If f is bijective, we
also say that f is a bijection.

+ In order to prove that a function f is injective, we must establish that:
forall x, x, in A, if f(x)) = f(x,), thenx, = x,.

To do this we assume that f(x,) = f(x,) and show that x, = x,.
[In other words, the graph of f satisfies the first horizontal line test: Every horizontal
line y = b with b € B intersects the graph f in at most one point.]

« To prove that a function f is surjective, we must show that for any b € B there exists at
least one x € A such that f(x) = b.
[In other words, the graph of f satisfies the second horizontal line test: Every horizontal
line y = b with b € B intersects the graph f in at least one point.]

1.1.10 Example LetA := {x € R: x # 1}anddefine f(x) := 2x/(x — 1) forallx € A.
To show that f is injective, we take x, and x, in A and assume that f(x,) = f(x,). Thus
we have
2y,  2x,
x, —1 Cx, =1

which implies that x, (x, — 1) = x,(x, — 1), and hence x, = x,. Therefore f is injective.

To determine the range of f, we solve the equation y = 2x/(x — 1) for x in terms o:
y. We obtain x = y/(y — 2), which is meaningful for y # 2. Thus the range of f is the se
B :={y € R : y # 2}. Thus, f is a bijection of A onto B. . C

Inverse Functions

If f is a function from A into B, then f is a special subset of A x B (namely, one passin;
the vertical line test.) The set of ordered pairs in B x A obtained by interchanging th
members of ordered pairs in f is not generally a function. (That is, the set f may not pas
both of the horizontal line tests.) However, if f is a bijection, then this interchange doe
lead to a function, called the “inverse function” of f.

1.1.11 Definition If f: A — B is a bijection of A onto B, then
g :={(b,a) e Bx A:(a,b)e€ f}

is a function on B into A. This function is called the inverse function of f, and is denote
by f~!. The function f~! is also called the inverse of f. i
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We can also express the connection between f and its inverse f~' by noting that
D(f) = R(f~") and R(f) = D(f') and that

b= f(a) ifandonlyif a= f~1(b).

For example, we saw in Example 1.1.10 that the function

2x
f(x) = ——

x—1
is a bijection of A := {x € R: x # 1} onto the set B := {y € R : y # 2}. The function
inverse to f is given by
Y

f—](y) = ;_—2 for yEB.

Remark We introduced the notation f~!(H) in Definition 1.1.7. It makes sense even if
f does not have an inverse function. However, if the inverse function f~! does exist, then
f~Y(H) is the direct image of the set H € B under f~'.

Composition of Functions

It often happens that we want to “compose” two functions f, g by first finding f(x) and
then applying g to get g(f(x)); however, this is possible only when f(x) belongs to the
domain of g. In order to be able to do this for all f(x), we must assume that the range of
f is contained in the domain of g. (See Figure 1.1.8.)

1.1.12 Definition If f: A— B and g: B — C, and if R(f) C D(g) = B, then the
composite function g o f (note the order!) is the function from A into C defined by

(go f)x):=g(f(x)) forall x € A.
1.1.13 Examples (a) The order of the composition must be carefully noted. For, let f
and g be the functions whose values at x € R are given by

f(x):=2x and gx) := 3x2 —1.

Since D(g) = Rand R(f) € R = D(g), then the domain D(g o f) is also equal to R, and
the composite function g o f is given by

(8o flx) =3(2x)* —1=12x* - 1.

B
A C
f 8
—m ——
g°f

Figure 1.1.8 The composition of f and g
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On the other hand, the domain of the composite function f o g is also R, but
(fog)(x) =2(3x*—-1)=6x2-2.

Thus, in this case, we have go f # fog.

(b) In considering g o f, some care must be exercised to be sure that the range of f is
contained in the domain of g. For example, if

fx):=1-x2 and g(x) := /x,
then, since D(g) = {x : x > 0}, the composite function g o f is given by the formula
o NHx) =V1-x?

only for x € D(f) that satisfy f(x) > 0; that is, for x satisfying —1 < x < 1.
We note that if we reverse the order, then the composition f o g is given by the formula

(f°g)(x) = l - X,
but only for those x in the domain D(g) = {x : x > 0}. O

We now give the relationship between composite functions and inverse images. The
proof is left as an instructive exercise.

1.1.14 Theorem Letf:A — B andg: B — C be functions and let H be a subset of
C. Then we have

(8o f)\(H) = (g7 (H)).
Note the reversal in the order of the functions.

Restrictions of Functions

If f: A— Bisafunctionandif A, C A, we can define a function f; : A, = B by
fix) = f(x) for xeA,.

The function f is called the restriction of f to A,. Sometimes itis denoted by f, = f|A,.

It may seem strange to the reader that one would ever choose to throw away a part of a
function, but there are some good reasons for doing so. For example, if f : R — R is the
squaring function:

fx):=x2 for x eR,

then f is not injective, so it cannot have an inverse function. However, if we restrict f to
theset A, := {x : x > 0}, then the restriction f|A, is a bijection of A onto A,. Therefore,
this restriction has an inverse function, which is the positive square root function. (Sketch
a graph.)

Similarly, the trigonometric functions S(x) := sin x and C(x) := cos x are not injective
on all of R. However, by making suitable restrictions of these functions, one can obtain
the inverse sine and the inverse cosine functions that the reader has undoubtedly already
encountered.
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Exercises for Section 1.1

10.

11.

12,

13.

14.

15.

16.
17.

18.

If A and B are sets, show that A C B ifand onlyif AN B = A.
Prove the second De Morgan Law [Theorem 1.1.4(b)].

Prove the Distributive Laws:
@ ANBUC=ANBYUANO),
(b) AU(BNC)=(AUB)N(AUC).

The symmetric difference of two sets A and B is the set D of all elements that belong to either
A or B but not both. Represent D with a diagram.

(a) Show that D = (A\B) U (B\A).

(b) Show that D is also givenby D = (AU B)\(A N B).

Foreachn e N,let A, = {(n+ 1)k : k € N}.

(@) Whatis A, N A,?

(b) Determine the sets | J{A, : n € N}and (){A, : n € N}.

Draw diagrams in the plane of the Cartesian products A x B for the given sets A and B.

@ A={xeR:1<x<2o0or3<x<4}, B={xeR:x=1lorx=2}.

) A={1,2,3}, B={xeR:1<x <3}

Let A:= B :={x e R: —1 < x < 1} and consider the subset C := {(x, y) : x> + y? = 1} of
A x B.Is this set a function? Explain.

Let f(x):=1/x* x#0, x €R.

(a) Determine the direct image f(E) where E :={x e R:1 <x <2}.

(b) Determine the inverse image f"(G) where G:={xeR:1<x <4}.

Let g(x) := x? and f(x) := x + 2 for x € R, and let & be the composite function & := g o f.
(a) Find the directimage h(E)of E :={x e R: 0 <x < 1}.

(b) Find the inverse image h'"(G)of G:={xeR:0<x <4)].

Let f(x):=x*forx e R,andlet E:={x e R: -1 <x<0jand F:={xeR:0<x <1}.
Show that ENF = {0} and f(EN F) = (0}, while f(E)= f(F)={yeR:0<y<1}.
Hence f(E N F) is a proper subset of f(E) N f(F). What happens if 0 is deleted from the sets
E and F?

Let f and E, F be as in Exercise 10. Find the sets E\ F and f(E)\ f(F) and show that it is not

true that f(E\F) C f(E)\f(F).

Show that if f: A — B and E, F are subsets of A, then f(EUF) SF(EYU f(F) and

FENF) < f(E)N f(F).

Show that if f : A — B and G, H are subsets of B, then f~'(GUH) = f~"(G)U f~'(H)

and f"YGNH)=fY(G)n fY(H).

Show that the function f defined by f(x) :=x/vx?+ 1,x €R, is a bijection of R onto

{y:—-l<y<l}

Fora, b € R witha < b, find an explicit bijectionof A ;= {x :a <x <b}ontoB:=(y:0 <

y < 1}.

Give an example of two functions f, g on R to R such that f # g, butsuchthat fog =go f.

(a) Show thatif f: A — B is injective and E C A, then f~'(f(E)) = E. Give an example
to show that equality need not hold if f is not injective.

(b) Show thatif f : A — Bissurjectiveand H < B, then f(f~'(H)) = H. Give an example
to show that equality need not hold if f is not surjective.

(a) Suppose that f is an injection. Show that f~! o f(x) = x for all x € D(f) and that

fof ') =yforally € R(f).
(b) If f is a bijection of A onto B, show that f~! is a bijection of B onto A.
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19. Prove thatif f : A — B is bijective and g : B — C is bijective, then the composite g o f is a
bijective map of A onto C.

20. Letf: A — Bandg: B — C be functions.
(a) Show thatif g o f is injective, then f is injective.
(b) Show thatif g o f is surjective, then g is surjective.

21. Prove Theorem 1.1.14.

22. Let f, g be functions such that (g o f)(x) = x for all x € D(f) and (f o g)(y) =y for all
y € D(g).Prove thatg = f~'.

Section 1.2 Mathematical Induction

Mathematical Induction is a powerful method of proof that is frequently used to establish
the validity of statements that are given in terms of the natural numbers. Although its utility
is restricted to this rather special context, Mathematical Induction is an indispensable tool
in all branches of mathematics. Since many induction proofs follow the same formal lines
of argument, we will often state only that a result follows from Mathematical Induction
and leave it to the reader to provide the necessary details. In this section, we will state the
principle and give several examples to illustrate how inductive proofs proceed.
We shall assume familiarity with the set of natural numbers:

N:={1,2,3,---},

with the usual arithmetic operations of addition and multiplication, and with the meaning
of a natural number being less than another one. We will also assume the following
fundamental property of N.

1.2.1 Well-Ordering Property of N Every nonempty subset of N has a least element.

A more detailed statement of this property is as follows: If S is a subset of N and if
S # @, then there exists m € S such thatm < k forallk € S.

On the basis of the Well-Ordering Property, we shall derive a version of the Principle
of Mathematical Induction that is expressed in terms of subsets of N.

1.2.2 Principle of Mathematical Induction Let S be a subset of N that possesses the
two properties:

(1) The number 1 € S.

(2) Foreveryk € N, ifk € S,thenk+1 € S.

Then we have S = N.

Proof. Suppose to the contrary that S # N. Then the set N\S is not empty, so by the
Well-Ordering Principle it has a least element m. Since 1 € S by hypothesis (1), we know
that m > 1. But this implies that m — 1 is also a natural number. Since m — 1 < m and
since m is the least element in N such that m ¢ S, we conclude thatm — 1 € S.

We now apply hypothesis (2) to the element k :=m — 1 in S, to infer that k + 1 =
(m — 1) + 1 = m belongs to S. But this statement contradicts the fact that m ¢ S. Since m
was obtained from the assumption that N\ S is not empty, we have obtained a contradiction.
Therefore we must have § = N. _ QED.
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The Principle of Mathematical Induction is often set forth in the framework of proper-
ties or statements about natural numbers. If P(n) is a meaningful statement about n € N,
then P(n) may be true for some values of n and false for others. For example, if P/(n) is
the statement: “n? = n”, then P, (1) is true while P,(n) is false for all n > 1,n € N. On
the other hand, if P,(n) is the statement: “n? > 1", then P,(1) is false, while P,(n) is true
foralln > 1,n € N.

In this context, the Principle of Mathematical Induction can be formulated as follows.

Foreachn € N, let P(n) be a statement about n. Suppose that:

(1) P() is true.
(2') Foreveryk € N, if P(k) is true, then P(k + 1) is true.

Then P(n) is true for alln € N.

The connection with the preceding version of Mathematical Induction, given in 1.2.2,
is made by letting S := {n € N: P(n) is true}. Then the conditions (1) and (2) of 1.2.2
correspond exactly to the conditions (1’) and (2'), respectively. The conclusion that S = N
in 1.2.2 corresponds to the conclusion that P(n) is true for all n € N.

In (2) the assumption “if P (k) is true” is called the induction hypothesis. In estab-
lishing (2'), we are not concerned with the actual truth or falsity of P(k), but only with
the validity of the implication “if P(k), then P(k + 1)”. For example, if we consider the
statements P(n): “n = n + 5", then (2') is logically correct, for we can simply add 1 to
both sides of P (k) to obtain P(k + 1). However, since the statement P(1): ““1 = 6 is false,
we cannot use Mathematical Induction to conclude thatn = n + 5 for all n € N.

It may happen that statements P (n) are false for certain natural numbers but then are
true for all n > n,, for some particular n,. The Principle of Mathematical Induction can be
modified to deal with this situation. We will formulate the modified principle, but leave its
verification as an exercise. (See Exercise 12.)

1.2.3 Principle of Mathematical Induction (second version) Letn, € N and let P(n)
be a statement for each natural numbern > n,,. Suppose that:

(1) The statement P(ng) is true.
(2) Forallk > n,, the truth of P (k) implies the truth of P(k + 1).

Then P(n) is true for alln > n,,.

Sometimes the number n,, in (1) is called the base, since it serves as the starting point,
and the implication in (2), which can be written P(k) = P(k + 1), is called the bridge,
since it connects the case k to the case k + 1.

The following examples illustrate how Mathematical Induction is used to prove asser-
tions about natural numbers.

1.2.4 Examples (a) Foreachn € N, the sum of the first n natural numbers is given by
1424+.--+n= %n(n+l).

To prove this formula, we let S be the set of all n € N for which the formula is true.
We must verify that conditions (1) and (2) of 1.2.2 are satisfied. If n = 1, then we have
1= % -1-(14+1)sothat 1 € S, and (1) is satisfied. Next, we assume that k € S and wish
to infer from this assumption that k + 1 € S. Indeed, if k € S, then

142+ +k=jkk+1).
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If we add k + 1 to both sides of the assumed equality, we obtain

1424+ +k+Gk+D=3k(k+ 1)+ (k+1)
= Lk + 1)(k +2).
Since this is the stated formula for n = k 4+ 1, we conclude that k + 1 € S. Therefore,

condition (2) of 1.2.2 is satisfied. Consequently, by the Principle of Mathematical Induction,
we infer that S = N, so the formula holds for all » € N.

(b) For each n € N, the sum of the squares of the first n natural numbers is given by
P+224+...+nl=lnn+1)@2n +1).

To establish this formula, we note that it is true for n = 1, since 12 = % -1.2.3. 1f
we assume it is true for k, then adding (k + 1)? to both sides of the assumed formula gives

P42 4.+ 4+ k+1)? = thk+ DRk + D + (k+ 1?
= }(k + 1)(2k* + k + 6k + 6)
=1k + 1)k +2)(2k + 3).

Consequently, the formula is valid for all n € N.

(¢) Given two real numbers a and b, we will prove that a — b is a factor of a" — b" for
alln € N.

First we see that the statement is clearly true for n = 1. If we now assume thata — b
is a factor of a* — b*, then

aktl — phtl = gkl _ gpk o apk k]
= a(a* — b*) + b*(a - b).

By the induction hypothesis, a — b is a factor of a(a* — b*) and it is plainly a factor of
b*(a — b). Therefore, a — b is a factor of a**! — b**!, and it follows from Mathematical
Induction that a — b is a factor of a" — b" forall n € N.

A variety of divisibility results can be derived from this fact. For example, since
11 — 7 =4, we see that 11" — 7" is divisible by 4 for all n € N.
(d) The inequality 2" > 2n + 1 is false forn = 1, 2, but it is true for n = 3. If we assume
that 2* > 2k + 1, then multiplication by 2 gives, when 2k + 2 > 3, the inequality

2t S 22k +1) =4k +2=2k+(2k+2)>2k+3=2(k+1)+1.

Since 2k 4+ 2 > 3 for all k > 1, the bridge is valid for all k > 1 (even though the statement
is false for k = 1, 2). Hence, with the base n, = 3, we can apply Mathematical Induction
to conclude that the inequality holds for all n > 3.
(e) The inequality 2" < (n + 1)! can be established by Mathematical Induction.

We first observe that it is true for n = 1, since 2! =2 =1 + 1. If we assume that
2% < (k + 1)!, it follows from the fact that 2 < k + 2 that

2t =22 <2k + D! sk + 2+ D! = (k +2).

Thus, if the inequality holds for k, then it also holds for k + 1. Therefore, Mathematical
Induction implies that the inequality is true for all n € N.

M IfreR,r#1,andn €N, then

1-— n+l
14r+r2 4. g4rm=-_"

1-r
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This is the formula for the sum of the terms in a “geometric progression”. It can
be established using Mathematical Induction as follows. First, if n =1, then 1 +r =
(1- rz)/(l — r). If we assume the truth of the formula for n = k and add the term r**! to
both sides, we get (after a little algebra)
k+1 "

1—r T = 1—r
which is the formula for n = k + 1. Therefore, Mathematical Induction implies the validity
of the formula for alln € N.

[This result can also be proved without using Mathematical Induction. If we let

s, = 1+r+r2+---+r",thenrs,l =r4+r2+-...4r"t! sothat

k+2

-r 1—r

1
1+r+rk4. 4 =

— - — 1 — pnt+l
A=r)s,=s,—rs,=1—-r""".

If we divide by 1 — r, we obtain the stated formula.]

(g) Careless use of the Principle of Mathematical Induction can lead to obviously absurd
conclusions. The reader is invited to find the error in the “proof™ of the following assertion.

Claim: If n € N and if the maximum of the natural numbers p and q is n, then p = gq.

“Proof.’ Let S be the subset of N for which the claim is true. Evidently, 1 € S since if
P, q € N and their maximum is 1, then both equal 1 and so p = g. Now assume thatk € §
and that the maximum of p and q is k + 1. Then the maximumof p — 1 and ¢ — 1 is k. But
since k € S, then p — 1 = g — 1 and therefore p = q. Thus, k + 1 € S, and we conclude
that the assertion is true for alln € N.
(h) There are statements that are true for many natural numbers but that are not true for
all of them.

Forexample, the formula p(n) := n“ — n + 41 givesaprime numberforn =1, 2, - - -,
40. However, p(41) is obviously divisible by 41, so it is not a prime number. O

2

Another version of the Principle of Mathematical Induction is sometimes quite useful.
It is called the * Principle of Strong Induction”, even though it is in fact equivalent to 1.2.2.

1.2.5 Principle of Strong Induction Let S be a subset of N such that

1" 1€8S.
(2") ForeverykeN, if{1,2,---,k} S S, thenk+ 1€ S.
Then S = N.

We will leave it to the reader to establish the equivalence of 1.2.2 and 1.2.5.

Exercises for Section 1.2

Provethat1/1-2+1/2-3+..-+1/n(n+1)=n/(n+ 1) foralln € N.
Provethat 1> + 23 + .- +n’ = [in(n + l)]2 foralln € N.

Prove that3 + 11 +.-- 4+ (8n —5) =4n> —nforalln € N.

Prove that 12 + 32 4 --- + (2n — 1) = (4n> — n)/3 foralln € N.

Provethat 12 — 22 + 3% 4+ ... + (=1)"*'n® = (=1)"*'n(n + 1)/2 forall n € N.

“w“ kWD =
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Prove that n® + 5n is divisible by 6 for all n € N.

Prove that 52" — 1 is divisible by 8 for all n € N.

Prove that 5" — 4n — 1 is divisible by 16 for all n € N.

Prove that n® + (n + 1) + (n + 2)? is divisible by 9 for all n € N.

10. Conjecture a formula for the sum 1/1-3+1/3-5+---+ 1/(2n — 1)(2n + 1), and prove your
conjecture by using Mathematical Induction.

11. Conjecture a formula for the sum of the first n odd natural numbers 1 +3+---+ (2n — 1),
and prove your formula by using Mathematical Induction.

12. Prove the Principle of Mathematical Induction 1.2.3 (second version).
13. Prove thatn < 2" foralln € N.

14. Prove that2” < n!foralln >4,n €N.

15. Provethat2n —3 <2" *foralln > 5,n € N.

16. Find all natural numbers n such that n*> < 2". Prove your assertion.

17. Find the largest natural number m such that n* — n is divisible by m for all n € N. Prove your
assertion.
18. Provethat1/v1+1/V2+:--+1//n> /nforallneN.

19. Let S be a subset of N such that (a) 2* € S for all k € N, and (b) if k € S and k > 2, then
k—1e¢€ S.Provethat S = N.

20. Let the numbers x, be defined as follows: x, := 1, x, := 2, and Xppg 1= %(J:M_l + x,) for all
n € N. Use the Principle of Strong Induction (1.2.5) to show that 1 < x, <2 foralln € N.

© N o

Section 1.3 Finite and Infinite Sets

When we count the elements in a set, we say “one, two, three,- - -”, stopping when we
have exhausted the set. From a mathematical perspective, what we are doing is defining a
bijective mapping between the set and a portion of the set of natural numbers. If the set is
such that the counting does not terminate, such as the set of natural numbers itself, then we
describe the set as being infinite.

The notions of “finite” and “infinite” are extremely primitive, and it is very likely
that the reader has never examined these notions very carefully. In this section we will
define these terms precisely and establish a few basic results and state some other important
results that seem obvious but whose proofs are a bit tricky. These proofs can be found in
Appendix B and can be read later.

1.3.1 Definition (a) The empty set @ is said to have O elements.

(b) If n € N, a set S is said to have n elements if there exists a bijection from the set
N, :={1,2,.---,n}onto S.

(c) A set S is said to be finite if it is either empty or it has n elements for some n € N.

(d) A set S is said to be infinite if it is not finite.

Since the inverse of a bijection is a bijection, it is easy to see that a set S has n
elements if and only if there is a bijection from § onto the set (1, 2, - - -, n}. Also, since the
composition of two bijections is a bijection, we see that a set S, has n elements if and only
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if there is a bijection from S, onto another set S, that has n elements. Further, a set 7 is
finite if and only if there is a bijection from T, onto another set 7, that is finite.

It is now necessary to establish some basic properties of finite sets to be sure that the
definitions do not lead to conclusions that conflict with our experience of counting. From
the definitions, it is not entirely clear that a finite set might not have n elements for more
than one value of n. Also it is conceivably possible that the set N := {1, 2, 3, - - -} might be
a finite set according to this definition. The reader will be relieved that these possibilities
do not occur, as the next two theorems state. The proofs of these assertions, which use the
fundamental properties of N described in Section 1.2, are given in Appendix B.

1.3.2 Uniqueness Theorem If S is a finite set, then the number of elements in S is a
unique number in N.

1.3.3 Theorem The set N of natural numbers is an infinite set.
The next result gives some elementary properties of finite and infinite sets.

1.3.4 Theorem (a) If A is a set with m elements and B is a set with n elements and if
AN B =0, then AU B hasm + n elements.

(b) IfA isaset withm € N eleménts and C C A is a set with 1 element, then A\Cisa
set withm — 1 elements.

(¢) IfC is an infinite set and B is a finite set, then C\ B is an infinite set.

Proof. (a) Let f be a bijection of N onto A, and let g be a bijection of N, onto
B. We define h on N by h(i) := f(@i) fori=1,---,m and h(i) := g(i — m) for

m+n

i=m+1,---,m+ n. We leave it as an exercise to show that 4 is a bijection from N
onto AU B.
The proofs of parts (b) and (c) are left to the reader, see Exercise 2. QED.

It may seem “obvious” that a subset of a finite set is also finite, but the assertion must
be deduced from the definitions. This and the corresponding statement for infinite sets are
established next.

1.3.5 Theorem Suppose that$ and T are setsand thatT C S.

(a) IfS is a finite set, then T is a finite set.
(b) IfT is an infinite set, then S is an infinite set.

Proof. (a) If T = @, we already know that T is a finite set. Thus we may suppose that
T # @. The proof is by induction on the number of elements in S.

If S has 1 element, then the only nonempty subset T of S must coincide with §,so T
is a finite set.

Suppose that every nonempty subset of a set with k elements is finite. Now let S be
a set having k + 1 elements (so there exists a bijection f of N, _, onto S), andlet T < S.
If f(k+1) ¢ T, we can consider T to be a subset of S, := S\{f(k + 1)}, which has k
elements by Theorem 1.3.4(b). Hence, by the induction hypothesis, T is a finite set.

On the other hand, if f(k + 1) € T, then T} := T\{f(k + 1)} is a subset of S,. Since
S, has k elements, the induction hypothesis implies that 7| is a finite set. But this implies
that T = T, U {f(k + 1)} is also a finite set.
(b) This assertion is the contrapositive of the assertion in (a). (See Appendix A for a
discussion of the contrapositive.) QE.D.
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Countable Sets
We now introduce an important type of infinite set.

1.3.6 Definition (a) A set S is said to be denumerable (or countably infinite) if there
exists a bijection of N onto S.

(b) A set S is said to be countable if it is either finite or denumerable.
(c) A set S is said to be uncountable if it is not countable.

From the properties of bijections, it is clear that § is denumerable if and only if there -
exists a bijection of S onto N. Also a set S, is denumerable if and only if there exists a
bijection from S, onto a set S, that is denumerable. Further, a set T; is countable if and
only if there exists a bijection from T, onto a set T, that is countable. Finally, an infinite
countable set is denumerable.

1.3.7 Examples (a) Theset E := {2n : n € N} of even natural numbers is denumerable,
since the mapping f : N — E defined by f(n) := 2n forn € N, is a bijection of N onto E.
Similarly, the set O := {2n — 1 : n € N} of odd natural numbers is denumerable.

(b) The set Z of all integers is denumerable.

To construct a bijection of N onto Z, we map 1 onto 0, we map the set of even natural
numbers onto the set N of positive integers, and we map the set of odd natural numbers
onto the negative integers. This mapping can be displayed by the enumeration:

Z={0,1,-1,2,-2,3,-3,---}.

(c) The union of two disjoint denumerable sets is denumerable.
Indeed, if A = {a,, a,,a,,---} and B = {b,, b,, b,, - - -}, we can enumerate the ele-
ments of AU B as:

al,bl,az,bz.as,b3,---. O
1.3.8 Theorem The setN x N is denumerable.

Informal Proof. Recall that N x N consists of all ordered pairs (m, n), where m, n € N.
We can enumerate these pairs as:

(lv l)’ (1,2), (2v l)v (l’ 3)’ (2s 2)9 (31 l)s (19 4)’ M |
according to increasing sum m + n, and increasing m. (See Figure 1.3.1.) QED.

The enumeration just described is an instance of a “diagonal procedure”, since we
move along diagonals that each contain finitely many terms as illustrated in Figure 1.3.1.
While this argument is satisfying in that it shows exactly what the bijection of N x N - N
should do, it is not a “formal proof™, since it doesn’t define this bijection precisely. (See
Appendix B for a more formal proof.)

As we have remarked, the construction of an explicit bijection between sets is often
complicated. The next two results are useful in establishing the countability of sets, since
they do not involve showing that certain mappings are bijections. The first result may seem
intuitively clear, but its proof is rather technical; it will be given in Appendix B.
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Figure 1.3.1 ThesetNx N

1.3.9 Theorem Suppose thatS and T are sets and thatT C S.

(a) IfS is a countable set, then T is a countable set.
(b) IfT is an uncountable set, then S is an uncountable set.

1.3.10 Theorem The following statements are equivalent:

(a) S is acountable set.
(b) There exists a surjection of N onto S.
(c) There exists an injection of S into N.

Proof. (a) = (b) If S is finite, there exists a bijection & of some set N, onto S and we
define H on N by

hk) for k=1,---,n,

Hk) == [h(n) for k> n.

Then H is a surjection of N onto S.

If S is denumerable, there exists a bijection H of N onto S, which is also a surjection
of Nonto S.
(b) = (c) If H is a surjection of N onto S, we define H, : S — N by letting H, (s) be
the least element in the set H~!(s) := {n € N: H(n) = s}. To see that H, is an injection
of S into N, note that if s, r € Sand n,, := H,(s) = H,(t),thens = H(n,) =t.
() = (a) If H, is an injection of § into N, then it is a bijection of S onto H,(S) € N.
By Theorem 1.3.9(a), H, (S) is countable, whence the set S is countable. QED.

1.3.11 Theorem The set Q of all rational numbers is denumerable.

Proof. The idea of the proof is to observe that the set Q* of positive rational numbers is
contained in the enumeration:

oo
’ £ ’ ’ £ £ £

Ll Ll
T
[ S1] 8]

3
l’

[ S
[T
FU

~~

which is another “diagonal mapping” (see Figure 1.3.2). However, this mapping is not an
injection, since the different fractions % and % represent the same rational number.

To proceed more formally, note that since N x N is countable (by Theorem 1.3.8),
it follows from Theorem 1.3.10(b) that there exists a surjection f of N onto N x N. If
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- Ble wle N|e

Figure 1.3.2 The set Q%

g : N x N > Q is the mapping that sends the ordered pair (m, n) into the rational num-
ber having a representation m/n, then g is a surjection onto Q*. Therefore, the composition
g o f is a surjection of N onto Q*, and Theorem 1.3.10 implies that Q* is a countable set.

Similarly, the set Q™ of all negative rational numbers is countable. It follows as in
Example 1.3.7(b) that the set Q = Q™ U {0} UQ™ is countable. Since Q contains N, it
must be a denumerable set. QED.

The next result is concerned with unions of sets. In view of Theorem 1.3.10, we need
not be worried about possible overlapping of the sets. Also, we do not have to construct a
bijection.

1.3.12 Theorem If A_ isacountable set foreachm € N, then the union A := | J,;_, A,
is countable.

Proof. Foreachm € N, let ¢, be a surjectionof Nonto A,,. Wedefiney :NxN—> A
by

¥(m,n) =g, (n).

We claim that y is a surjection. Indeed, if a € A, then there exists a least m € N such that
a € A, , whence there exists a least n € N such that a = ¢, (n). Therefore, a = ¥ (m, n).
Since N x N is countable, it follows from Theorem 1.3.10 that there exists a surjection
f :N—> N x N whence ¢ o f is a surjection of N onto A. Now apply Theorem 1.3.10
again to conclude that A is countable. QED.

Remark A less formal (but more intuitive) way to see the truth of Theorem 1.3.12 is to
enumerate the elements of A, m € N, as:

Ay =gy a8y}
A; = {ay. 85,85, -},
A; = {ay, a5, a5, -},

We then enumerate this array using the “diagonal procedure’:

a11,813: 821,813,899, 831,814, *

as was displayed in Figure 1.3.1.
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The argument that the set QQ of rational numbers is countable was first given in 1874
by Georg Cantor (1845-1918). He was the first mathematician to examine the concept of
infinite set in rigorous detail. In contrast to the countability of Q, he also proved the set R
of real numbers is an uncountable set. (This result will be established in Section 2.5.)

In a series of important papers, Cantor developed an extensive theory of infinite sets and
transfinite arithmetic. Some of his results were quite surprising and generated considerable
controversy among mathematicians of that era. In a 1877 letter to his colleague Richard
Dedekind, he wrote, after proving an unexpected theorem, “I see it, but I do not believe it”.

We close this section with one of Cantor’s more remarkable-theorems.

1.3.13 Cantor’s Theorem If A is any set, then there is no surjection of A onto the set
P(A) of all subsets of A.

Proof. Suppose that ¢ : A — P(A) is a surjection. Since ¢(a) is a subset of A, either a
belongs to ¢(a) or it does not belong to this set. We let

D:={ae€A:a¢pa)l

Since D is a subset of A, if ¢ is a surjection, then D = ¢(a,) for some q, € A.

We must have either a, € D or a, ¢ D. If a;, € D, then since D = ¢(a,), we must
have a,, € ¢(a,), contrary to the definition of D. Similarly, if a, ¢ D, then a, ¢ ¢(a,) so
that a, € D, which is also a contradiction.

Therefore, ¢ cannot be a surjection. QED.

Cantor’s Theorem implies that there is an unending progression of larger and larger
sets. In particular, it implies that the collection P(N) of all subsets of the natural numbers
N is uncountable.

Exercises for Section 1.3

1. Prove that a nonempty set T, is finite if and only if there is a bijection from T, onto a finite
set T,

2. Prove parts (b) and (c) of Theorem 1.3.4.
LetS:=(1,2}and T := {a, b, c}.

(a) Determine the number of different injections from § into 7.
(b) Determine the number of different surjections from T onto S.

Exhibit a bijection between N and the set of all odd integers greater than 13.

Give an explicit definition of the bijection f from N onto Z described in Example 1.3.7(b).
Exhibit a bijection between N and a proper subset of itself.

Prove that a set 7| is denumerable if and only if there is a bijection from 7 onto a denumerable
set T,.

Give an example of a countable collection of finite sets whose union is not finite.

9. Prove in detail that if S and T are denumerable, then S U T is denumerable.

10. Determine the number of elements in P(S), the collection of all subsets of S, for each of the
following sets:
(@ §:={1,2},
®) §:={1,2,3},
(c) §:={1,2,3,4}.
Be sure to include the empty set and the set S itself in P(S).

11. Use Mathematical Induction to prove that if the set S has n elements, then P(S) has 2" elements.
12. Prove that the collection F(N) of all finite subsets of N is countable.

N v s w
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CHAPTER 2

" THE REAL NUMBERS

In this chapter we will discuss the essential properties of the real number system R.
Although it is possible to give a formal construction of this system on the basis of a more
primitive set (such as the set N of natural numbers or the set Q of rational numbers), we
have chosen not to do so. Instead, we exhibit a list of fundamental properties associated
with the real numbers and show how further properties can be deduced from them. This
kind of activity is much more useful in learning the tools of analysis than examining the
logical difficulties of constructing a model for R.

The real number system can be described as a “complete ordered field”’, and we
will discuss that description in considerable detail. In Section 2.1, we first introduce the
“algebraic” properties—often called the “field” properties in abstract algebra—that are
based on the two operations of addition and multiplication. We continue the section with
the introduction of the “order” properties of R and we derive some consequences of these
properties and illustrate their use in working with inequalities. The notion of absolute value,
which is based on the order properties, is discussed in Section 2.2.

In Section 2.3, we make the final step by adding the crucial “completeness’ property to
the algebraic and order properties of R. It is this property, which was not fully understood
until the late nineteenth century, that underlies the theory of limits and continuity and
essentially all that follows in this book. The rigorous development of real analysis would
not be possible without this essential property.

In Section 2.4, we apply the Completeness Property to derive several fundamental
results concerning R, including the Archimedean Property, the existence of square roots,
and the density of rational numbers in R. We establish, in Section 2.5, the Nested Interval
Property and use it to prove the uncountability of R. We also discuss its relation to binary
and decimal representations of real numbers.

Part of the purpose of Sections 2.1 and 2.2 is to provide examples of proofs of
elementary theorems from explicitly stated assumptions. Students can thus gain experience
in writing formal proofs before encountering the more subtle and complicated arguments
related to the Completeness Property and its consequences. However, students who have
previously studied the axiomatic method and the technique of proofs (perhaps in a course
on abstract algebra) can move to Section 2.3 after a cursory look at the earlier sections. A
brief discussion of logic and types of proofs can be found in Appendix A at the back of the
book.

Section 2.1 The Algebraic and Order Properties of R

We begin with a brief discussion of the “algebraic structure” of the real number system. We
will give a short list of basic properties of addition and multiplication from which all other
algebraic properties can be derived as theorems. In the terminology of abstract algebra, the
system of real numbers is a “field” with respect to addition and multiplication. The basic
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properties listed in 2.1.1 are known as the field axioms. A binary operation associates with
each pair (a, b) a unique element B(a, b), but we will use the conventional notations of
a + b and a - b when discussing the properties of addition and multiplication.

2.1.1 Algebraic Properties of R On the set R of real numbers there are two binary
operations, denoted by + and - and called addition and multiplication, respectively. These
operations satisfy the following properties:

(A1) a+b=>b+aforalla,binR (commutative property of addition);

(A2) (@a+b)+c=a+ (b+c)foralla,b,cinR (associative property of addition),

(A3) there exists an element 0 in R such that0+a=aanda+0=a for alla in R
(existence of a zero element);

(A4) for each a in R there exists an element —a in R such that a + (—a) =0 and
(—a) +a =0 (existence of negative elements);,

(M1) a-b=b-aforalla,bin R (commutative property of multiplication);,

M2) (@a-b)-c=a-(b-c)foralla,b,cinR (associative property of multiplication);,

(M3) there exists an element 1 in R distinct from 0 suchthat 1 -a =a anda - 1 = a for
allain R (existence of a unit element);

(M4) for each a # 0 in R there exists an element 1/a in R such thata - (1/a) =1 and
(1/a) -a =1 (existence of reciprocals),

M a-b+c)=@-b)+@-c)and(b+c)-a=(b-a)+(c-a)foralla,b,cinR
(distributive property of multiplication over addition).

These properties should be familiar to the reader. The first four are concerned with
addition, the next four with multiplication, and the last one connects the two operations.
The point of the list is that all the familiar techniques of algebra can be derived from these
nine properties, in much the same spirit that the theorems of Euclidean geometry can be
deduced from the five basic axioms stated by Euclid in his Elements. Since this task more
properly belongs to a course in abstract algebra, we will not carry it out here. However, to
exhibit the spirit of the endeavor, we will sample a few results and their proofs.

We first establish the basic fact that the elements 0 and 1, whose existence were asserted
in (A3) and (M3), are in fact unique. We also show that multiplication by 0 always results
in 0.

2.1.2 Theorem (a) Ifzanda are elementsin R withz+a =a, thenz=0.
(b) Ifuandb # 0 are elements in R withu - b= b, thenu = 1.
(¢) Ifa€eR,thena-0=0.

Proof. (a) Using (A3), (A4), (A2), the hypothesis z + a = a, and (A4), we get
z2=z4+0=2z4+ @+ (—-a))=(z+a)+ (—a)=a+ (—a) =0.
(b) Using (M3), (M4), (M2), the assumed equality « - b = b, and (M4) again, we get
u=u-1=u-b-(1/b))=w-b)-(1/b)=5b-(1/b) =1.
(c) We have (why?)
a+¢;-0=a-l+a-0=a~(l+0)=a-l=a.

Therefore, we conclude from (a) thata - 0 = 0. Q.ED.
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We next establish two important properties of multiplication: the uniqueness of recip-
rocals and the fact that a product of two numbers is zero only when one of the factors is
zero.

2.1.3 Theorem (a) Ifa# 0Oandbin R aresuchthata -b =1, thenb = 1/a.
(b) Ifa-b =0, then eithera =0orb =0.

Proof. (a) Using (M3), (M4), (M2), the hypothesis a - b = 1, and (M3), we have
b=1-b=(1/a)-a)-b={1/a)-(a-b)=(1/a)-1=1/a.

(b) It suffices to assume a 7# 0 and prove that b = 0. (Why?) We multiply a - b by 1/a and
apply (M2), (M4) and (M3) to get

(1/a)-(@a-b)=((1/a)-a)-b=1-b=0b.
Since a - b = 0, by 2.1.2(c) this also equals
(1/a)-(@-b)=(1/a)-0=0.
Thus we have b = 0. Q.ED.

These theorems represent a small sample of the algebraic properties of the real number
system. Some additional consequences of the field properties are given in the exercises.

The operation of subtraction is definedbya — b := a + (—b) for a, b in R. Similarly,
division is defined for a,b in R with b # 0 by a/b := a - (1/b). In the following, we
will use this customary notation for subtraction and division, and we will use all the
familiar properties of these operations. We will ordinarily drop the use of the dot to indicate
multiplication and write ab for a - b. Similarly, we will use the usual notation for exponents
and write a? for aa, a> for (a?)a; and, in general, we define a"t! := (@")a forn € N. We
agree to adopt the convention that a' = a. Further, if a 5 0, we write a° = 1 and a~! for
1/a, and if n € N, we will write a™ for (1/a)", when it is convenient to do so. In general,
we will freely apply all the usual techniques of algebra without further elaboration.

Rational and Irrational Numbers

We regard the set N of natural numbers as a subset of R, by identifying the natural number
n € N with the n-fold sum of the unit element 1 € R. Similarly, we identify 0 € Z with the
zero element of 0 € R, and we identify the n-fold sum of —1 with the integer —n. Thus,
we consider N and Z to be subsets of R.

Elements of R that can be written in the form b/a where a, b € Z and a # 0 are called
rational numbers. The set of all rational numbers in R will be denoted by the standard
notation Q. The sum and product of two rational numbers is again a rational number (prove
this), and moreover, the field properties listed at the beginning of this section can be shown
to hold for Q.

The fact that there are elements in R that are not in QQ is not immediately apparent.
In the sixth century B.C. the ancient Greek society of Pythagoreans discovered that the
diagonal of a square with unit sides could not be expressed as a ratio of integers. In view
of the Pythagorean Theorem for right triangles, this implies that the square of no rational
number can equal 2. This discovery had a profound impact on the development of Greek
mathematics. One consequence is that elements of R that are not in Q became known
as irrational numbers, meaning that they are not ratios of integers. Although the word

¢
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“irrational” in modern English usage has a quite different meaning, we shall adopt the
standard mathematical usage of this term.

We will now prove that there does not exist a rational number whose square is 2. In the
proof we use the notions of even and odd numbers. Recall that a natural number is even if
it has the form 2n for some n € N, and it is odd if it has the form 2n — 1 for some n € N.
Every natural number is either even or odd, and no natural number is both even and odd.

2.1.4 Theorem There does not exist a rational number r such that r* = 2.

Proof. Suppose, on the contrary, that p and ¢ are integers such that (p/q)* = 2. We
may assume that p and g are positive and have no common integer factors other than 1.
(Why?) Since p? = 242, we see that p? is even. This implies that p is also even (because
if p =2n — 1 is odd, then its square p?> = 2(2n® — 2n + 1) — 1 is also odd). Therefore,
since p and g do not have 2 as a common factor, then ¢ must be an odd natural number.

Since p iseven, then p = 2m forsome m € N, and hence 4m? = 242, sothat2m? = ¢2.
Therefore, g2 is even, and it follows from the argument in the preceding paragraph that g
is an even natural number.

Since the hypothesis that (p/q)? = 2 leads to the contradictory conclusion that g is
both even and odd, it must be false. Q.ED.

The Order Properties of R

The “order properties” of R refer to the notions of positivity and inequalities between real
numbers. As with the algebraic structure of the system of real numbers, we proceed by
isolating three basic properties from which all other order properties and calculations with
inequalities can be deduced. The simplest way to do this is to identify a special subset of R
by using the notion of “positivity”.

2.1.5 The Order Properties of R There is a nonempty subset P of R, called the set of
positive real numbers, that satisfies the following properties:

(i) Ifa, bbelong to P, then a + b belongs to P.
(ii) If a, b belong to P, then ab belongs to P.
(iii) If a belongs to R, then exactly one of the following holds:

aeP, a=0, —a € P.

The first two conditions ensure the compatibility of order with the operations of addi-
tion and multiplication, respectively. Condition 2.1.5(iii) is usually called the Trichotomy
Property, since it divides R into three distinct types of elements. It states that the set
{—a : a € P} of negative real numbers has no elements in common with the set P of
positive real numbers, and, moreover, the set R is the union of three disjoint sets.

Ifa € P, we write a > 0 and say that a is a positive (or a strictly positive) real number.
If a € PU {0}, we write a > 0 and say that a is a nonnegative réal number. Similarly, if
—a € P, we write a < 0 and say that a is a negative (or a strictly\negative) real number.
If —a € P U {0}, we write a < 0 and say that g is a nonpositive real number.

The notion of inequality between two real numbers will now b¢ defined in terms of the
set IP of positive elements. ’

2.1.6 Definition Let a;b be elements of R.

(@) Ifa—b e P, thenwewritea > borb <a.
(b) Ifa—bePU{0}, thenwe writea > borb <a.
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The Trichotomy Property 2.1.5(iii) implies that for a, b € R exactly one of the follow-
ing will hold:

a>b, a=>b, a <b.

Therefore, if botha < band b < a, thena = b.
For notational convenience, we will write

a<b<c

to mean that botha < band b < c are satisfied. The other “double” inequalitiesa < b < c,
a <b <c,anda < b < c are defined in a similar manner.

To illustrate how the basic Order Properties are used to derive the “rules of inequalities”,
we will now establish several results that the reader has used in earlier mathematics courses.

2.1.7 Theorem Leta, b, c be any elements of R.

(@) Ifa >bandb > c, thena > c.
(b) Ifa > b,thena+c>b+c.

(¢) Ifa>bandc > 0, thenca > cb.
Ifa >bandc <0, thenca < cb.

Proof. (a) If a—b € P and b — c € P, then 2.1.5(i) implies that (@a —b) + (b —¢) =
a — c belongs to P. Hencea > c.
() fa—beP,then(a+c)—(b+c)=a—>bisinP. Thusa+c>b+c.
(c) fa—belPandceP, then ca — cb = c(a — b) is in P by 2.1.5(ii). Thus ca > cb
when ¢ > 0.

On the other hand, if ¢ < 0, then —c € P, sothat cb — ca = (—c)(a — b) isin P. Thus
cb > cawhenc < 0. Q.E.D.

It is natural to expect that the natural numbers are positive real numbers. This property
is derived from the basic properties of order. The key observation is that the square of any
nonzero real number is positive.

2.1.8 Theorem (a) Ifa € Randa # 0, thena® > 0.
() 1>0. ‘
(¢) IfneN,thenn > 0.

Proof. (a) By the Trichotomy Property, if a # O, then eithera € Por —a € P.Ifa € P,
then by 2.1.5(ii), a* =a-a € P. Also, if —a € P, then a® = (—a)(—a) € P. We conclude
that if @ # 0, then @ > 0.

(b) Since 1 = 12, it follows from (a) that 1 > 0.

(c) We use Mathematical Induction. The assertion for n = 1 is true by (b). If we suppose the
assertion is true for the natural number k, then k € P, and since 1 € P, wehave k + 1 € P
by 2.1.5(i). Therefore, the assertion is true for all natural numbers. Q.E.D.

It is worth noting that no smallest positive real number can exist. This follows by
observing that if a > 0, then since J > 0 (why?), we have that

O<%a<a.
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Thus if it is claimed that a is the smallest positive real number, we can exhibit a smaller
positive number ja.

This observation leads to the next result, which will be used frequently as a method of
proof. For instance, to prove that a number a > 0 is actually equal to zero, we see that it
suffices to show that a is smaller than an arbitrary positive number.

2.1.9 Theorem Ifa € Rissuchthat0 <a < ¢ foreverye > 0, thena = 0.

Proof. Suppose to the contrary thata > 0. Then if we take g, := %a, wehave0 < ¢, < a.
Therefore, it is false that a < ¢ for every € > 0 and we conclude thata = 0. QED.

Remark It is an exercise to show that if a € R is such that 0 < a < ¢ for every € > 0,
thena = 0.

The product of two positive numbers is positive. However, the positivity of a product
of two numbers does not imply that each factor is positive. The correct conclusion is given
in the next theorem. It is an important tool in working with inequalities.

2.1.10 Theorem Ifab > 0, then either

@) a>0andb>0,o0r
(ii) a<O0andb <0.

Proof. First we note that ab > 0 implies that a # 0 and b # 0. (Why?) From the Tri-
chotomy Property, either a > 0 or a < 0. If a > 0, then 1/a > 0 (why?), and therefore
b = (1/a)(ab) > 0. Similarly, ifa < 0, then 1/a < 0, so that b = (1/a)(ab) < 0. QED.

2.1.11 Corollary Ifab < O, then either

(i) a<O0andb>0,o0r
(ii) a>0andb <0.

Inequalities

We now show how the Order Properties presented in this section can be used to “solve”
certain inequalities. The reader should justify each of the steps.

2.1.12 Examples (a) Determine the set A of all real numbers x such that 2x + 3 < 6.
We note that we have'

i

XEA & 2ux+43<6 & 2x<3 & x<

Therefore A = {x e R: x < 3}.

(b) Determine the set B := {x € R: x* + x > 2}.
We rewrite the inequality so that Theorem 2.1.10 can be applied. Note that

x€B & x*+x-2>0 < (x-Dx+2>0.

Therefore, we either have (i) x — 1 > 0 and x + 2 > 0, or we have (ii) x — 1 < 0 and
x + 2 < 0. In case (i) we must have both x > 1 and x > —2, which is satisfied if and only

*The symbol <=5 should be read “if and only if".
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if x > 1. In case (ii) we must have both x < 1 and x < —2, which is satisfied if and only
ifx < -2.

Weconcludethat B={x e R:x > 1}U{x e R:x < -2}.
(¢) Determine the set

C:=[J¢€R:2x+l <l}.
x+2
'We note that
2x+1 x-1
C -1<0 0.
X € = 12 < — 4 x+2<

Therefore we have either (i) x —1 <O0andx+2>0,0r(ii)x—~1>0and x+2 <0.

(Why?) In case (i) we must have both x < 1 and x > —2, which is satisfied if and only if

—2 < x < 1. In case (ii), we must have both x > 1 and x < —2, which is never satisfied.
Weconcludethat C ={x e R: -2 <x < 1}. O

The following examples illustrate the use of the Order Properties of R in establishing
certain inequalities. The reader should verify the steps in the arguments by identifying the
properties that are employed.

It should be noted that the existence of square roots of positive numbers has not yet
been established; however, we assume the existence of these roots for the purpose of these
examples. (The existence of square roots will be discussed in Section 2.4.)

2.1.13 Examples (a) Leta >0and b > 0. Then
(1) a<b & a*'<bh? = Ja<vb

We consider the case where a > 0 and b > 0, leaving the case a = 0 to the reader. It follows
from 2.1.5(i) thata + b > 0. Since b> — a? = (b — a)(b + a), it follows from 2.1.7(c) that
b — a > 0 implies that b2 — a® > 0. Also, it follows from 2.1.10 that 4> — a® > 0 implies
thatb —a > 0.

Ifa > 0and b > 0, then \/a > 0 and v/ > 0. Since a = (/a)’ and b = (v/b)’, the
second implication is a consequence of the first one when a and b are replaced by ./a and
Vb, respectively.

We also leave it to the reader to show thatif a > 0 and b > 0, then

) a<b &= a*<b® & Ja<+b

() If a and b are positive real numbers, then their arithmetic mean is }(a + b) and their
geometric mean is +/ab. The Arithmetic-Geometric Mean Inequality for a, b is

() Vab < }(a+b)

with equality occurring if and only if a = b.
To prove this, note thatifa > 0, b > 0, and a # b, then \/a > 0, v > O and /a #

Vb. (Why?) Therefore it follows from 2.1.8(a) that (f - JE)z > 0. Expanding this
square, we obtain

a—2vab+b>0,
whence it follows that

Vab < i@+b).
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Therefore (2) holds (with strict inequality) when a # b. Moreover, ifa = b(> 0), then both
sides of (2) equal a, so (2) becomes an equality. This proves that (2) holds fora > 0, b > 0.

On the other hand, suppose thata > 0, b > 0 and that Jab = %(a + b). Then, squar-
ing both sides and multiplying by 4, we obtain

4ab = (a + b)* = a* + 2ab + b?,
whence it follows that
0= a? — 2ab + b* = (a — b)>.
But this equality implies that a = b. (Why?) Thus, equality in (2) implies that a = b.

Remark The general Arithmetic-Geometric Mean Inequality for the positive real num-
bersa,,a,,---,a,is

(3) (0102”'0")1/" < al+a2-:...+an
with equality occurring if and only if a, = a, = --- = a,. It is possible to prove this more

general statement using Mathematical Induction, but the proof is somewhat intricate. A
more elegant proof that uses properties of the exponential function is indicated in Exercise
8.3.9 in Chapter 8.

(c) Bernoulli’s Inequality. If x > —1, then
4) (1+x)">14nx forall neN

The proof uses Mathematical Induction. The case n = 1 yields equality, so the assertion
is valid in this case. Next, we assume the validity of the inequality (4) for k € N and will
deduce it for k + 1. Indeed, the assumptions that (1 + x)¥>1+4+kxandthat 1 +x >0
imply (why?) that

A+x)*' =1 +x0* 1 +x)
> (1 +kx) - (1+x) =1+ (k+ 1)x + kx?
> 1+ (k+ . '

Thus, inequality (4) holds for n = k + 1. Therefore, (4) holds for all n € N. O

Exercises for Section 2.1

1. Ifa, b € R, prove the following.

(a) Ifa+b=0,thenb = —a, ) —(—a)=a,

© (-Da=-a, @ -H(-H=1
2. Provethatifa, b € R, then

(@ —(a+b)=(-a)+(-d), ®) (-a)-(-b)=a-b,

© 1/(=a)=-(/a), d) —(a/b)=(—a)/b ifb#0. '
3. Solve the following equations, justifying each step by referring to an appropriate property or

theorem.

@ 2x+5=38, ®) x*=2x, :

© x*-1=3, @ x-Dx+2)=0.

4. Ifa € R satisfies a - a = a, prove that eithera =0ora = 1.
5. Ifa # 0and b # 0, show that 1/(ab) = (1/a)(1/b).
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5 Use the argument in the proof of Theorem 2.1.4 to show that there does not exist a rational
umber s such that s> = 6.

7. Modify the proof of Theorem 2.1.4 to show that there does not exist a rational number ¢ such
that 12 = 3.

8. (a) Show thatif x, y are rational numbers, then x + y and xy are rational numbers.
(b) Prove that if x is a rational number and y is an irrational number, then x + y is an irrational
number. If, in addition, x # 0, then show that xy is an irrational number.

9. LetK :={s+1tv/2:s,t € Q). Show that K satisfies the following:
(@ Ifx,x,€K,thenx, +x, € Kandx,x, € K.
(b) Ifx#0andx € K,then 1/x € K.
(Thus the set X is a subfield of R. With the order inherited from R, the set X is an ordered field
that lies between Q@ and R).

10. (@) Ifa <bandc <d,provethata+c <b+d.
) If0<a<band0 <c <d,provethat0 < ac < bd.

11. (a) Show thatifa > 0,then1/a > 0and 1/(1/a) = a.
(b) Show thatifa < b,thena < 3(a +b) < b.

12. Leta, b, c, d be numbers satisfying 0 < a < band ¢ < d.< 0. Give an example where ac < bd,
and one where bd < ac.

13. Ifa, b € R, show thata® + b*> = O if and only ifa = 0 and b = 0.

14. If0 < a < b, show that a> < ab < b*. Show by example that it does not follow that a®> < ab <
b2

15. If0 < a < b, show that (a) a < vab < b, and (b) 1/b < 1/a.

16. Find all real numbers x that satisfy the following inequalities.
(@) x*>3x+4, ® 1<x?<4,
© 1/x <x, @ 1/x < x2.

17. Prove the following form of Theorem 2.1.9: If a € R is such that 0 < a < ¢ for every € > 0,
thena =0.

18. Leta, b € R, and suppose that for every ¢ > O we have a < b + ¢. Show thata < b.

19. Prove that [3(a + b)]2 < 1 (a* + b?) for all a, b € R. Show that equality holds if and only if
a=hb.

20. (@ IfO0O<c<1,showthat0 <c* <c < 1.
() Ifl1 <c,showthatl <c < c>.

21. (a) Prove thereisnon € N such that 0 < n < 1. (Use the Well-Ordering Property of N.)
(b) Prove that no natural number can be both even and odd.

22. (a) Ifc> 1,showthatc” > cforalln € N, and that ¢ > ¢ forn > 1.
(b) If0<c<1,showthatc” <cforalln e N,andthatc” <cforn > 1.

23. Ifa>0,b>0andn €N, show that a < b if and only if a" < b". [Hint: Use Mathematical
Induction].

24. (a) Ifc > 1and m,n € N, show that ¢ > ¢" if and only if m > n.
() If0<c < 1andm,n € N, show that ¢™ < ¢" if and only if m > n.

25. Assuming the existence of roots, show that if ¢ > 1, then ¢/™ < ¢'/" if and only if m > n.

26. Use Mathematical Induction to show that if @ € R and m, n, € N, then a™*" = a™a" and
(am)n — amn. '
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Section 2.2 Absolute Value and the Real Line

From the Trichotomy Property 2.1.5(iii), we are assured that if a € R and a # 0, then
exactly one of the numbers a and —a is positive. The absolute value of a # 0 is defined to
be the positive one of these two numbers. The absolute value of 0 is defined to be 0.

2.2.1 Definition The absolute value of a real number a, denoted by |a|, is defined by
a ifa >0,
lal := ¢ 0 ifa=0,
—a ifa<0.

For example, |5| =5 and | — 8| = 8. We see from the definition that |a| > O for
all a € R, and that |a| = 0 if and only if a = 0. Also | — a| = |a| for all a € R. Some
additional properties are as follows.

2.2.2 Theorem (a) |ab| = |a||b| foralla,b € R.
(b) |a|* =a? foralla € R.

(c) Ifc>0,then|a| <cifandonlyif —c <a <c.
(d) —lal <a <|a|foralla € R.

Proof. (a) If either a or b is 0, then both sides are equal to 0. There are four other cases
to consider. If a > 0, b > 0, thenab > 0, so that |ab| = ab = |a||b|.Ifa > 0, b < 0, then
ab < 0, so that |ab| = —ab = a(—b) = |a]|b|. The remaining cases are treated similarly.
(b) Since a? > 0, we have a® = |a?| = |aa| = lalla| = |a|?.

(¢) If |a] < c, then we have both a < ¢ and —a < ¢ (why?), which is equivalent to —c <
a < c. Conversely, if —c < a < c, then we have both a < ¢ and —a < ¢ (why?), so that
la] <c.

(d) Take ¢ = |a| in part (c). QED.

The following important inequality will be used frequently.

2.2.3 Triangle Inequality Ifa,b € R, then |a + b| < |a| + |b|.
Proof. From 2.2.2(d), we have —Ja| <a < |a| and —|b| < b < |b|. On adding these
inequalities, we obtain
—(lal+ b)) <a+b < |a] + |b|.
Hence, by 2.2.2(c) we have |a + b| < |a| + |b]. QED.

It can be shown that equality occurs in the Triangle Inequality if and only if ab > 0,
which is equivalent to saying that a and b have the same sign. (See Exercise 2.)
There are many useful variations of the Triangle Inequality. Here are two.

2.2.4 Corollary Ifa,b € R, then
(@) |lal — 1bl| < la — b,
(b) la—b] < la| + |bl.

Proof. (a) We write a = a — b + b and then apply the Triangle Inequality to get |a| =
" |(@ = b) + b| < |a — b| + |b|. Now subtract |b| to get |a} — |b| < |a — b|. Similarly, from
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|bl = 1b —a +al| < |b — a| + |a|, weobtain —|a@ — b| = —|b — a| < |a| — |b|. If we com-
bine these two inequalities, using 2.2.2(c), we get the inequality in (a).

(b) Replace b in the Triangle Inequality by —b to get |a — b| < |a| + | — b|. Since | — b| =
|b| we obtain the inequality in (b). QED.

A straightforward application of Mathematical Induction extends the Triangle Inequal-
ity to any finite number of elements of R.

2.2.5 Corollary Ifa,,a,,---,a, are any real numbers, then

la, +a,+---+a,| <la|+lay+---+|a,l
The following examples illustrate how the properties of absolute value can be used.

2.2.6 Examples (a) Determine the set A of x € R such that |2x + 3| < 7.

From a modification of 2.2.2(c) for the case of strict inequality, we see that x € A if
and only if —7 < 2x 4+ 3 < 7, which is satisfied if and only if —10 < 2x < 4. Dividing by
2,weconcludethat A={x e R: -5 <x <2}.

(b) Determine theset B:={x e R: |x — 1| < |x]}.

One method is to consider cases so that the absolute value symbols can be removed.

Here we take the cases

x=>1, (i)0<x <1, (i) x < 0.

(Why did we choose these three cases?) In case (i) the inequality becomes x — 1 < x,
which is satisfied without further restriction. Therefore all x such that x > 1 belong to the
set B. In case (ii), the inequality becomes —(x — 1) < x, which requires that x > % Thus,
this case contributes all x such that % < x < 1 to the set B. In case (iii), the inequality
becomes —(x — 1) < —x, which is equivalent to 1 < 0. Since this statement is false, no
value of x from case (iii) satisfies the inequality. Forming the union of the three cases, we
conclude that B = {x e R: x > 3}.

There is a second method of determining the set B based on the fact that a < b if
and only if a*> < b?> when both a > 0 and b > 0. (See 2.1.13(a).) Thus, the inequality
[x — 1] < |x| is equivalent to the inequality |x — 11?2 < |x|?. Since |a|2 = a® for any a by
2.2.2(b), we can expand the square to obtain x2 —2x + 1 < x2, which simplifies to x > %
Thus, we again find that B = {x € R : x > 1}. This method of squaring can sometimes be
used to advantage, but often a case analysis cannot be avoided when dealing with absolute
values.

(c) Let the function f be defined by f(x) := 2x2+3x +1)/2x —1) for2 < x < 3.
Find a constant M such that | f(x)| < M for all x satisfying2 < x < 3.
We consider separately the numerator and denominator of

[2x% + 3x + 1]
2x—1]

1| f(x)] =
From the Triangle Inequality, we obtain
2x2+3x+ 1] <2Ix?+3|x|+1<2-3243-3+1=28

since |x| < 3 for the x under consideration. Also, |2x — 1| >2|x|-1>2.2-1=2
since |x| > 2 for the x under consideration. Thus, 1/|2x — 1] < 1/3 for x > 2. (Why?
Therefore, for 2 < x < 3 we have | f(x)| < 28/3. Hence we can take M = 28/3. (Notc
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that we have found one such constant M; evidently any number H > 28/3 will also satisfy
| f(x)] < H.Itis also possible that 28/3 is not the smallest possible choice for M.) O

The Real Line

A convenient and familiar geometric interpretation of the real number system is the real
line. In this interpretation, the absolute value |a| of an element a in R is regarded as the
distance from a to the origin 0. More generally, the distance between elements a and b in
Ris |a — b|. (See Figure 2.2.1.)

We will later need precise language to discuss the notion of one real number being
“close to” another. If a is a given real number, then saying that a real number x is “close to” a
should mean that the distance |x — a| between them is “small”. A context in which this idea
can be discussed is provided by the terminology of neighborhoods, which we now define.

2 3 4
1 l l ] ] | 1 1 | -

e——]¢-20-(3)| =5 ——

Figure 2.2.1 The distance betweena = —2and b =3

2.2.7 Definition Leta € Rand ¢ > 0. Then the £-neighborhood of a is the set V_(a) :=
{xe R:|x —a| <&}

Fora € R, the statement that x belongs to V_(a) is equivalent to either of the statements
(see Figure 2.2.2)

—Ee<Xx—a<e¢ — a—&e<x<a-e.

L O ) .
\ ~ 7 o

a-¢ a a+é

Figure 2.2.2 An ¢-neighborhood of a

2.2.8 Theorem Leta € R. Ifx belongs to the neighborhood V_(a) for every & > 0, then
x =a.

Proof. If a particular x satisfies |[x — a| < ¢ for every ¢ > 0, then it follows from 2.1.9
that |x — a| = 0, and hence x = a. QED.

2.2.9 Examples (a) Let U :={x:0 < x < 1}. If a € U, then let ¢ be the smaller of
the two numbers a and 1 — a. Then it is an exercise to show that V_(a) is contained in U.
Thus each element of U has some &-neighborhood of it contained in U.

(b) If I :={x:0 < x <1}, then for any ¢ > 0, the e-neighborhood V_(0) of O contains
points not in /, and so V_(0) is not contained in I. For example, the number x, := —&/2 is
in V_(0) butnot in 1.

() If jx —al| <e¢eand|y— b| < ¢, then the Triangle Inequality implies that

|(x +y)—(@+b)| =|(x —a) + (y — b)|
<|I|x—al+ly—b| <2e.
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Thus if x, y belong to the e-neighborhoods of a, b, respectively, then x + y belongs to the
2¢e-neighborhood of a + b-(but not necessarily to the -neighborhood of a + b). O

Exercises for Section 2.2

1. Ifa,b € R and b # 0, show that:
@ la|l=va?, ®) la/bl = lal/Ibl.
If a, b € R, show that |a + b| = |a| + |b| if and only if ab > 0.

Ifx,y,ze Rand x < z, show thatx <y < zifand only if |x — y| + |y — 2| = |x — 2|. Inter-
pret this geometrically.

Show that |x —a| <eifandonlyifa— ¢ <x <a +e.
Ifa <x <banda < y < b, show that [x — y| < b — a. Interpret this geometrically.

Find all x € R that satisfy the following inequalities:
(@) |4x -5 <13, ® Ix*-1]<3.

Find all x € R that satisfy the equation |x + 1| + |x — 2| = 7.

Find all x € R that satisfy the following inequalities.
@ x=-1>Ix+1|, ®) Ix|+Ix+1] <2

9. Sketch the graph of the equation y = |x| — |x — 1|.
10. Find all x € R that satisfy the inequality 4 < |x + 2|+ |x — 1| < 5.
11. Find all x € R that satisfy both |2x — 3| < 5 and |x + 1| > 2 simultaneously.
12. Determine and sketch the set of pairs (x, y) in R x R that satisfy:

@ |x[=|yl. ® Ixl+lyl=1,
© Ixyl=2, @ |x|-lyl=2.
13. Determine and sketch the set of pairs (x, y) in R x R that satisfy:
@ [|x| <yl ® Ixl+lyl<1,
©) Ixyl =2, @ Ixl—-Ilyl=2.

14. Lete > 0andd > 0, and a € R. Show that V_(a) N V;(a) and V_(a) U V,(a) are y-neighbor-
hoods of a for appropriate values of y.

15. Show thatif a, b € R, and a # b, then there exist e-neighborhoods U of a and V of b such that
unv=4g.

16. Show thatif a, b € R then
(a) max{a, b} = 1(a + b+ |a - b|) and min{a, b} = }(a + b — |a — b|).
(b) min{a, b, ¢} = min{min{a, b}, c}.

17. Showthatifa, b, ¢ € R, then the “middle number” is mid{a, b, ¢} = min{max{a, b}, max{b, c},
max{c, a}}.

Section 2.3 The Completeness Property of R

Thus far, we have discussed the algebraic properties and the order properties of the real
number system R. In this section we shall present one more property of R that is often called
the “Completeness Property”. The system Q of rational numbers also has the algebraic and
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order properties described in the preceding sections, but we have seen that +/2 cannot be
represented as a rational number; therefore +/2 does not belong to Q. This observation
shows the necessity of an additional property to characterize the real number system. This
additional property, the Completeness (or the Supremum) Property, is an essential property
of R, and we will say that R is a complete ordered field. 1t is this special property that
permits us to define and develop the various limiting procedures that will be discussed in
the chapters that follow.

There are several different ways to describe the Completeness Property. We choose to
give what is probably the most efficient approach by assuming that each nonempty bounded
subset of R has a supremum.

Suprema and Infima

We now introduce the notions of upper bound and lower bound for a set of real numbers.
These ideas will be of utmost importance in later sections.

2.3.1 Definition Let S be a nonempty subset of R.

(a) The set S is said to be bounded above if there exists a number u € R suchthats < u
for all s € S. Each such number u is called an upper bound of S.

(b) The set S is said to be bounded below if there exists a number w € Rsuchthatw < s
for all s € S. Each such number w is called a lower bound of S.

(c) A setis said to be bounded if it is both bounded above and bounded below. A set is
said to be unbounded if it is not bounded.

For example, the set S := {x € R : x < 2} is bounded above; the number 2 and any
number larger than 2 is an upper bound of S. This set has no lower bounds, so that the set
is not bounded below. Thus it is unbounded (even though it is bounded above).

If a set has one upper bound, then it has infinitely many upper bounds, because if u
is an upper bound of S, then the numbers u + 1, u + 2, - - - are also upper bounds of §.
(A similar observation is valid for lower bounds.)

In the set of upper bounds of S and the set of lower bounds of S, we single out their
least and greatest elements, respectively, for special attention in the following definition.
(See Figure 2.3.1.)

S
inf§ sup §
\ . ,
) ' R
V" ~"
lower bounds of § upper bounds of §

Figure23.1 infS and supS$

2.3.2 Definition Let S be a nonempty subset of R.

(a) If S is bounded above, then a number u is said to be a supremum (or a least upper
bound) of S if it satisfies the conditions:

(1) uisan dpper bound of §, and
(2) if v is any upper bound of S, then u < v.
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(b) If S is bounded below, then a number w is said to be an infimum (or a greatest lower
bound) of S if it satisfies the conditions:

a) wis a lower bound of S, and
(2') if¢t is any lower bound of S, then? < w.

It is not difficult to see that there can be only one supremum of a given subset S of R.
(Then we can refer to the supremum of a set instead of a supremum.) For, suppose that
u, and u, are both suprema of S. If u;, < u,, then the hypothesis that u, is a supremum
implies that &; cannot be an upper bound of S. Similarly, we see that u, < u, is not
possible. Therefore, we must have 4, = u,. A similar argument can be given to show that
the infimum of a set is uniquely determined.

If the supremum or the infimum of a set S exists, we will denote them by

supS and infS.

We also observe that if ¥’ is an arbitrary upper bound of a nonempty set S, thensup S < u'.
~ This is because sup S is the least of the upper bounds of S.

First of all, it needs to be emphasized that in order for a nonempty set S in R to have
a supremum, it must have an upper bound. Thus, not every subset of R has a supremum,
similarly, not every subset of R has an infimum. Indeed, there are four possibilities for a
nonempty subset S of R: itcan

@) have both a supremum and an infimum,
(ii) have a supremum but no infimum,

(iii) have a infimum but no supremum,

(iv)  have neither a supremum nor an infimum.

We also wish to stress that in order to show that ¥ = sup S for some nonempty subset S
of R, we need to show that both (1) and (2) of Definition 2.3.2(a) hold. It will be instructive
to reformulate these statements. First the reader should see that the following two statements
about a number u and a set S are equivalent:

(1)  u is an upper bound of §,
(1Y s<uforalls € S.

Also, the following statements about an upper bound « of a set S are equivalent:

2) if v is any upper bound of S, then u < v,

(2)  if z < u, then z is not an upper bound of S,

(2")  if z < u, then there exists s, € S such that z < s, -
(2") if e > 0, then there exists 5,-€ S such thatu — ¢ < s,.

Therefore, we can state two alternate formulations for the supremum.

233 Lemma A number u is the supremum of a nonempty subset S of R if and only it
u satisfies the conditions:

(1) s<uforalls € S,
(2) ifv < u, then there exists s’ € S such thatv < s’.

We leave it to the reader to write out the details of the proof.

2.34 Lemma An upper bound u of a nonempty set S in R is the supremum of S if an
only if for every ¢ > 0 there exists an s, € S such thatu — ¢ < s,.
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Proof. If u is an upper bound of S that satisfies the stated condition and if v < u, then we
put & := u — v. Then ¢ > 0, so there exists s, € S such that v = u — & < s,. Therefore, v
is not an upper bound of S, and we conclude that u = sup S.

Conversely, suppose that ¥ = sup S and let ¢ > 0. Since 4 — &€ < u, then u — ¢ is not
an upper bound of S. Therefore, some element s, of S must be greater than u — ¢; that is,

u — & < s,.(See Figure 2.3.2.) QED.
u-—=€ Se u
¥ v/
— ..
- _
~
s

Figure23.2 u=supS

It is important to realize that the supremum of a set may or may not be an element
of the set. Sometimes it is and sometimes it is not, depending on the particular set. We
consider a few examples.

2.3.5 Examples (a) If a nonempty set S, has a finite number of elements, then it can
be shown that S, has a largest element 4 and a least element w. Then 4 = sup S, and
w = inf §,, and they are both members of S, . (This is clear if S, has only one element, and
it can be proved by induction on the number of elements in §,; see Exercises 11 and 12.)

(b) The set S, := {x : 0 < x < 1} clearly has 1 for an upper bound. We prove that 1 is
its supremum as follows. If v < 1, there exists an element s’ € S, such that v < s’. (Name
one such element s’.) Therefore v is not an upper bound of S, and, since v is an arbitrary
number v < 1, we conclude that sup S, = 1. It is similarly shown that inf S, = 0. Note that
both the supremum and the infimum of S, are contained in §,.

(c) The set S;:={x:0 < x < 1} clearly has 1 for an upper bound. Using the same
argument as given in (b), we see that sup S; = 1. In this case, the set S; does not contain
its supremum. Similarly, inf S; = 0 is not contained in §,. a

The Completeness Property of R

It is not possible to prove on the basis of the field and order properties of R that were
discussed in Section 2.1 that every nonempty subset of R that is bounded above has a
supremum in R. However, it is a deep and fundamental property of the real number system
that this is indeed the case. We will make frequent and essential use of this property,
especially in our discussion of limiting processes. The following statement concerning the
existence of suprema is our final assumption about R. Thus, we say that R is a complete
ordered field.

2.3.6 The Completeness Property of R Every nonempty set of real numbers that has
an upper bound also has a supremum in R.

This property is also called the Supremum Property of R. The analogous property
for infima can be deduced from the Completeness Property as follows. Suppose that S is
a nonempty subset of R that is bounded below. Then the nonempty set S := {—s : s € S}
is bounded above, and the Supremum Property implies that « := sup S exists in R. The
reader should verify in detail that —u is the infimum of S.

-8
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Exercises for Section 2.3

10.

11.

12.

13.
14.
15.

Let S, := {x € R: x > 0}. Show in detail that the set S, has lower bounds, but no upper bounds.
Show that inf §; = 0.

Let S, = {x € R: x > 0}. Does S, have lower bounds? Does S, have upper bounds? Does
inf S, exist? Does sup S, exist? Prove your statements.

Let S, = {1/n : n € N}. Show that sup S, = 1 and inf S, > 0. (It will follow from the Archi-
medean Property in Section 2.4 that inf S, = 0.)

LetS, := {1 — (=1)"/n: n € N}. Find inf S, and sup S,.
Let S be a nonempty subset of R that is bounded below. Prove that inf § = — sup{—s: s € S}.

If aset S C R contains one of its upper bounds, show that this upper bound is the supremum of
S.

Let S € R be nonempty. Show that 4 € R is an upper bound of S if and only if the conditions
teRandr > uimply thatr ¢ S.

Let S € R be nonempty. Show that if u = sup S, then for every number n € N the number
u — 1/n is not an upper bound of S, but the number « + 1/n is an upper bound of S. (The
converse is also true; see Exercise 2.4.3.)

Show that if A and B are bounded subsets of R, then A U B is a bounded set. Show that
sup(A U B) = sup{sup A, sup B}.

Let S be a bounded set in R and let S, be a nonempty subset of S. Show that inf § < inf §, <
sup S, < supS.

Let S € R and suppose that s* :=sup S belongs to S. If u ¢ S, show that sup(S U {u}) =
sup{s*, u}.

Show that a nonempty finite set S € R contains its supremum. [Hint: Use Mathematical Induc-
tion and the preceding exercise.]

Show that the assertions (1) and (1") before Lemma 2.3.3 are equivalent.
Show that the assertions (2), (2°), (2”), and (2") before Lemma 2.3.3 are equivalent.
Write out the details of the proof of Lemma 2.3.3.

Section 2.4 Applications of the Supremum Property

We will now discuss how to work with suprema and infima. We will also give some very
important applications of these concepts to derive fundamental properties of R. We begin
with examples that illustrate useful techniques in applying the ideas of supremum and
infimum.

24.1 Example (a) Itisanimportant fact that taking suprema and infima of sets is com-
patible with the algebraic properties of R. As an example, we present here the compatibility
of taking suprema and addition.

Let S be a nonempty subset of R that is bounded above, and let a be any number in

R. Define the seta + S := {a + s : s € S}. We will prove that

sup(a + S) =a +sup S.
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If weletu := sup S,thenx < uforallx € S,sothata + x < a + u. Therefore,a + u
is an upper bound for the set a + S; consequently, we have sup(a + S) < a + u.

Now if v is any upper bound of the set a + S, then a + x < v for all x € S. Con-
sequently x < v —a for all x € S, so that v —a is an upper bound of S. Therefore,
u =supS < v —a, which gives us a +u < v. Since v is any upper bound of a + §,
we can replace v by sup(a + S) to geta + u < sup(a + S).

Combining these inequalities, we conclude that

sup(a+ S) =a+u=a+supsS.

For similar relationships between the suprema and infima of sets and the operations of
addition and multiplication, see the exercises.

(b) If the suprema or infima of two sets are involved, it is often necessary to establish
results in two stages, working with one set at a time. Here is an example.
Suppose that A and B are nonempty subsets of R that satisfy the property:

a<b foralla € Aandall b € B.
We will prove that
sup A < inf B.

For, given b € B, wehavea < bforalla € A. This means that b is an upper bound of A, so
that sup A < b. Next, since the last inequality holds for all b € B, we see that the number
sup A is a lower bound for the set B. Therefore, we conclude that sup A < inf B. ]

Functions

The idea of upper bound and lower bound is applied to functions by considering the
range of a function. Given a function f : D — R, we say that f is bounded above if
the set f(D) = {f(x) : x € D} is bounded above in R; that is, there exists B € R such
that f(x) < B for all x € D. Similarly, the function f is bounded below if the set f(D)
is bounded below. We say that f is bounded if it is bounded above and below; this is
equivalent to saying that there exists B € R such that | f(x)| < B forall x € D.

The following example illustrates how to work with suprema and infima of functions.

2.4.2 Example Suppose that f and g are real-valued functions with common domain
D C R. We assume that f and g are bounded.

(@) If f(x) < g(x)forallx € D, thensup f(D) < sup g(D), which is sometimes written:

sup f(x) < sup g(x).
xeD x€D
We first note that f(x) < g(x) < sup g(D), which implies that the number sup g(D)
is an upper bound for f (D). Therefore, sup f(D) < sup g(D).

(b) We note that the hypothesis f(x) < g(x) forall x € D in part (a) does not imply any
relation between sup f (D) and inf g(D).

For example, if f(x) := x2? and g(x) :=x with D = {x : 0 < x < 1}, then f(x) <
g(x)forallx € D.However, weseethatsup f(D) = 1 andinf g(D) = 0. Since sup g(D) =
1, the conclusion of (a) holds.
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() If f(x) <g(y) for all x, y € D, then we may conclude that sup f(D) < inf g(D),
which we may write as:

sup f(x) < inf g(¥).
xeD yeD

(Note that the functions in (b) do not satisfy this hypothesis.)

The proof proceeds in two stages as in Example 2.4.1(b). The reader should write out
the details of the argument. O

Further relationships between suprema and infima of functions are given in the exer-
cises.

The Archimedean Property

Because of your familiarity with the set R and the customary picture of the real line, it may
seem obvious that the set N of natural numbers is not bounded in R. How can we prove this
“obvious” fact? In fact, we cannot do so by using only the Algebraic and Order Properties
given in Section 2.1. Indeed, we must use the Completeness Property of R as well as the
Inductive Property of N (that is, if n € N, thenn + 1 € N).

The absence of upper bounds for N means that given any real number x there exists a
natural number n (depending on x) such that x < n.

2.4.3 Archimedean Property If x € R, then there exists n, € N suchthat x <n,_.

Proof. If the assertion is false, then n < x for all n € N; therefore, x is an upper bound of
N. Therefore, by the Completeness Property, the nonempty set N has a supremum u € R.
Subtracting 1 from u gives a number ¥ — 1 which is smaller than the supremum u of N.
Therefore u — 1 is not an upper bound of N, so there existsm € Nwithu — 1 < m. Adding
1 gives u < m + 1, and since m + 1 € N, this inequality contradicts the fact that u is an
upper bound of N. QED.

244 Corollary IfS:={1/n:n € N}, theninf § = 0.
Proof. Since S # @ is bounded below by 0, it has an infimum and we let w := inf S. Itis

clear that w > 0. For any € > 0, the Archimedean Property implies that there exists n € N
such that 1/¢ < n, which implies 1/n < ¢. Therefore we have

O<w<l/n<e.

But since ¢ > 0 is arbitrary, it follows from Theorem 2.1.9 that w = 0. QED.
2.4.5 Corollary Ift > 0, there existsn, € N such that0 < 1/n, < t.
Proof. Since inf{l/n:n € N} =0 and ¢ > 0, then ¢ is not a lower bound for the set

{1/n : n € N}. Thus there exists n, € N such that0 < 1/n, < ¢. QED.

2.4.6 Corollary Ify > O, there exists n, € N such that n,—l<y<n,
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Proof. The Archimedean Property ensures that the subset E :={m € N: y <m} of N
is not empty. By the Well-Ordering Property 1.2.1, E has a least element, which we denote
by n,. Then n, — 1 does not belong to E, and hence we have n,—1<y<n, QED.

Collectively, the Corollaries 2.4.4-2.4.6 are sometimes referred to as the Archimedean
Property of R.

The Existence of /2

The importance of the Supremum Property lies in the fact that it guarantees the existence of
real numbers under certain hypotheses. We shall make use of it in this way many times. At
the moment, we shall illustrate this use by proving the existence of a positive real number
x such that x2 = 2; that is, the positive square root of 2. It was shown earlier (see Theorem
2.1.4) that such an x cannot be a rational number; thus, we will be deriving the existence
of at least one irrational number.

2.4.7 Theorem There exists a positive real number x such that x> = 2.

Proof. Let S:={s € R: 0<s,s% <2}. Since 1 € S, the set is not empty. Also, S is
bounded above by 2, because if ¢ > 2, then 1> > 4 so that ¢ ¢ S. Therefore the Supremum
Property implies that the set S has a supremum in R, and we let x := sup S. Note that

x> 1.
We will prove that x? = 2 by ruling out the other two possibilities: x> < 2 and x2 > 2.

First assume that x> < 2. We will show that this assumption contradicts the fact that
x = sup S by finding an n € N such that x + 1/n € §, thus implying that x is not an upper
bound for S. To see how to choose n, note that 1/n% < 1/n so that

1\? 2x 1
(x+~'—l) +—+-—<x + - (2x+l)
Hence if we can choose n so that
1
;(2x+1)<2—-x2,

then we get (x + 1/n)? < x? + (2 — x2) = 2. By assumption we have 2 — x2 > 0, so that
(2 — x3)/(2x + 1) > 0. Hence the Archimedean Property (Corollary 2.4.5) can be used to
obtain n € N such that

1_2- x?

n 2x+1
These steps can be reversed to show that for this choice of n we have x + 1/n € S, which
contradicts the fact that x is an upper bound of S. Therefore we cannot have x> < 2.

Now assume that x> > 2. We will show that it is then possible to find m € N such that
x — 1/m is also an upper bound of S, contradicting the fact that x = sup S. To do this, note

that
1 2
( _._) =x2__2_x_+_1_2.>x2_zx_.
m m m m

Hence if we can choose m so that
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then (x — 1/m)? > x? — (x? — 2) = 2. Now by assumption we have x2 — 2 > 0, so that
(x> — 2)/2x > 0. Hence, by the Archimedean Property, there exists m € N such that

L _ x2 -2

m 2x
These steps can be reversed to show that for this choice of m we have (x — 1/m)? > 2. Now
if s € S, then s> < 2 < (x — 1/m)?, whence it follows from 2.1.13(a) that s < x — 1/m.
This implies that x — 1/m is an upper bound for S, which contradicts the fact that x = sup S.
Therefore we cannot have x2 > 2.

Since the possibilities x2 < 2 and x> > 2 have been excluded, we must have x? = 2.
Q.E.D.

By slightly modifying the preceding argument, the reader can show that if a > 0, then
there is a unique b > O such that b> = a. We call b the positive square root of a and denote
it by b = \/a or b = a'/%. A slightly more complicated argument involving the binomial
theorem can be formulated to establish the existence of a unique positive nth root of a,
denoted by /a or a'/*, for each n € N.

Remark If in the proof of Theorem 2.4.7 we replace the set S by the set of rational
numbers T := {r € Q: 0 <r,r? < 2}, the argument then gives the conclusion that y :=
sup T satisfies y2 = 2. Since we have seen in Theorem 2.1.4 that y cannot be a rational
number, it follows that the set T that consists of rational numbers does not have a supremum
belonging to the set Q. Thus the ordered field Q of rational numbers does not possess the
Completeness Property.

Density of Rational Numbers in R

We now know that there exists at least one irrational real number, namely +/2. Actually
there are “more” irrational numbers than rational numbers in the sense that the set of
rational numbers is countable (as shown in Section 1.3), while the set of irrational numbers
is uncountable (see Section 2.5). However, we next show that in spite of this apparent
disparity, the set of rational numbers is “dense” in R in the sense that given any two real
numbers there is a rational number between them (in fact, there are infinitely many such
rational numbers).

2.4.8 The Density Theorem If x and y are any real numbers with x < y, then there
exists a rational numberr € Q suchthatx <r < y.

Proof. 1t is no loss of generality (why?) to assume that x > 0. Since y —x > 0, it
follows from Corollary 2.4.5 that there exists n € N such that 1/n < y — x. Therefore,
we have nx + 1 < ny. If we apply Corollary 2.4.6 to nx > 0, we obtain m € N with
m — 1 < nx < m. Therefore, m < nx + 1 < ny, whence nx < m < ny. Thus, the rational
number r := m/n satisfiesx <r < y. QED.

To round out the discussion of the interlacing of rational and irrational numbers, we
have the same “betweenness property” for the set of irrational numbers.

2.4.9 Corollary Ifx and y are real numbers with x < y, then there exists an irrational
number z such thatx < z < y.
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Proof. If we apply the Density Theorem 2.4.8 to the real numbers x/+/2 and y/+/2, we
obtain a rational number r # 0 (why?) such that

X
Z<r<2.

VMW,

Then z := r+/2 is irrational (why?) and satisfies x < z < y. QED.

Exercises for Section 2.4

10.

Show that sup{l —1/n:n € N} = 1.
IfS:={1/n—1/m:n,m € N}, find inf S and sup S.

Let S € R be nonempty. Prove that if a number u in R has the properties: (i) for every n € N
the number u — 1/n is not an upper bound of S, and (ii) for every number n € N the number
u + 1/n is an upper bound of S, then u = sup S. (This is the converse of Exercise 2.3.8.)

Let S be a nonempty bounded set in R.
(@) Leta > 0,and letasS := {as: s € S}. Prove that

inf(aS) = ainf §, sup(aS) = asupS.
(b) Letb < 0andletbS = {bs: s € S}. Prove that
inf(bS) = bsup S, sup(bS) = binf S.

Let X be a nonempty set and let f: X — R have bounded range in R. If a € R, show that
Example 2.4.1(a) implies that

sup{a + f(x): x € X} = a + sup{f(x): x € X}
Show that we also have
inf{a + f(x): x € X} = a + inf{f(x): x € X}

Let A and B be bounded nonempty subsets of R, and let A+ B:={a+b:a€ A,be€ B).
Prove that sup(A + B) = sup A + sup B and inf(A + B) = inf A + inf B.

Let X be a nonempty set, and let f and g be defined on X and have bounded ranges in R. Show
that

sup{ f(x) + g(x): x € X} < sup{f(x) : x € X} + sup{g(x) : x € X}
and that
inf{ f(x) : x € X} +inf{g(x) : x € X} < inf{f(x) + g(x) : x € X}.
Give examples to show that each of these inequalities can be either equalities or strict inequalities.

LetX=Y:={xeR:0<x <1).Defineh: X xY - Rbyh(x,y) :=2x + y.

(a) Foreach x € X, find f(x) := sup{h(x, y): y € Y}; then find inf{ f (x): x € X}.

(b) Foreach y €Y, find g(y) := inf{h(x, y): x € X}; then find sup{g(y): y € Y}. Compare
with the result found in part (a). '

Perform the computations in (a) and (b) of the preceding exercise for the functionh: X x ¥ - R
defined by

0 ifx<y
h(x,y) := . ’
=y [1 ifx > y.
Let X and Y be nonempty setsandleth : X x ¥ — RhaveboundedrangeinR. Let f : X - R
and g : Y — R be defined by

f(x) :=sup{h(x,y): y €Y}, g(y) :=inf{h(x, y) : x € X}.
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Prove that
sup{g(y) : y € Y} <inf{f(x) : x € X}
We sometimes express this by writing
supinf h(x, y) < infsuph(x, y).
y x x y
Note that Exercises 8 and 9 show that the inequality may be either an equality or a strict
inequality.
11. Let X and Y be nonempty setsandleth : X x ¥ — RhaveboundedrangeinR. Let F: X — R
and G : Y — R be defined by
F(x) :=sup{h(x,y) : y € Y}, G(y) := sup{h(x, y) : x € X}.
Establish the Principle of the Iterated Suprema:
sup{h(x,y):x € X,y € Y} =sup{F(x) : x € X} =sup{G(y) : y € Y}

We sometimes express this in symbols by

sup h(x, y) = supsup h(x, y) = supsup h(x, y).

X,y X y Yy X

12. Given any x € R, show that there exists a unique n € Z suchthatn — 1 <x < n.
13. If y > 0, show that there exists #n € N such that 1/2" < y.

14. Modify the argument in Theorem 2.4.7 to show that there exists a positive real number y such
that y? = 3.

15. Modify the argument in Theorem 2.4.7 to show that if a > 0, then there exists a positive real
number z such that 2 = a.

16. Modify the argument in Theorem 2.4.7 to show that there exists a positive real number « such
thatu® = 2.

17. Complete the proof of the Density Theorem 2.4.8 by removing the assumption that x > 0.

18. If u > 0O is any real number and x < y, show that there exists a rational number r such that
x < ru < y. (Hence the set {ru: r € Q} is dense in R.)

Section 2.5 Intervals

The Order Relation on R determines a natural collection of subsets called “intervals”. The
notations and terminology for these special sets will be familiar from earlier courses. If
a, b € R satisfy a < b, then the open interval determined by a and b is the set

(a,b).={xeR:a<x <b}.

The points a and b are called the endpoints of the interval; however, the endpoints are not
included in an open interval. If both endpoints are adjoined to this open interval, then we
obtain the closed interval determined by a and b; namely, the set

[a,b):={x€R:a<x<b}

The two half-open (or half-closed) intervals determined by a and b are [a, b), which
includes the endpoint a, and (a, b], which includes the endpoint b.

Each of these four intervals is bounded and has length defined by b — a. If a = b, the
corresponding open interval is the empty set (a, a) = @, whereas the corresponding closed
interval is the singleton set [a, a] = {a}.
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There are five types of unbounded intervals for which the symbols 0o (or +00) and —oo
are used as notational convenience in place of the endpoints. The infinite open intervals
are the sets of the form

(@a,0):={xeR:x >a} and (—o0,b) :=={x e R:x < b}.

The first set has no upper bounds and the second one has no lower bounds. Adjoining
endpoints gives us the infinite closed intervals:

[a,00):={xeR:a <x} and (—oo,b]:={x e R:x <b}.

It is often convenient to think of the entire set R as an infinite interval; in this case, we write
(=00, 00) := RR. No point is an endpoint of (—o0, 00).

Warning It must be emphasized that oo and —oo are not elements of R, but only conve-
nient symbols.

Characterization of Intervals

An obvious property of intervals is that if two points x, y withx < y belong to an interval /,
then any point lying between them also belongs to /. That is, if x < ¢ < y, then the point ¢
belongs to the same interval as x and y. In other words, if x and y belong to an interval /,
then the interval [x, y] is contained in /. We now show that a subset of R possessing this
property must be an interval.

2.5.1 Characterization Theorem If S is a subset of R that contains at least two points
and has the property

0)) if x,yeS and x <y, then [x,y]CS,
then S is an interval.

Proof. There are four cases to consider: (i) S is bounded, (ii) S is bounded above but
not below, (iii) S is bounded below but not above, and (iv) S is neither bounded above nor
below.

Case (i): Let a:=infS and b :=supS. Then S C [a, b] and we will show that
(a,b) C S.

If a < z < b, then z is not a lower bound of S, so there exists x € S with x < z. Also,
z is not an upper bound of S, so there exists y € S with z < y. Therefore z € [x, y], so
property (1) implies that z € S. Since z is an arbitrary element of (a, b), we conclude that
(a,b) < S.

Nowifa € Sandb € S, then S = [a, b]. (Why?) Ifa & Sand b ¢ S, then S = (a, b).
The other possibilities lead to either S = (a, b] or S = [a, b).

Case (ii): Let b := sup S. Then § C (—00, b] and we will show that (—o0, b) € S. For,
if z < b, thenthereexistx, y € Ssuchthatz € [x, y] € S.(Why?) Therefore (—o0, b) C S.
Ifbe S,then S = (—00,b),and if b ¢ S, then S = (—00, b).

Cases (iii) and (iv) are left as exercises. QED.

Nested Intervals

We say that a sequence of intervals I,, n € N, is nested if the following chain of inclusions
holds (see Figure 2.5.1):

L25L2.---2121_,2--

+1
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Figure 2.5.1 Nested intervals

For example, if I, := [0, 1/n] forn € N, then [, 2 I, foreachn € N so that this
sequence of intervals is nested. In this case, the element O belongs to all /, and the
Archimedean Property 2.4.5 can be used to show that 0 is the only such common point.
(Prove this.) We denote this by writing (52, I, = {0}.

It is important to realize that, in general, a nested sequence of intervals need not
have a common point. For example, if J, := (0, 1/n) for n € N, then this sequence of
intervals is nested, but there is no common point, since for every given x > 0, there exists
(why?) m € N such that 1/m < x so that x ¢ J,,. Similarly, the sequence of intervals
K, := (n, 00),n € N, is nested but has no common point. (Why?)

However, it is an important property of R that every nested sequence of closed, bounded
intervals does have a common point, as we will now prove. Notice that the completeness

of R plays an essential role in establishing this property.

2.5.2 Nested Intervals Property IfI = [an, bn] ,n € N, is a nested sequence of closed
bounded intervals, then there exists a number & € R such that& € I, foralln € N.

Proof. Since the intervals are nested, we have I, C I, foralln € N, so thata, < b, for
all n € N. Hence, the nonempty set {a,: n € N} is bounded above, and we let & be its
supremum. Clearly a, < & foralln € N.

We claim also that§ < b, for all n. This is established by showing that for any particular
n, the number b, is an upper bound for the set {a,: k € N}. We consider two cases. (i) If
n < k,thensince I, D I,, wehavea, <b, <b,.(ii) Ifk < n, thensince I, 2 I, we have
a, <a, <b,. (See Figure 2.5.2.) Thus, we conclude thata, < b, for all k, so that b, is an
upper bound of the set {a,: k € N}. Hence, £ < b, foreachn € N. Since a, < § < b, for

alln,wehave & € I foralln € N. QED.
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2.5.3 Theorem IfI, :=[a,,b,], n €N, isanested sequence of closed, bounded intervals
such that the lengths b, — a, of I satisfy

inf{b, —a, :n € N} =0,

then the number & contained in I, for alln € N is unique.

Proof. If n :=inf{b, : n € N}, then an argument similar to the proof of 2.5.2 can be used
to show that a, < 7 for all n, and hence that £ < n. In fact, it is an exercise (see Exercise
10) to show that x € I, foralln € Nifand only if § < x < n.If we have inf{b, —a, :n €
N} = 0, then for any ¢ > 0, there exists anm € Nsuch that0 <n—-§ <b, —a, <e¢.
Since this holds for all ¢ > 0, it follows from Theorem 2.1.9 that n — & = 0. Therefore, we
conclude that £ = 7 is the only point that belongs to I, for every n € N. QED.

The Uncountability of R

The concept of a countable set was discussed in Section 1.3 and the countability of the set
Q of rational numbers was established there. We will now use the Nested Interval Property
to prove that the set R is an uncountable set. The proof was given by Georg Cantor in
1874 in the first of his papers on infinite sets. He later published a proof that used decimal
representations of real numbers, and that proof will be given later in this section.

2.5.4 Theorem The setR of real numbers is not countable.

Proof. We will prove that the unit interval / := [0, 1] is an uncountable set. This implies
that the set R is an uncountable set, for if R were countable, then the subset / would also
be countable. (See Theorem 1.3.9(a).)

The proof is by contradiction. If we assume that I is countable, then we can enumerate
the set as I = {x,,x,,---, x,,---}. We first select a closed subinterval /| of I such that
x, & I,, then select a closed subinterval I, of I, such that x, ¢ I,, and so on. In this way,
we obtain nonempty closed intervals

L25,2---21 2---

such that I, € I and x, ¢ I, for all n. The Nested Intervals Property 2.5.2 implies that
there exists a point & € I such that & € I, for all n. Therefore £ # x, for all n € N, so the
enumeration of / is not a complete listing of the elements of /, as claimed. Hence, / is an
uncountable set. ' ' QED.

The fact that the set R of real numbers is uncountable can be combined with the fact
that the set Q of rational numbers is countable to conclude that the set R\Q of irrational
numbers is uncountable. Indeed, since the union of two countable sets is countable (see
1.3.7(c)), if R\Q is countable, then since R = Q U (R\Q), we conclude that R is also a
countable set, which is a contradiction. Therefore, the set of irrational numbers R\Q is an
uncountable set.

'Binary Representations

We will digress briefly to discuss informally the binary (and decimal) representations of real
numbers. It will suffice to consider real numbers between 0 and 1, since the representations
for other real numbers can then be obtained by adding a positive or negative number.

“The remainder of this section can be omitted on a first reading.
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If x € [0, 1], we will use a repeated bisection procedure to associate a sequence (a,) of

Os and 1s as follows. If x # 1 belongs to the left subinterval [0, §] we take a, := 0, while
if x belongs to the right subinterval [}, 1] we take @, = 1. If x = 1, then we may take a,
to be either 0 or 1. In any case, we have

a4 _ . < a +1

2 - - 2
We now bisect the interval [%a,. %(al + l)]. If x is not the bisection point and belongs
to the left subinterval we take a, := 0, and if x belongs to the right subinterval we take
a, = 1.If x = § orx = 2, we can take a, to be either 0 or 1. In any case, we have

a 9 <x <A 9 + l

gt =rsy+t—=m
We continue this bisection procedure, assigning at the nth stage the value a, := 0 if x is not
the bisection point and lies in the left subinterval, and assigning the value a, := 1 if x lies
in the right subinterval. In this way we obtain a sequence (a,) of Os or 1s that correspond
to a nested sequence of intervals containing the point x. For each n, we have the inequality

a a a a +1

(2) 2‘+22+ +2—,,5;_2+§%+---+ -
If x is the bisection point at the nth stage, then x = m/2" with m odd. In this case, we may
choose either the left or the right subinterval; however, once this subinterval is chosen, then
all subsequent subintervals in the bisection procedure are determined. [For instance, if we
choose the left subinterval so that a, = 0, then x is the right endpoint of all subsequent
subintervals, and hence a, = 1 for all k > n + 1. On the other hand, if we choose the right
subinterval so that a, = 1, then x is the left endpoint of all subsequent subintervals, and
hence a, = Oforall k > n + 1. For example, if x = %, then the two possible sequences for
xarel,0,1,1,1,---and 1,1,0,0,0, ---.]

To summarize: If x € [0, 1], then there exists a sequence (a,) of Os and 1s such that
inequality (2) holds for all n € N. In this case we write

?3) x=(aa,---a,--),,

and call (3) a binary representation of x. This representation is unique except when
x = m/2" for m odd, in which case x has the two representations

x=(aa,---a, 1000---), = (a,a,---a,_,0111---),,

one ending in Os and the other ending in 1s.

Conversely, each sequence of Os and 1s is the binary representation of a unique real
number in [0, 1]. The inequality corresponding to (2) determines a closed interval with
length 1/2" and the sequence of these intervals is nested. Therefore, Theorem 2.5.3 implies
that there exists a unique real number x satisfying (2) for every n € N. Consequently, x has
the binary representation (.a,a,---a, - - -),.

Remark The concept of binary representation is extremely important in this era of digital
computers. A number is entered in a digital computer on “bits”, and each bit can be put in
one of two states—either it will pass current or it will not. These two states correspond to
the values 1 and 0, respectively. Thus, the binary representation of a number can be stored
in a digital computer on a string of bits. Of course, in actual practice, since only finitely
many bits can be stored, the binary representations must be truncated. If » binary digits
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are used for a number x € [0, 1], then the accuracy is at most 1/2". For example, to assure
four-decimal accuracy, it is necessary to use at least 15 binary digits (or 15 bits).

Decimal Representations

Decimal representations of real numbers are similar to binary representations, except that
we subdivide intervals into ren equal subintervals instead of two.

Thus, given x € [0, 1], if we subdivide [0, 1] into ten equal subintervals, then x belongs
to a subinterval [b, /10, (b, + 1)/10] for some integer b, in {0, 1, - - -, 9}. Proceeding as in
the binary case, we obtain a sequence (b,) of integers with 0 < b, <9 for all n € N such
that x satisfies

b b b b +1
4 1472 4 ... ooy < L2 4. n .
@ T T A T R T A T, A T2
In this case we say that x has a decimal representation given by
x=°blb2...bn..-'

Ifx>1landif Be Nissuchthat B<x < B+ 1,thenx = B.bb,---b, - -- where the

decimal representation of x — B € [0, 1] is as above. Negative numbers are treated similarly.
The fact that each decimal determines a unique real number follows from Theorem

2.5.3, since each decimal specifies a nested sequence of intervals with lengths 1/10".

The decimal representation of x € [0, 1] is unique except when x is a subdivision
point at some stage, which can be seen to occur when x = m /10" for some m,n € N, 1 <
m < 10". (We may also assume that m is not divisible by 10.) When x is a subdivision
point at the nth stage, one choice for b, corresponds to selecting the left subinterval, which
causes all subsequent digits to be 9, and the other choice corresponds to selecting the
right subinterval, which causes all subsequent digits to be 0. [For example, if x = % then
x=.4999..-.=.5000---, and if y = 38/100 then y = .37999 - .- = .38000- - - .]

Periodic Decimals

Adecimal B.b,b, - - - b, - - - is said to be periodic (or to be repeating), if there existk, n € N
such that b, = b, , for all n > k. In this case, the block of digits b, b, ,---b, ., _, is
repeated once the kth digit is reached. The smallest number m with this property is called
the period of the decimal. For example, 19/88 = .2159090---90- - - has period m = 2
with repeating block 90 starting at k = 4. A terminating decimal is a periodic decimal
where the repeated block is simply the digit O.

We will give an informal proof of the assertion: A positive real number is rational if
and only if its decimal representation is periodic.

For, suppose that x = p/q where p,q € N have no common integer factors. For
convenience we will also suppose that 0 < p < g. We note that the process of “long
division” of ¢ into p gives the decimal representation of p/q. Each step in the division
process produces a remainder that is an integer from O to ¢ — 1. Therefore, after at most g
steps, some remainder will occur a second time and, at that point, the digits in the quotient
will begin to repeat themselves in cycles. Hence, the decimal representation of such a
rational number is periodic.

Conversely, if a decimal is periodic, then it represents a rational number. The idea of the
proof is best illustrated by an example. Suppose that x = 7.31414 ... 14 .. .. We multiply
by a power of 10 to move the decimal point to the first repeating block; here obtaining
10x = 73.1414 - - -. We now multiply by a power of 10 to move one block to the left
of the decimal point; here getting 1000x = 7314.1414 .. .. We now subtract to obtain an




50 CHAPTER 2 THE REAL NUMBERS

integer; here getting 1000x — 10x = 7314 — 73 = 7241, whence x = 7241/990, a rational
number.
Cantor’s Second Proof

We will now give Cantor’s second proof of the uncountability of R. This is the elegant
“diagonal” argument based on decimal representations of real numbers.

2.5.5 Theorem The unit interval [0, 1] := {x € R : 0 < x < 1} is not countable.

Proof. The proofis by contradiction. We will use the fact that every real number x € [0, 1]
has a decimal representation x = 0.b,b,b, - - -, where b, =0, 1- - -, 9. Suppose that there
is an enumeration x,, x,, x; - - - of all numbers in [0, 1], which we display as:

x, = 0.by,byyby3---by, -,
Xy = 0.5y byybys -+ by, -,
x3 = 0.byybybsy -+ by, - - -,
xn = O‘bnlbn2bn3 e bnn T

We now define a real number y :=0.y,y,y;---y,--- by setting y, :=2 if b;; > 5 and
y, :=7if b;; <4, in general, we let

_| 2 ifp, =5,
»=117 ifp, <4

nn —
Then y € [0, 1]. Note that the number y is not equal to any of the numbers with two
decimal representations, since y, # 0,9 for all n € N. Further, since y and x, differ in
the nth decimal place, then y # x, for any n € N. Therefore, y is not included in the
enumeration of [0, 1], contradicting the hypothesis. QED.

Exercises for Section 2.5

1. IfI:={a,b]and I := [d’, b'] are closed intervals in R, show that I C I’ if and only ifa’ < a
andb <b'.

2. If S € R is nonempty, show that S is bounded if and only if there exists a closed bounded
interval I suchthat S C I.

3. If § € Ris anonempty bounded set, and I := [inf S, sup S], show that § C 1. Moreover, if J
is any closed bounded interval containing S, show that I € J.

4. In the proof of Case (ii) of Theorem 2.5.1, explain why x, y existin S.
5. Write out the details of the proof of case (iv) in Theorem 2.5.1.

6. 1, 2,2---21 2--- is a nested sequence of intervals and if I, = [a,, b,], show that
alfazf"'Sa,,S"'andblZbZZ"'Zb,,Z"'-
7. Letl := [0, 1/n] forn € N. Prove that n,,“;, I ={0}.

8. LetJ, :=(0,1/n) forn € N. Prove that (\;2, J, = .
9. Let K, := (n, 00) for n € N. Prove that ;2 K, = 0.




10.

11.
12.
13.

14.

15.
16.
17.
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With the notation in the proofs of Theorems 2.5.2 and 2.5.3, show that we have n € (2, I,.
Also show that [&, n] = Nae, -

Show that the intervals obtained from the inequalities in (2) form a nested sequence.
Give the two binary representations of 3 and .

(a) Give the first four digits in the binary representation of %
(b) Give the complete binary representation of %

Show thatifa,, b, € {0, 1, ---, 9} and if

4 . % .4 b b _ o b
10+102+ *1 =10 1o2+ +1o""é°’
thenn=manda,,=bkfork=l,---,n.

Find the decimal representation of —3.

Express | and 2 as periodic decimals.

What rationals are represented by the periodic decimals 1.25137.--137... and
35.14653---653--:?



CHAPTER 3

SEQUENCES AND SERIES

—

——

Now that the foundations of the real number system R have been laid, we are prepared
to pursue questions of a more analytic nature, and we will begin with a study of the
convergence of sequences. Some of the early results may be familiar to the reader from
calculus, but the presentation here is intended to be rigorous and will lead to certain more
profound theorems than are usually discussed in earlier courses.

We will first introduce the meaning of the convergence of a sequence of real numbers
and establish some basic, but useful, results about convergent sequences. We then present
some deeper results concerning the convergence of sequences. These include the Monotone
Convergence Theorem, the Bolzano-Weierstrass Theorem, and the Cauchy Criterion for
convergence of sequences. It is important for the reader to learn both the theorems and how
the theorems apply to special sequences.

Because of the linear limitations inherent in a book it is necessary to decide where
to locate the subject of infinite series. It would be reasonable to follow this chapter with
a full discussion of infinite series, but this would delay the important topics of continuity,
differentiation, and integration. Consequently, we have decided to compromise. A brief
introduction to infinite series is given in Section 3.7 at the end of this chapter, and a more
extensive treatment is given later in Chapter 9. Thus readers who want a fuller discussion
of series at this point can move to Chapter 9 after completing this chapter.

Augustin-Louis Cauchy

Augustin-Louis Cauchy (1789-1857) was born in Paris just after the start
of the French Revolution. His father was a lawyer in the Paris police de-
partment, and the family was forced to flee during the Reign of Terror. As
a result, Cauchy’s early years were difficult and he developed strong anti-
revolutionary and pro-royalist feelings. After returning to Paris, Cauchy’s -'
father became secretary to the newly-formed Senate, which included the
mathematicians Laplace and Lagrange. They were impressed by young
Cauchy’s mathematical talent and helped him begin his career. ‘

He entered the Ecole Polytechnique in 1805 and soon established a reputation as an excep-
tional mathematician. In 1815, the year royalty was restored, he was appointed to the faculty
of the Ecole Polytechnique, but his strong political views and his uncompromising standards in
mathematics often resulted in bad relations with his colleagues. After the July revolution of 1830,
Cauchy refused to sign the new loyalty oath and left France for eight years in self-imposed exile.
In 1838, he accepted a minor teaching post in Paris, and in 1848 Napoleon III reinstated him to
his former position at the Ecole Polytechnique, where he remained until his death.

Cauchy was amazingly versatile and prolific, making substantial contributions to many areas,
including real and complex analysis, number theory, differential equations, mathematical physics
and probability. He published eight books and 789 papers, and his collected works fill 26 volumes.
He was one of the most important mathematicians in the first half of the nineteenth century.

52
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Section 3.1 Sequences and Their Limits -

A sequence in a set S is a function whose domain is the set N of natural numbers, and
whose range is contained in the set S. In this chapter, we will be concerned with sequences
in R and will discuss what we mean by the convergence of these sequences.

3.1.1 Definition A sequence of real numbers (or a sequence in R) is a function defined
on the set N = {1, 2, - - -} of natural numbers whose range is contained in the set R of real
numbers.

In other words, a sequence in R assigns to each natural numbern = 1, 2, - - - a uniquely
determined real number. If X : N — R is a sequence, we will usually denote the value of X
at n by the symbol x, rather than using the function notation X (n). The values x, are also
called the terms or the elements of the sequence. We will denote this sequence by the
notations

X, (x,), (x,:n€ N).

Of course, we will often use other letters, suchas Y = (y,), Z = (z;), and so on, to denote
sequences.

We purposely use parentheses to emphasize that the ordering induced by the natural
order of N is a matter of importance. Thus, we distinguish notationally between the se-
quence (x, : n € N), whose infinitely many terms have an ordering, and the set of values
{x, : n € N} in the range of the sequence which are not ordered. For example, the se-
quence X := ((—1)" : n € N) has infinitely many terms that alternate between —1 and 1,
whereas the set of values {(—1)" : n € N} is equal to the set {—1, 1}, which has only two
elements.

Sequences are often defined by giving a formula for the nth term x,. Frequently, it is
convenient to list the terms of a sequence in order, stopping when the rule of formation
seems evident. For example, we may define the sequence of reciprocals of the even numbers

by writing
1111
X := AY v Zrv o """ >
(2 4'6'8 )

though a more satisfactory method is to specify the formula for the general term and write

1
X := ( o ne N)
or more simply X = (1/2n).

Another way of defining a sequence is to specify the value of x, and give a formula
for x, +1 (n = 1) in terms of x,. More generally, we may specify x, and give a formula
for obtaining x,  , from x,, x,, - - -, x,. Sequences defined in this manner are said to be
inductively (or recursively) defined.

3.1.2 Examples (a) Ifb € R, the sequence B := (b, b, b, - - -), all of whose terms equal
b, is called the constant sequence b. Thus the constant sequence 1 is the sequence
(1, 1, 1, - . ), and the constant sequence 0 is the sequence (0,0, 0, - - -).
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(b) Ifb € R, then B := (b") is the sequence B = (b, b, b*, - - -, b", - - -). In particular, if
b = J, then we obtain the sequence

1 111 1
(F n GN) = (E,Z,g,...’.z—n,...)_
(c) The sequence of (2n : n € N) of even natural numbers can be defined inductively by
=x, +2,

xl = 2’ xn-l—l

or by the definition
NZ2 Yp =NtV
(d) The celebrated Fibonacci sequence F := (f,) is given by the inductive definition
=1 fi=L fou=f,ytf, 22

Thus each term past the second is the sum of its two immediate predecessors. The first ten
terms of F are seentobe (1,1, 2,3,5,8, 13,21, 34,55, --). O

The Limit of a Sequence

There are a number of different limit concepts in real analysis. The notion of limit of a
sequence is the most basic, and it will be the focus of this chapter.

3.1.3 Definition A sequence X = (x,) in R is said to converge to x € R, or x is said to
be a limit of (x,), if for every ¢ > O there exists a natural number K (¢) such that for all
n > K(¢), the terms x, satisfy |x, — x| < &.

If a sequence has a limit, we say that the sequence is convergent; if it has no limit, we
say that the sequence is divergent.

Note The notation K (¢) is used to emphasize that the choice of K depends on the value
of €. However, it is often convenient to write K instead of K (¢). In most cases, a “small”
value of ¢ will usually require a “large” value of K to guarantee that the distance |x, — x|
between x, and x is less than ¢ for alln > K = K(¢).

When a sequence has limit x, we will use the notation
IimX =x or lim(x,) = x.

We will sometimes use the symbolism x, — x, which indicates the intuitive idea that the
values x, “approach” the number x as n — oo.

3.1.4 Uniqueness of Limits A sequence in R can have at most one limit.

Proof. Suppose that x’ and x” are both limits of (x, ). For each ¢ > 0 there exist K’ such
that |x, — x’| < &/2 for all n > K’, and there exists K” such that |x, — x| < &/2 for all
n > K"”. We let K be the larger of K’ and K”. Then for n > K we apply the Triangle
Inequality to get

le_xlll = lxl -x, +x” _xlll
<Ix'—x,|+Ix,—x"|<e/2+¢e/2=¢.

Since & > 0 is an arbitrary positive number, we conclude that x’ — x” = 0. QED.
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For x € R and € > 0, recall that the £-neighborhood of x is the set
V.(x) :={uelR:|u—-x| <e}.

(See Section 2.2.) Since u € V_(x) is equivalent to |u — x| < &, the definition of conver-
gence of a sequence can be formulated in terms of neighborhoods. We give several different
ways of saying that a sequence x, converges to x in the following theorem.

3.1.5 Theorem LetX = (x,) beasequenceofreal numbers, andletx € R. The following
statements are equivalent.

(a) X converges to x.

(b) Forevery ¢ > 0, there exists a natural number K such that for alln > K, the terms x,,
satisfy |x, — x| < €.

(c) Forevery ¢ > 0, there exists a natural number K such that for alln > K, the terms x,
satisfyx — e < x, < x +¢.

(d) For every e-neighborhood V, (x) of x, there exists a natural number K such that for
alln > K, the terms x, belong to V_(x).

Proof. The equivalence of (a) and (b) is just the definition. The equivalence of (b), (c),
and (d) follows from the following implications:

u—x|<€e & —e<u—x<e & x—e<u<x+e & uecV(x).
QE.D.

With the language of neighborhoods, one can describe the convergence of the sequence
X = (x,) to the number x by saying: for each e-neighborhood V,(x) of x, all but a finite
number of terms of X belong to V,(x). The finite number of terms that may not belong to
the e-neighborhood are the terms x,, x,, - - -, X, _,.

Remark The definition of the limit of a sequence of real numbers is used to verify that a
proposed value x is indeed the limit. It does not provide a means for initially determining
what that value of x might be. Later results will contribute to this end, but quite often it is
necessary in practice to arrive at a conjectured value of the limit by direct calculation of a
number of terms of the sequence. Computers can be helpful in this respect, but since they
can calculate only a finite number of terms of a sequence, such computations do not in any
way constitute a proof of the value of the limit.

The following examples illustrate how the definition is applied to prove that a sequence
has a particular limit. In each case, a positive ¢ is given and we are required to find a K,
depending on &, as required by the definition.

3.1.6 Examples (a) lim(1/n) =0.

If ¢ > 0 is given, then 1/¢ > 0. By the Archimedean Property 2.4.5, there is a nat-
ural number K = K(¢) such that 1/K < ¢. Then, if n > K, we have 1/n < 1/K <¢.
Consequently, if n > K, then

——0l=-<e.
n n

1 I 1
Therefore, we can assert that the sequence (1/n) converges to 0.
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®) lim(1/(n? + 1)) =0.
Let € > 0 be given. To find K, we first note that if n € N, then

1
n?+1
Now choose K such that 1/K < ¢, as in (a) above. Then n > K implies that 1/n < ¢, and
therefore

< 1 <1
n " n

1 l 1 <1 ]
-0l = - < E.
n+1 n+1 n

Hence, we have shown that the limit of the sequence is zero.

. 3n+2)
(© hm( T )_3.

n+1
Given ¢ > 0, we want to obtain the inequality
3n+2
1 -3

M nt | <e

when n is sufficiently large. We first simplify the expression on the left:
3n+2 3| = 3n+2-3n-3| | -1 1 - 1
n+1 - n+1 a4l n4+1 T n

Now if the inequality 1/n < ¢ is satisfied, then the inequality (1) holds. Thus if 1/K < ¢,
then for any n > K, we also have 1/n < ¢ and hence (1) holds. Therefore the limit of the
sequence is 3.

(d) If0 <b < 1, thenlim(d") = 0.

We will use elementary properties of the natural logarithm function. If ¢ > 0 is given,
we see that

b"<e <& nlnb<lne <<= n>Ine/lnb.

(The last inequality is reversed because Inb < 0.) Thus if we choose K to be a number such
that K > In¢/ Inb, then we willhave 0 < b" < ¢ foralln > K. Thus we have lim(b") = 0.

For example, if b = .8, and if ¢ = .01 is given, then we wouldneed X > In.01/In .8 =
20.6377. Thus K = 21 would be an appropriate choice for ¢ = .01. a

Remark The K(¢) Game In the notion of convergence of a sequence, one way to keep
in mind the connection between the ¢ and the KX is to think of it as a game called the K (¢)
Game. In this game, Player A asserts that a certain number x is the limit of a sequence (x,).
Player B challenges this assertion by giving Player A a specific value for ¢ > 0. Player A
must respond to the challenge by coming up with a value of K such that |x, — x| < ¢ forall
n > K. If Player A can always find a value of K that works, then he wins, and the sequence
is convergent. However, if Player B can give a specific value of ¢ > 0 for which Player A
cannot respond adequately, then Player B wins, and we conclude that the sequence does
not converge to x.

In order to show that a sequence X = (x,) does not converge to the number x, it
is enough to produce one number &, > 0 such that no matter what natural number X is
chosen, one can find a particular n satisfying n, > K such that IJc"‘r — x| > &,. (This
will be discussed in more detail in Section 3.4.)
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3.1.7 Example The sequence (0, 2,0, 2,---,0, 2,---) does not converge to the
number 0.

If Player A asserts that O is the limit of the sequence, he will lose the K (¢) Game
when Player B gives him a value of &€ < 2. To be definite, let Player B give Player A
the value ¢, = 1. Then no matter what value Player A chooses for K, his response will
not be adequate, for Player B will respond by selecting an even number n > K. Then the
corresponding value is x, = 2 so that |x, — 0| = 2 > 1 = ¢;,. Thus the number 0 is not the
limit of the sequence. O

Tails of Sequences

It is important to realize that the convergence (or divergence) of a sequence X = (x,)
depends only on the “ultimate behavior” of the terms. By this we mean that if, for any
natural number m, we drop the first m terms of the sequence, then the resulting sequence
X,, converges if and only if the original sequence converges, and in this case, the limits are
the same. We will state this formally after we introduce the idea of a “tail” of a sequence.

3.1.8 Definition If X = (x, x,,---,x,, ) is a sequence of real numbers and if m is a
given natural number, then the m-tail of X is the sequence

Xm = (xm+n ih € N) = (xm+l'xm+2’ o )
For example, the 3-tail of the sequence X = (2,4,6,8,10,---,2n, ---), is the se-
quence X, = (8,10,12,---,2n+6, - - ).

3.1.9 Theorem LetX = (x, : n € N) beasequence of real numbers andletm € N. Then
the m-tail X,, = (x : n € N) of X converges if and only if X converges. In this case,
limX, =limX.

m+n

Proof. We note that for any p € N, the pth term of X, is the (p + m)th term of X.
Similarly, if g > m, then the gth term of X is the (¢ — m)th term of X .

Assume X converges to x. Then given any ¢ > 0, if the terms of X for n > K(¢)
satisfy |x, — x| < ¢, then the terms of X, for k > K (¢) — m satisfy |x, — x| < &. Thus we
can take K (¢) = K(¢) — m, so that X also converges to x.

Conversely, if the terms of X, for k > K, (¢) satisfy |x, — x| < ¢, then the terms of
X forn > K(¢) + m satisfy |x, — x| < &. Thus we can take K (¢) = K, (¢) + m.

Therefore, X converges to x if and only if X, converges to x. QED.

We shall sometimes say that a sequence X ultimately has a certain property if some
tail of X has this property. For example, we say that the sequence (3,4, 5,5,5,---,5,-)
is “ultimately constant”. On the other hand, the sequence (3, 5, 3,5,---,3,5, ---) is not
ultimately constant. The notion of convergence can be stated using this terminology: A se-
quence X converges to x if and only if the terms of X are ultimately in every &-neighborhood
of x. Other instances of this “ultimate terminology” will be noted below.

Further Examples

In establishing that a number x is the limit of a sequence (x,), we often try to simplify
the difference |x, — x| before considering an ¢ > 0 and finding a K (¢) as required by the
definition of limit. This was done in some of the earlier examples. The next result is a more
formal statement of this idea, and the examples that follow make use of this approach.
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3.1.10 Theorem Let (x,) be a sequence of real numbers and let x € R. If (a,) is a
sequence of positive real numbers with lim(a,) = 0 and if for some constant C > 0 and
somem € N we have

|x, — x| < Ca, forall n>m,

then it follows that lim(x,) = x.
Proof. Ife > Ois given, then since lim(a,) = 0, we know there exists K = K(¢/C) such
that n > K implies

a, =|a, -0 <¢/C.
Therefore it follows that if both n > K and n > m, then

|x, — x| < Ca, < C(e/C) =¢.

Since € > 0 is arbitrary, we conclude that x = lim(x,). Q.ED.

3.1.11 Examples (a) Ifa > 0, thenlim( ! ) =0.
1+ na

Since a > 0, then 0 < na < 1 + na, and therefore 0 < 1/(1 + na) < 1/(na). Thus
we have
1
1+ na

Since lim(1/n) = 0, we may invoke Theorem 3.1.10 with C = 1/a and m = 1 to infer that
lim(1/(1 + na)) = 0.
() If0 < b < 1, then lim(d") = 0.

This limit was obtained earlier in Example 3.1.6(d). We will give a second proof that
illustrates the use of Bernoulli’s Inequality (see Example 2.1.13(c)).

Since 0 < b < 1, we can write b = 1/(1 + a), where a := (1/b) — 1 so that a > 0.
By Bernoulli’s Inequality, we have (1 + a)” > 1 + na. Hence

1 1 1
< < —.
(14a)® " 14na na
Thus from Theorem 3.1.10 we conclude that lim(b") = 0.

In particular, if b = .8, so thata = .25, and if we are given ¢ = .01, then the preceding
inequality gives us K (g) = 4/(.01) = 400. Comparing with Example 3.1.6(d), where we
obtained K = 25, we see this method of estimation does not give us the “best” value of K.
However, for the purpose of establishing the limit, the size of X is immaterial.

(¢) Ifc > 0, thenlim(c'/") = 1.

The case ¢ = 1 is trivial, since then (c!/") is the constant sequence (1, 1, - - -), which
evidently converges to 1.

If ¢ > 1, then c¢!/" = 1+d, for some d, > 0. Hence by Bernoulli’s Inequality
2.1.13(c),

-0

< (l) l forall neN.
a/n

0<b" =

c=(1+d)" >1+nd, for neN.

Therefore we have ¢ — 1 > nd,, so thatd, < (c — 1)/n. Consequently we have
1
|V =1 =d, < (c— D~ for neN.

We now invoke Theorem 3.1.10 to infer that lim(c'/”) = 1 when ¢ > 1.
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Now suppose that 0 < ¢ < 1; thenc/" = 1/(1 + h ) for some A, > 0. Hence Ber-
noulli’s Inequality implies that
1 1 1
< < .
(I+h)" =~ 1+nh, nh

C =

from which it follows that 0 < A, < 1/nc for n € N. Therefore we have

h
0<l-=cl/"= L <h, <i
l+h,l nc

so that

et/ —1] < (%)% for neN.

We now apply Theorem 3.1.10 to infer that lim(c!/") = 1 when 0 < ¢ < 1.
d) lim@x'") =1

Since n'/* > 1 forn > 1, we can write n'/* = 1 + k, for some k, > O whenn > 1.
Hence n = (1 +k,)" for n > 1. By the Binomial Theorcm, if n > 1 we have

n=1+nk, +jnn—Dk2+---> 1+ Ln(n - D2, .
whence it follows that
n—12> in(n— Dk

Hence k2 < 2/n forn > 1. If £ > 0 is given, it follows from the Archimedean Property
that there CXIStS a natural number N, such that2/N_ < €2. It follows that if n > sup{2, N}
then 2/n < €2, whence

0<n/"—1=k, <(2/n)"/? <e.

Since € > 0 is arbitrary, we deduce that lim(n /ny = 1. O

Exercises for Section 3.1

1. The sequence (x,) is defined by the following formulas for the nth term. Write the first five terms

in each case:

(@ x,:=1+(-D" ®) x,:=(=1)"/n,
1 1

(©) x"'=n(n+l)' d) x.—n2+2.

2. The first few terms of a sequence (x,) are given below. Assuming that the “natural pattern”
indicated by these terms persists, give a formula for the nth term x,.
(@ 5,7,9,11,.--, () 1/2,-1/4,1/8,-1/16,---,
(c) 1/2,2/3,3/4,4/5,---, @ 1,4,916,---

3. List the first five terms of the following inductively defined sequences.
@ x:=1, «x, —3x +1,

(b) y = 2, y,,+| 2(y + 2/)’,,
© z:=1 12z:=2, 2z, =(z,,, + 2)/(z,,,—2z),
@ s,=3, s,:=5, s,,:=5, +s,,,

4. For any b € R, prove that lim(b/n) =
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10.

11.

12.
13.

14.
15.
16.
17.

CHAPTER 3 SEQUENCES AND SERIES

Use the definition of the limit of a sequence to establish the following limits.

o () o o ()2
o (2 -3 o () -
Show that

o () o o i (2)->
0 (i) o o 1m(02) o

Letx, :=1/In(n+ 1) forn € N.

(a) Use the definition of limit to show that lim(x,) = 0.

(b) Find a specific value of K (¢) as required in the definition of limit for each of (i) ¢ = 1/2,
and (ii) ¢ = 1/10.

Prove that lim(x,) = 0 if and only if lim(|x,|) = 0. Give an example to show that the conver-

gence of (|x,|) need not imply the convergence of (x,,).

Show that if x, > 0 for all n € N and lim(x,) = 0, then lim (/x, ) = 0.

Prove that if lim(x,) = x an& if x > 0, then there exists a natural number M such that x, > 0
foralln > M.

Showthatlim(l— 1 ):0.
n n+1

Show that lim(1/3") = 0.

Let b € R satisfy 0 < b < 1. Show that lim(nb") = 0. [Hint: Use the Binomial Theorem as in
Example 3.1.11(d).]

Show that lim ((2n)"/") = 1.
Show that lim(n2/n!) = 0.
Show that lim(2"/n!) = 0. [Hint: if n > 3,then 0 < 2"/n! <2 (-32-)"_2.]

If lim(x,) = x > 0, show that there exists a natural number K such that if n > K, then ix <
x, <2x.

Section 3.2 Limit Theorems

In this section we will obtain some results that enable us to evaluate the limits of certain
sequences of real numbers. These results will expand our collection of convergent sequences
rather extensively. We begin by establishing an important property of convergent sequences
that will be needed in this and later sections.

3.2.1 Definition A sequence X = (x,) of real numbers is said to be bounded if there
exists a real number M > O such that |x,| < M foralln € N.

Thus, the sequence (x,) is bounded if and only if the set {x, : n € N} of its values is a

bounded subset of R.

3.2.2 Theorem A convergent sequence of real numbers is bounded.
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Proof. Suppose that lim(x,) = x and let ¢ := 1. Then there exists a natural number
K = K(1) such that |x, — x| < 1 for all n > K. If we apply the Triangle Inequality with
n > K we obtain

Ix,| = Ix, —x+x| < |x, — x|+ [x] <1+ x|
If we set
M = sup {Ix,|, x|, - -+, x|, 1 + Ix1},
then it follows that |x,| < M foralln € N. QED.

We will now examine how the limit process interacts with the operations of addition,
subtraction, multiplication, and division of sequences. If X = (x,) and Y = (y,) are se-
quences of real numbers, then we define their sum to be the sequence X + Y := (x, + y,),
their difference to be the sequence X — Y := (x, — y,), and their product to be the se-
quence X - Y := (x,y,)- If c € R, we define the multiple of X by c to be the sequence
cX := (cx,). Finally, if Z = (z,) is a sequence of real numbers with z, # O foralln € N,
then we define the quotient of X and Z to be the sequence X/Z := (x,/z,).

For example, if X and Y are the sequences

11

1 1
X:=@2,4,6,---2n,--), Y := (T,2,§,...,_,...),

n
then we have
3919 2n2 +1
X = Ty Xy T st [ K
+¥ (1 2’ 3 n )
1 7 17 2n% — 1
X_Y‘: TV ARY A"y [N K
(1 2’ 3 n )

X'Y=(292’29'°'92"°')9
3X=(6,12,18,---,6m, --.),
X/Y =(,8,18,---,2n%,-..).

We note that if Z is the sequence
Z = (0!290""s 1+(_l)n"")q

then we can define X + Z, X — Z and X - Z, but X/Z is not defined since some of the
terms of Z are zero.

We now show that sequences obtained by applying these operations to convergent
sequences give rise to new sequences whose limits can be predicted.

3.2.3 Theorem (a) Let X = (x,) and Y = (y,) be sequences of real numbers that
converge to x and y, respectively, and let c € R. Then the sequences X +Y, X - Y, X - Y,
and cX converge tox +y,x — y, xy, and cx, respectively.

(b) IfX = (x,) converges to x and Z = (z,) is a sequence of nonzero real numbers that
converges to z and if z # 0, then the quotient sequence X /Z converges to x /z.

Proof. (a) To show that lim(x, 4+ y,) = x + y, we need to estimate the magnitude of
I(x, +,) — (x + y)|. To do this we use the Triangle Inequality 2.2.3 to obtain

|x, +5,) —(x+ ) =x, —x)+ (¥, — ¥l
<l|x,—xl+1ly, =yl
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By hypothesis, if ¢ > O there exists a natural number K, such thatifn > K, then|x, — x| <
€/2; also there exists a natural number X, such thatif n > K, then |y, — y| < £/2. Hence
if K (¢) := sup{K,, K,}, it follows that if n > K (¢) then

(x, +y,) =&+ <|x,—x|+1y, =yl
< %e+%£=s.

Since € > 0 is arbitrary, we infer that X + Y = (x, + y,) converges to x + y.

Precisely the same argument can be used to show that X — Y = (x, — y,) converges
tox —y.

To show that X - Y = (x,y,) converges to xy, we make the estimate

Ix,y, —xyl = I(x,y, — x,¥) + (x,y — xy)|
<Ix,(, = NI+ I(x, — x)yl
= |x, Iy, = y| + Ix, — xl|yl.

According to Theorem 3.2.2 there exists a real number M, > O such that |x,| < M, for all
n € N and we set M := sup{M,, |y|}. Hence we have the estimate

From the convergence of X and Y we conclude that if £ > 0 is given, then there exist
natural numbers K, and K, such thatifn > K, then |x, — x| < ¢/2M, and if n > K, then
|y, — ¥l < &/2M. Now let K (¢) = sup{K, K,}; then, if n > K (¢) we infer that

Ix,y, —xy| < M|y, — y| + M|x, — x|
<M(/2M) + M(e/2M) = ¢.

Since &€ > 0 is arbitrary, this proves that the sequence X - Y = (x,y,) converges to xy.

The fact that cX = (cx,) converges to cx can be proved in the same way; it can also
be deduced by taking Y to be the constant sequence (c, c, ¢, - - -). We leave the details to
the reader.

(b) We next show that if Z = (z,) is a sequence of nonzero numbers that converges
to a nonzero limit z, then the sequence (1/z,) of reciprocals converges to 1/z. First let
o= %lzl so that @ > 0. Since lim(z,) = z, there exists a natural number K, such that if
n > K, then |z, — z| < «a. It follows from Corollary 2.2.4(a) of the Triangle Inequality that
—a < —|z, — z| < |z,| — |z| for n > K, whence it follows that 1|z] = |z| — @ < |z,| for
n > K,. Therefore 1/|z,| < 2/|z| forn > K, so we have the estimate

1 1 z—-2z 1
— === ~| = |z—z,|
z z z,z |z, 2]
5|7|z—zn| forall n > K,.
z

Now, if £ > 0 is given, there exists a natural number X, such that if n > KX, then |z, — |
< %elzlz. Therefore, it follows that if X (¢) = sup{K, K,}, then

1 1

Z, ¥4

<E€ forall n > K(s).

Since ¢ > 0 is arbitrary, it follows that

()}
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The proof of (b) is now completed by taking Y to be the sequence (1/z,) and using the
factthat X - Y = (x,/z,) converges to x(1/2) = x/z. QE.D.

Some of the results of Theorem 3.2.3 can be extended, by Mathematical Induction, to a
finite number of convergent sequences. For example, if A = (a,), B = (b,), -, Z = (z,)
are convergent sequences of real numbers, then theirsum A+ B +---+Z =(a, +b, +
.-+ 4 z,) is a convergent sequence and

1) lim(a, + b, + - - - + z,) = lim(a,) + lim(b,) + - - - + lim(z,).
Also their product A - B---Z := (a,b, - - - z,) is a convergent sequence and
2 lim(a,b, ---2,) = (lim(a,)) (lim(b,)) - - - (lim(z,)) .
Hence, if k € N and if A = (a,) is a convergent sequence, then

3) lim(a) = (lim(a,))*.

We leave the proofs of these assertions to the reader.

3.2.4 Theorem If X = (x,) is a convergent sequence of real numbers and if x, > 0 for
alln € N, then x = lim(x,) > 0.

Proof. Suppose the conclusion is not true and that x < 0; then & := —x is positive. Since
X converges to x, there is a natural number K such that
X—e<Xx, <x+e forall n=> K.

In particular, we have x, < x +¢& = x + (—x) = 0. But this contradicts the hypothesis
that x, > O for all n € N. Therefore, this contradiction implies that x > 0. Q.ED.

We now give a useful result that is formally stronger than Theorem 3.2.4.

3.2.5 Theorem IfX = (x,) andY = (y,) are convergent sequences of real numbers and
ifx, <y, for alln € N, thenlim(x,) < lim(y,).

Proof. letz,:=y, —x,sothatZ:=(z,)=Y —Xandz, > Oforalln € N. It follows
from Theorems 3.2.4 and 3.2.3 that

0 <limZ = lim(y,) — lim(x,),
so that lim(x,) < lim(y,). Q.E.D.

The next result asserts that if all the terms of a convergent sequence satisfy an inequality
of the form a < x, < b, then the limit of the sequence satisfies the same inequality. Thus
if the sequence is convergent, one may “pass to the limit” in an inequality of this type.

3.2.6 Theorem If X = (x,) is a convergent sequence and ifa < x, < b for alln € N,
thena < lim(x,) < b.

Proof. Let Y be the constant sequence (b, b, b, - - -). Theorem 3.2.5 implies that lim X <
lim Y = b. Similarly one shows thata < lim X. QED.

The next result asserts that if a sequence Y is squeezed between two sequences that
converge to the same limit, then it must also converge to this limit.

—_ -
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3.2.7 Squeeze Theorem Suppose that X = (x,), Y = (y,), and Z = (z,) are sequences
of real numbers such that

< < ¥ =Y, =3, forall neN,

and thatlim(x,) = lim(z,). Then Y = (y,) is convergent and
lim(x,) = lim(y,) = lim(z,).

Proof. Letw :=lim(x,) = lim(z,).If¢ > Ois given, then it follows from the convergence
of X and Z to w that there exists a natural number K such that if n > K then

Ix, —w| < ¢ and |z, — w| < &.
Since the hypothesis implies that
X, ~w<y —-w=<z —-w forall n €N,
it follows (why?) that
—£<y,—W<E

forall n > K. Since ¢ > 0 is arbitrary, this implies that lim(y,) = w. QED.

Remark Since any tail of a convergent sequence has the same limit, the hypotheses of
Theorems 3.2.4, 3.2.5, 3.2.6, and 3.2.7 can be weakened to apply to the tail of a sequence.
For example, in Theorem 3.2.4, if X = (x,) is “ultimately positive” in the sense that there
exists m € Nsuchthatx, > 0forall n > m, then the same conclusion that x > 0 will hold.
Similar modifications are valid for the other theorems, as the reader should verify.

3.2.8 Examples (a) The sequence (n) is divergent.

It follows from Theorem 3.2.2 that if the sequence X := (n) is convergent, then there
exists a real number M > 0 such that n = |n| < M for all n € N. But this violates the
Archimedean Property 2.4.3.

(b) The sequence ((—1)") is divergent.

This sequence X = ((—1)") is bounded (take M := 1), so we cannot invoke Theorem
3.2.2. However, assume that a := lim X exists. Let £ := 1 so that there exists a natural
number K, such that

|(=1)—al <1 forall n>K,.

If n is an odd natural number withn > K, thisgives | — 1 —a| < 1,sothat -2 <a < 0.
(Why?) On the other hand, if n is an even natural number with n > K, this inequality
gives |1 —a] < 1 so that 0 < a < 2. Since a cannot satisfy both of these inequalities,
the hypothesis that X is convergent leads to a contradiction. Therefore the sequence X is
divergent.

() lim = 2.

n
If we let X :=(2) and Y := (1/n), then ((2n + 1)/n) = X + Y. Hence it follows
from Theorem 3.2.3(a) that im(X + YY) =limX +1limY =2+4+0=2.

d lim(zn+l)=2.

2n+1

n+S5
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Since the sequences (2n + 1) and (n + 5) are not convergent (why?), it is not possible
to use Theorem 3.2.3(b) directly. However, if we write
2n+1 2+1/n
n+5 1+5/n'

we can obtain the given sequence as one to which Theorem 3.2.3(b) applies when we
take X := (24 1/n) and Z := (1 + 5/n). (Check that all hypotheses are satisfied.) Since
lim X =2 and lim Z = 1 # 0, we deduce that lim((2n + 1)/(n +5)) = 2/1 = 2.

. 2n
(e lim (n2 n l) =0.

Theorem 3.2.3(b) does not apply directly. (Why?) We note that
2n 2
n2+1 n+1/n’

but Theorem 3.2.3(b) does not apply here either, because (n + 1/n) is not a convergent
sequence. (Why not?) However, if we write

2n 2/n
nP+1  1+1/n% °

then we can apply Theorem 3.2.3(b), since lim(2/n) =0 and lim(1 + 1/n%) =1 #0.
Therefore lim(2n/(n + 1)) = 0/1 = 0.

(® lim (ﬂ) = 0.
n

We cannot apply Theorem 3.2.3(b) directly, since the sequence (n) is not convergent
[neither is the sequence (sinn)]. It does not appear that a simple algebraic manipulation
will enable us to reduce the sequence into one to which Theorem 3.2.3 will apply. However,
if we note that —1 < sinn < 1, then it follows that

forall n eN.

1
—_m,eC ——— << -
n~ n " n
Hence we can apply the Squeeze Theorem 3.2.7 to infer that lim(n~! sinn) = 0. (We note
that Theorem 3.1.10 could also be applied to this sequence.)

(8 Let X = (x,) be a sequence of real numbers that converges to x € R. Let p be a
polynomial; for example, let :

pt) :=ait* +a,_ "'+ +a;t +a,,

where k € N and a; € R for j=0,1,---, k. It follows from Theorem 3.2.3 that the se-
quence (p(x,)) converges to p(x). We leave the details to the reader as an exercise.

(h) Let X = (x,) be a sequence of real numbers that converges to x € R. Let r be a
rational function (that is, r(t) := p(t)/q(t), where p and g are polynomials). Suppose
that g(x,) #0 for all n € N and that g(x) # 0. Then the sequence (r(x,)) converges to
r(x) = p(x)/q(x). We leave the details to the reader as an exercise. O

J
We conclude this section with several results that will be useful in the work that follows.

3.2.9 Theorem Let the sequence X = (x,) converge to x. Then the sequence (|x,|) of
—  absolute values converges to |x|. That is, if x = lim(x,), then |x| = lim(|x, ).
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Proof. It follows from the Triangle Inequality (see Corollary 2.2.4(a)) that
lIx,| = IxI| < |x, —x|  forall neN.
The convergence of (|x,|) to |x]| is then an immediate consequence of the convergence of

(x,) tox. Q.E.D.

3.2.10 Theorem Let X = (x,) be a sequence of real numbers that converges to x and
suppose that x, > 0. Then the sequence (\/Z ) of positive square roots converges and

lim (y%7) = V.

Proof. It follows from Theorem 3.2.4 that x = lim(x,) > 0 so the assertion makes sense.
We now consider the two cases: (i) x = 0 and (ii) x > 0.

Case (i) If x =0, let ¢ > 0 be given. Since x, — 0 there exists a natural number K
such that if n > K then

— 2
0<x,=x,—-0<e¢"

Therefore [see Example 2.1.13(a)], 0 < \/z < ¢ forn > K. Since ¢ > 0 is arbitrary, this
implies that /x, — 0. B
Case (ii) If x > 0, then i/x > 0 and we note that

WA EVE)  nex
i ey oy S AT

Since /x, + +/x > +/x > 0, it follows that

|JZ— JEI < (%) lx, — xI.

The convergence of \/x,, — /x follows from the fact that x, — x. QED.

For certain types of sequences, the following result provides a quick and easy “ratio
test” for convergence. Related results can be found in the exercises.

3.2.11 Theorem Let (x,) be a sequence of positive real numbers such that L :=
lim(x, ,/x,) exists. If L < 1, then (x,) converges and lim(x,) = 0.

Proof. By 3.2.4 it follows that L > 0. Let r be a number such that L < r < 1, and let

€ :=r — L > 0. There exists a number K € N such thatif n > K then
E_L

Xn

ItYollows from this (why?) that if n > K, then

< €.

x
2t e L4te=L+@-L)=r
x’l
Therefore, if n > K, we obtain
0<x,.,<x,r< X, 7P <o < xprtKHL
If we set C :=xK/rK, we see that 0 <x, , < Cr"t! for all n > K. Since 0 < r <
1, it follows from 3.1.11(b) that lim(»") = 0 and therefore from Theorem 3.1.10 that
lim(x,) = 0. Q.ED.
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As an illustration of the utility of the preceding theorem, consider the sequence (x,)

ma _1HLZ (L 1),

sothatlim(x,,/x,) = }.Since } < 1, itfollows from Theorem 3.2.11 that lim(r/2") = 0.

Exercises for Section 3.2
1. For x,_ given by the following formulas, establish either the convergence or the divergence of
the sequence X = (x,).
o _(=1)7'n
@ x"'_n+1’ ® x,:= n+1’
n? 2n2 +3
‘== N d = .
© x, n+1 @ x, n®+1
2. Give an example of two divergent sequences X and Y such that:
(a) their sum X + Y converges, (b) their product XY converges.
Show that if X and Y are sequences such that X and X + Y are convergent, then Y is convergent.
4. Show thatif X and Y are sequences such that X converges to x # 0 and XY converges, then Y
converges.
5. Show that the following sequences are not convergent.
@ (@), ®) (=1)"n?).
6. Find the limits of the following sequences:
. . [ (=1)
2+1/n)?), b) li :
(a) hm(( + /n)) (b) m(n+2)
. [Jn— 1) . (n + 1)
li , : d) lim .
) lm (Jr‘z +1 @ nyn
7. If (b,) is abounded sequence and lim(a,) = 0, show that lim(a,b,) = 0. Explain why Theorem
3.2.3 cannot be-wsed.
8. Explain why the result in equation (3) before Theorem 3.2.4 cannot be used to evaluate the limit
of the sequence ((1 + 1/n)").
9. Lety, :=+/n+1—/nforn € N. Show that (y,) and (+/ny,) converge. Find their limits.
10. Determine the following limits.
@ lm(Gv/m)'), ®) lim ((n +1)"/"C*D).
n+1 n+1
11. If0 < a < b, determine lim an_-i-b;_ .
a"+b
12. Ifa > 0,b > 0, show thatlim (+/(n + @)(n + b) — n) = (a + b)/2.
13. Use the Squeeze Theorem 3.2.7 to determine the limits of the following.
2
@ (=), ® (7).
14. Show thatif z, := (a" + b")!/" where 0 < a < b, then lim(z)) = b.
15. Apply Theorem 3.2:11 to the following sequences, where a, b satisfy0 <a < 1.b > 1.

(a8 (a"), ® ®"/2"Y),
(c) (n/b"), d @*/3%).



68 CHAPTER 3  SEQUENCES AND SERIES

16. (a) Giveanexample of aconvergent sequence (x,) of positive numbers with lim(x, , /x,) = 1.
(b) Give an example of a divergent sequence with this property. (Thus, this property cannot be
used as a test for convergence.)

17. Let X = (x,) be a sequence of positive real numbers such that lim(x,, , /x,) =L > 1. Show
that X is not a bounded sequence and hence is not convergent.

18. Discuss the convergence of the following sequences, where a, b satisfy0 <a < 1,5 > 1.
(@ (n%a"), - ®) b"/n?), '
© ®"/nY), d) (n!/n"™). .

19. Let (x,) be a sequence of positive real numbers such that lim(x,:/ "M=L<1. (Show that there
exists a number 7 with 0 <7 < 1 such that 0 < x, < r" for all sufficiently large n € N. Use
this to show that lim(x,) = 0.

20. (a) Give an example of a convergent sequence (x,) of positive numbers with lim(x/") = 1.
(b) Give an example of a divergent sequence (x,) of positive numbers with lim(x,!/ "=1.
(Thus, this property cannot be used as a test for convergence.)

21. Suppose that (x,) is a convergent sequence and (y,) is such that for any & > O there exists M
such that |x, — y,| < & forall n > M. Does it follow that (y,) is convergent?

22. Show that if (x,) and (y,) are convergent sequences, then the sequences (u,) and (v,) defined
by u,, := max(x_, y,} and v, := min(x,, y,} are also convergent. (See Exercise 2.2.16.)  *~

23. Show that if (x,), (y,), (z,) are convergent sequences, then the sequence (w,) defined by
w, := mid{x,, y,, z,} is also convergent. (See Exercise 2.2.17.)

Section 3.3 Monotone Sequences

Until now, we have obtained several methods of showing that a sequence X = (x,) of real
numbers is convergent:

(i) We can use Definition 3.1.3 or Theorem 3.1.5 directly. This is often (but not
always) difficult to do.

(ii) We can dominate |x, — x| by a multiple of the terms in a sequence (a,) known
to converge to 0, and employ Theorem 3.1.10.

(ili) We can identify X as a sequence obtained from other sequences that are known
to be convergent by taking tails, algebraic combinations, absolute values, or square roots,
and employ Theorems 3.1.9, 3.2.3, 3.2.9, or 3.2.10.

(iv) We can “squeeze” X between two sequences that converge to the same limit and
use Theorem 3.2.7.

(v) We can use the “ratio test” of Theorem 3.2.11.

Except for (iii), all of these methods require that we already know (or at least suspect) the
value of the limit, and we then verify that our suspicion is correct.

There are many instances, however, in which there is no obvious candidate for the limit
of a sequence, even though a preliminary analysis may suggest that convergence is likely. In
this and the next two sections, we shall establish results that can be used to show a sequence
is convergent even though the value of the limit is not known. The method we introduce in
this section is more restricted in scope than the methods we give in the next two, but it is
much easier to employ. It applies to sequences that are monotone in the following sense.
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3.3.1 Definition Let X = (x,) be asequence of real numbers. We say that X is increasing
if it satisfies the inequalities

<..._<_x

- 72 = nsx

-~ <-.e.,
We say that X is decreasing if it satisfies the inequalities
Xy 22Xy 22X, 22X, = 0.
We say that X is monotone if it is either increasing or decreasing.
The following sequences are increasing:

(1,2'3’49""'19"')9 (102020303’3"")’

(@, a%a ---,a",--) if a>1.

The following sequences are decreasing:

a,1/2,1/3,---,1/n,--), a,1/2, 1/22'...,1/2n-—l’_..),
(b’bz’bs""’bn"") if 0<b<1.

The following sequences are not monotone:
(+l’ _19 '*:lo MY (—l)n+lt "t ') ) (—lo +2’ _3’ Y (—l)nn "t ’)
The following sequences are not monotone, but they are “ultimately” monotone:

,6,2,1,2,3,4, .-, (-2,0,1,1/2,1/3,1/4,---).

3.3.2 Monotone Convergence Theorem A monotone sequence of real numbers is con-
vergent if and only if it is bounded. Further:

(a) If X = (x,) is a bounded increasing sequence, then
lim(x,) = sup{x, : n € N}.

(b) IfY = (y,) is a bounded decreasing sequence, then
lim(y,) = inf{y, : n € N}.

Proof. It was seen in Theorem 3.2.2 that a convergent sequence must be bounded.

Conversely, let X be a bounded monotone sequence. Then X is either increasing or
decreasing.

(a) We first treat the case where X = (x,) is a bounded, increasing sequence. Since
X is bounded, there exists a real number M such that x, < M for all n € N. According to
the Completeness Property 2.3.6, the supremum x* = sup{x, : n € N} exists in R; we will
show that x* = lim(x,,).

If ¢ > O is given, then x* — ¢ is not an upper bound of the set {x, : n € N}, and hence
there exists a member of set x, such that x* — & < x,. The fact that X is an increasing
sequence implies that x, < x, whenever n > K, so that

*—e<xpy<x,<x*<x*+e forall n> K.
Therefore we have
|x,—x*| <e  forall n>K.

Since ¢ > 0 is arbitrary, we conclude that (x,) converges to x*.
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(b) If Y = (y,) is a bounded decreasing sequence, then it is clear that X := -Y =
(—y,) is a bounded increasing sequence. It was shown in part (a) that lim X = sup{—y, :
n € N}. Now lim X = —1limY and also, by Exercise 2.4.4(b), we have

sup{-y, : n € N} = —inf{y, : n € N}.
Therefore limY = —lim X = inf{y, : n € N}. QED.

The Monotone Convergence Theorem establishes the existence of the limit of a
bounded monotone sequence. It also gives us a way of calculating the limit of the se-
quence provided we can evaluate the supremum in case (a), or the infimum in case (b).
Sometimes it is difficult to evaluate this supremum (or infimum), but once we know that it
exists, it is often possible to evaluate the limit by other methods.

3.3.3 Examples (a) lim(1/./n) =0.

It is possible to handle this sequence by using Theorem 3.2.10; however, we shall
use the Monotone Convergence Theorem. Clearly 0 is a lower bound for the set {1/./n:
n € N}, and it is not difficult to show that 0 is the infimum of the set {1/./n: n € N}; hence
0 = lim(1//n).

On the other hand, once we know that X := (1/./n) is bounded and decreasing, we

know that it converges to some real number x. Since X = (1/./n) converges to x, it follows
from Theorem 3.2.3 that X - X = (1/n) converges to x2. Therefore x> = 0, whence x = 0.
(b) Letx,:=1+1/2+1/3+---+1/nforneN.
Since x,,, = x, + 1/(n + 1) > x,, we see that (x,) is an increasing sequence. By the
Monotone Convergence Theorem 3.3.2, the question of whether the sequence is convergent
or not is reduced to the question of whether the sequence is bounded or not. Attempts to use
direct numerical calculations to arrive at a conjecture concerning the possible boundedness
of the sequence (x,) lead to inconclusive frustration. A computer run will reveal the
approximate values x, =~ 11.4 for n =50, 000, and x, =~ 12.1 for n = 100,000. Such
numerical facts may lead the casual observer to conclude that the sequence is bounded.
However, the sequence is in fact divergent, which is established by noting that

1 1 1 1 1
x2n=l+§+ §+Z +---+ 'ZT_*_I'*'“"*'Z—,l

NPy P IR (.
2 \4" 1 2 2

—1+1+1+ +l
- 22 2

n
=14 5

Since (x,) is unbounded, Theorem 3.2.2 implies that it is divergent.

The terms x,, increase extremely slowly. For example, it can be shown that to achieve
x, > 50 would entail approximately 5.2 x 10%! additions, and a normal computer perform-
ing 400 million additions a second would require more than 400,000 years to perform
the calculation (there are 31,536,000 seconds in a year). Even a supercomputer that can
perform more than a trillion additions a second, would take more than 164 years to reach
that modest goal. a

Sequences that are defined inductively must be treated differently. If such a sequence
is known to converge, then the value of the limit can sometimes be determined by using the
inductive relation.
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For example, suppose that convergence has been established for the sequence (x,)
defined by

1
x, =2, X, 1=2+—, neN,
x’l
If we let x = lim(x,,), then we also have x = lim(x, ) since the 1-tail (x,_,) converges
to the same limit. Further, we see that x, > 2, so that x # 0 and x, # 0 for all n € N.
Therefore, we may apply the limit theorems for sequences to obtain

1

x=lim(x, ,)=2+ =2+;.

lim(x,)

Thus, the limit x is a solution of the quadratic equation x> — 2x — 1 = 0, and since x must
be positive, we find that the limit of the sequence is x = 1 + /2.

Of course, the issue of convergence must not be ignored or casually assumed. For ex-
ample, if we assumed the sequence (y,) defined by y, := 1, y,., := 2y, + 1 is convergent
with limit y, then we would obtain y = 2y + 1, so that y = —1. Of course, this is absurd.

In the following examples, we employ this method of evaluating limits, but only after
carefully establishing convergence using the Monotone Convergence Theorem. Additional
examples of this type will be given in Section 3.5. )

3.3.4 Examples (a) LetY = (y,) be defined inductively by y, := 1, y, 4= %(2yn +
3) for n > 1. We shall show that limY = 3/2.

Direct calculation shows that y, = 5/4. Hence we have y, < y, < 2. We show, by
Induction, that y, < 2 for all n € N. Indeed, this is true for n = 1, 2. If y, < 2 holds for
some k € N, then

Ve = i@ +3) <i@+3)=1<2,

sothat y, , < 2. Therefore y, < 2foralln € N.

We now show, by Induction, thaty, <y, foralln € N. The truth of this assertion has
been verified forn = 1. Now suppose that y, < y, ., forsomek;then2y, +3 < 2y, , +3,
whence it follows that

Yer1 = 5@ +3) < %(zylﬁl +3) = Yiya-

Thus y, < y,,, implies that y, ., < y,,. Therefore y, <y, , foralln € N.

We have shown that the sequence Y = (y,) is increasing and bounded above by 2.
It follows from the Monotone Convergence Theorem that Y converges to a limit that is
at most 2. In this case it is not so easy to evaluate lim(y,) by calculating sup{y,: n € N}.
However, there is another way to evaluate its limit. Since y, ., = %(2)»“ + 3)foralln € N,
the nth term in the 1-tail ¥, of Y has a simple algebraic relation to the nth term of Y. Since,
by Theorem 3.1.9, we have y := limY, = limY, it therefore follows from Theorem 3.2.3
(why?) that

y=3Qy+3),

from which it follows that y = 3/2.
(b) Let Z = (z,) be the sequence of real numbers defined by z, :=1, z,, :=,/2z, for
1 € N. We will show that lim(z,) = 2.

Note that z, = 1 and 2, = v2; hence 1 < z, < z, < 2. We claim that the sequence
Z is increasing and bounded above by 2. To show this we will show, by Induction, that
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1<z <z _, <2forall n € N. This fact has been verified for n = 1. Suppose that it is
true forn = k; then 2 < 2z, <2z, _, < 4, whence it follows (why?) that

l<ﬁszk+]= 22k<2k+2=‘/22k+l<\/z=2.

[In this last step we have used Example 2.1.13(a).] Hence the validity of the inequality 1 <
z, <z, <2 implies the validity of 1 < Z,,,<2,,<2Thereforel <z <z, , <2
foralln € N.

Since Z = (z,) is a bounded increasing sequence, it follows from the Monotone
Convergence Theorem that it converges to a number z := sup{z, }. It may be shown directly
that sup{z,} = 2, so that z = 2. Alternatively we may use the method employed in part (a).
The relation z, | = ,/2z, gives a relation between the nth term of the 1-tail Z, of Z and the

nth term of Z. By Theorem 3.1.9, we have lim Z, = z = lim Z. Moreover, by Theorems
3.2.3 and 3.2.10, it follows that the limit z must satisfy the relation

z=4/2z.

Hence z must satisfy the equation z? = 2z which has the roots z = 0, 2. Since the terms of
z = (z,)allsatisfy 1 < z, < 2, it follows from Theorem 3.2.6 that we musthave 1 < z < 2.
Therefore z = 2. ) a

The Calculation of Square Roots

We now give an application of the Monotone Convergence Theorem to the calculation of
square roots of positive numbers.

3.3.5 Example Leta > 0; we will construct a sequence (s,) of real numbers that con-
verges to ./a.

Let s, > O be arbitrary and define Spp = %(su +a/s,) for n € N. We now show that
the sequence (s,) converges to \/a. (This process for calculating square roots was known
in Mesopotamia before 1500 B.C.)

We first show that s2 > a for n > 2. Since s, satisfies the quadratic equation s2 —
2s, .S, +a = 0, this equation has a real root. Hence the discriminant 4s2 +1 — 4a must be
nonnegative; that is, s,f 4+ >aforn>1.

To see that (s,) is ulWing, we note that for n > 2 we have

1 a 1 (s2-a)
sn_su+l=sn—§(sn+s_)=‘i‘ ns Zo
n

Hence, s, ., <s, for all n > 2. The Monotone Convergence Theorem implies that s :=

lim(s,,) exists. Moreover, from Theorem 3.2.3, the limit s must satisfy the relation
1 a
s = -2- (S + ;) ’

whence it follows (why?) that s = a/s or s = a. Thus s = ./a.

For the purposes of calculation, it is often important to have an estimate of how rapidly
the sequence (s,) converges to ./a. As above, we have ,/a < s, for all n > 2, whence it
follows thata/s, < /a <s,. Thus we have :

0<s,—+a<s,—a/s,=(%-a)s, for n=>2.

Using this inequality we can calculate ./a to any desired degree of accuracy. O
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Euler’s Number

We conclude this section by introducing a sequence that converges to one of the most
important “transcendental” numbers in mathematics, second in importance only to 7.

3.3.6 Example Lete, := (14 1/n)" for n € N. We will now show that the sequence
E = (e,) is bounded and increasing; hence it is convergent. The limit of this sequence is
the famous Euler number e, whose approximate value is 2.718 281 828 459 045 - - -, which
is taken as the base of the “natural” logarithm.
If we apply the Binomial Theorem, we have
1\" n 1l nn-1) 1 nnr-1Dn-2) 1
e"_(Hn) sty at— g2t 30 w
nn-1)---2-1 1
+---+ = gt

If we divide the powers of 7 into the terms in the numerators of the binomial coefficients,

we get
1 1 1 1 2
en—l+l+§i(l—;)+§(l—;)(l—;)

1 1
+...+_' ] —~
n: n

Similarly we have

! n
1 1 n-1
e —1(1- 1-— -
+ +n!( n+l)( n+1) ( n+l)
1 1 2 n
1- 1- - 1— .
+(n+1)!( n+l)( n+1) ( n+l)

Note that the expression for e, contains n + 1 terms, while that for e, , contains n + 2
terms. Moreover, each term appearing in e, is less than or equal to the corresponding term
ine, ,,ande, , has one more positive term. Therefore wehave2 <e <e, <--- <e, <
€,,1 < **+, so that the terms of E are increasing.

To show that the terms of E are bounded above, we note thatif p = 1,2, ---, n, then
(1 — p/n) < 1. Moreover 271 < p! [see 1.2.4(¢)] so that 1/p! < 1/2P~!, Therefore, if

n > 1, then we have

1 1 1
2<en<l+l+5+?+---+2"_l.
Since it can be verified that [see 1.2.4(f)]
1 1 1 1
5+?+"°+2"—_1=1—F<1,

we deduce that 2 < e, < 3 for all n € N. The Monotone Convergence Theorem implies
that the sequence E converges to a real number that is between 2 and 3. We define the
wumber e to be the limit of this sequence.

By refining our estimates we can find closer rational approximations to e, but we cannot
:valuate it exactly, since e is an irrational number. However, it is possible to calculate e to
as many decimal places as desired. The reader should use a calculator (or a computer) to
evaluate e, for “large” values of n. O
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Leonhard Euler

Leonhard Euler (1707-1783) was born near Basel, Switzerland. His clergy-
man father hoped that his son would follow him into the ministry, but when
Euler entered the University of Basel at age 14, his mathematical talent was
noted by Johann Bernoulli, who became his mentor. In 1727, Euler went
to Russia to join Johann’s son, Daniel, at the new St. Petersburg Academy.
There he met and married Katharina Gsell, the daughter of a Swiss artist.
During their long marriage they had 13 children, but only five survived
childhood.

In 1741, Euler accepted an offer from Frederick the Great to join the Berlin Academy, where
he stayed for 25 years. During this period he wrote landmark books on calculus and a steady stream
of papers. In response to a request for instruction in science from the Princess of Anhalt-Dessau,
he wrote a multi-volume work on science that became famous under the title Letters to a German
Princess.

In 1766, he returned to Russia at the invitation of Catherine the Great. His eyesight had
deteriorated over the years, and soon after his return to Russia he became totally blind. Incredibly,
his blindness made little impact on his mathematical output, for he wrote several books and over
400 papers while blind. He remained busy and active until the day of his death.

Euler’s productivity was remarkable: he wrote textbooks on physics, algebra, calculus, real
and complex analysis, analytic and differential geometry, and the calculus of variations. He also
wrote hundreds of original papers, many of which won prizes. A current edition of his collected
works consists of 74 volumes.

Exercises for Section 3.3

l. Letx, :=8andx, , := %xn + 2 forn € N. Show that (x,) is bounded and monotone. Find the
limit.

2. Letx, >landx, ,:=2-1/x forne N. Show that (x,) is bounded and monotone. Find the
limit.

3. Letx,>22andx, ,:=1+ VX, — 1 for n € N. Show that (x,) is decreasing and bounded
below by 2. Find the limit.

4. Letx,:=1landx, , :=,/2+x, forn € N. Show that (x,) converges and find the limit.
5. Lety, := . /p, where p>0,and y, = /p+y, forn e N. Show that (y,) converges and

n+l°

find the limit. [Hint: One upper bound is 1 + 2./p.]

6. Leta > Oandletz, > 0.Define z , :=,/a + z, forn € N. Show that (z,) converges and find
the limit.

7. Letx, :=a>0andx, , :=x, +1/x, forn € N. Determine if (x,) converges or diverges.

8. Let (a,) be an increasing sequence, (b,) a decreasing sequence, and assume that a, < b, for
all n € N. Show thatlim(a,) < lim(b,), and thereby deduce the Nested Intervals Property 2.5.2
from the Monotone Convergence Theorem 3.3.2.

9. Let A be an infinite subset of R that is bounded above and let u := sup A. Show there exists an
increasing sequence (x,) with x, € A for all n € N such that ¥ = lim(x,)).

10. Let(x,) be abounded sequence, and for each n € Nlets, := sup{x, : k > n}and¢, :=inf{x, :
k > n}. Prove that (s,) and (t,) are monotone and convergent. Also prove that if lim(s,) =
lim(z, ), then (x,) is convergent. [One calls lim(s, ) the limit superior of (x ), and lim(¢,) the
limit inferior of (x,).]




11.

12.

13.

14.
15.
16.
17.

3.4 SUBSEQUENCES AND THE BOLZANO-WEIERSTRASS THEOREM 75

Establish the convergence or the divergence of the sequence (y, ), where

1 1 1
y"'—n+l+n+2+“.+£ for neN.

Letx, := 1/12 + 1/2% 4 - .- + 1/n? for each n € N. Prove that (x,) is increasing and bounded,
and hence converges. [Hint: Note that if k > 2, then 1/k* < 1/k(k - 1) = 1/(k — 1) — 1/k.]

Establish the convergence and find the limits of the following sequences.

@ ((1+1/n)"*), ®) (1 +1/m)>),
l n
(©) ((1 + m) ). (d) ((l - l/n)").

Use the method in Example 3.3.5 to calculate +/2, correct to within 4 decimals.
Use the method in Example 3.3.5 to calculate +/5, correct to within 5 decimals.
Calculate the number ¢, in Example 3.3.6 for n = 2, 4, 8, 16.

Use a calculator to compute e, for n = 50, n = 100, and n = 1,000.

Section 3.4 . Subsequences and the Bolzano-Weierstrass Theorem

In this section we will introduce the notion of a subsequence of a sequence of real numbers.
Informally, a subsequence of a sequence is a selection of terms from the given sequence
such that the selected terms form a new sequence. Usually the selection is made for a definite
purpose. For example, subsequences are often useful in establishing the convergence or the
divergence of the sequence. We will also prove the important existence theorem known as
the Bolzano-Weierstrass Theorem, which will be used to establish a number of significant
results.

3.4.1 Definition Let X = (x,) be a sequence of real numbers and letn, <n, <--- <
n, < ---beastrictly increasing sequence of natural numbers. Then the sequence X "= (xnk)

given by

(o)

is called a subsequence of X.

For example, if X := (}, 3, §, - - ), then the selection of even indexed terms produces

the subsequence

X,__(l 11 1 )
- 2’4,6, 92k9 ’

where n, =2,n, =4,..-,n, =2k, ... Other subsequences of X = (1/n) are the fol-
lowing:

111 1 1 11 1
1’3’5’ "2%k-1’ ' 214176 7 (20! |

The following sequences are not subsequences of X = (1/n):

111111 1 1 1
(E,T’Z'g’g’g’...)’ (11095’00'5'909"')'
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A tail of a sequence (see 3.1.8) is a special type of subsequence. In fact, the m-tail
corresponds to the sequence of indices

nl=m+l,n2=m+2’...,nk=m+k’...

But, clearly, not every subsequence of a given sequence need be a tail of the sequence.
Subsequences of convergent sequences also converge to the same limit, as we now
show.

3.4.2 Theorem If a sequence X = (x,) of real numbers converges to a real number x,
then any subsequence X' = (x"k) of X also converges to x.

Proof. Let € > 0 be given and let K(¢) be such that if n > K(¢), then |x, — x| < €.
Since n; < n, < --- <n, <---is an increasing sequence of natural numbers, it is easily
proved (by Induction) that n, > k. Hence, if k > K (¢), we also have n, > k > K (¢) so
that lxnk — x| < €. Therefore the subsequence (xnk) also converges to x. QED.

34.3 Example (a) lim(b") =0if0 < < 1.

We have already seen, in Example 3.1.11(b), that if 0 < b < 1 and if x, := b", then
it follows from Bemoulli’s Inequality that lim(x,) = 0. Alternatively, we see that since
0<b<l, then x,_, = b"*! < b" = x_ so that the sequence (x,) is decreasimg. It is
also clear that 0 < x” < 1, so it follows from the Monotone Convergence Theorem 3.3.2
that the sequence is convergent. Let x := limx,. Since (x,,) is a subsequence of (x,)
it follows from Theorem 3.4.2 that x = lim(x,,). Moreover, it follows from the relation

= b* = (b")? = x? and Theorem 3.2.3 that
x = lim(x,,) = (lim(x))* = x2.

Therefore we must either have x = 0 or x = 1. Since the sequence (x,) is decreasing and
bounded above by b < 1, we deduce that x = 0.
() lim(c"/")=1forc > 1.

This limit has been obtained in Example 3.1.11(c) for ¢ > 0, using a rather ingenious
argument. We give here an alternative approach for the case ¢ > 1. Note that if z_:= c!/",
then z, > 1 and z, | < z, for all n € N. (Why?) Thus by the Monotone Convergence
Theorern, the lumt z:= hm(z ) exists. By Theorem 3.4.2, it follows that z = hm(zz,l) In
addition, it follows from the relatlon

z, = cMn — (cl/n)l/2 = z’ll/2
and Theorem 3.2.10 that
z=lim(z,)) = (lim(z"))'/2 =212,
Therefore we have z2 = z whence it follows that either z = 0 or z = 1. Since z, > 1forall

n € N, we deduce that z= 1.
We leave it as an exercise to the reader to consider the case 0 < ¢ < 1. O

The following result is based on a careful negation of the definition of lim(x,) = x. It
leads to a convenient way to establish the divergence of a sequence.

3.44 Theorem Let X = (x,) be a sequence of real numbers. Then the following are
equivalent:

(i) The sequence X = (x,) does not converge to x € R.
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(i) There exists an &, > O such that for any k € N, there exists n, € N such thatn, > k
and Ixnk —x| = &,

(iif) There exists an €, > 0 and a subsequence X' = (xn,) of X such that |xnk -x|>¢
for allk € N.

Proof. (i) = (ii) If (x,) does not converge to x, then for some ¢, > 0 it is impossible to
find a natural number k such that for all n > k the terms x,, satisfy |x, — x| < &,. That is,
for each k € N it is not true that for all n > k the inequality |x, — x| < &, holds. In other
words, for each k € N there exists a natural number n, > k such that |xnk —x| > &,

(ii) = (iii) Lete¢, be asin (ii) and letn; € Nbe suchthatn, > 1 and |x”! - x| > &,.
Now let n, € N be such that n, > n, and |X,,2 — x| = &y; let n; € N be such that n; > n,
and IJlr,13 — x| > &,. Continue in this way to obtain a subsequence X' = (xnk) of X such
that Ix”k — x| > g, forallk € N.

(iii) = (i) Suppose X = (x,) has a subsequence X "= (xnk) satisfying the condition
in (iii). Then X cannot converge to x; for if it did, then, by Theorem 3.4.2, the subsequence
X' would also converge to x. But this is impossible, since none of the terms of X’ belongs
to the g,-neighborhood of x. QED.

Since all subsequences of a convergent sequence must converge to the same limit,
we have part (i) in the following result. Part (ii) follows from the fact that a convergent
sequence is bounded.

3.4.5 Divergence Criteria If a sequence X = (x,) of real numbers has either of the
following properties, then X is divergent.

(i) X has two convergent subsequences X' = (x"k) and X" = (x,k) whose limits are not
equal.

(ii) X is unbounded.

3.4.6 Examples (a) The sequence X := ((—1")) is divergent.

The subsequence X' := (- =Q,1,--) converges to 1, and the subsequence
X" = ((-1)*1 = (-1, -1, - - -) converges to —1. Therefore, we conclude from Theo-
rem 3.4.5(i) that X is divergent.

(b) The sequence (1, §,3, 5, ) is divergent.

This is the sequence Y = (y,), where y, =n if n is odd, and y, = 1/n if n is even.
It can easily be seen that Y is not bounded. Hence, by Theorem 3.4.5(ii), the sequence is
divergent.

(c¢) The sequence S := (sinn) is divergent.

This sequence is not so easy to handle. In discussing it we must, of course, make use
of elementary properties of the sine function. We recall that sin(w/6) = % = sin(57/6)
and that sinx > % for x in the interval I, := (7/6, 57 /6). Since the length of I, is 57/6 —
n/6 =2m/3 > 2, there are at least two natural numbers lying inside /,; we let n, be the
first such number. Similarly, for each k € N, sinx > -2'- for x in the interval

I, := (71/6 +2m(k — 1), 57/6 + 2n(k — 1)).

Since the length of I, is greater than 2, there are at least two natural numbers lying inside
-I,; we let n, be the first one. The subsequence S’ := (sin n,) of S obtained in this way has
the property that all of its values lie in the interval [1, 1].
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Similarly, if k € N and J, is the interval
5 = (77/6 + 2wk - 1, 11n/6 + 27k — D),

then it is seen that sinx < —% for all x € J, and the length of J, is greater than 2. Let m,
be the first natural number lying in J,. Then the subsequence S” := (sinm,) of S has the
property that all of its values lie in the interval [—1, —1].

Given any real number c, it is readily seen that at least one of the subsequences S’
and S” lies entirely outside of the %-neighborhood of ¢. Therefore c cannot be a limit of S.
Since ¢ € R is arbitrary, we deduce that S is divergent. a

The Existence of Monotone Subsequences

While not every sequence is a monotone sequence, we will now show that every sequence
has a monotone subsequence.

3.4.7 Monotone Subsequence Theorem IfX = (x,) is a sequence of real numbers, then
there is a subsequence of X that is monotone.

Proof. For the purpose of this proof, we will say that the mth term x,, is a “peak” if
x,, = x, for all n such that n > m. (That is, x,, is never exceeded by any term that follows
it in the sequence.) Note that, in a decreasing sequence, every term is a peak, while in an
increasing sequence, no term is a peak.

We will consider two cases, depending on whether X has infinitely many, or finitely

many, peaks.
Case 1: X has infinitely many peaks. In this case, we list the peaks by increasing
subscripts: Xy s Xy """ Ky 070 Since each term is a peak, we have

le mez > ...me" >...
Therefore, the subsequence (xmk) of peaks is a decreasing subsequence of X.

Case 2: X has a finite number (possibly zero) of peaks. Let these peaks be listed by
increasing subscripts: L Lets, :=m, + 1be the first index beyond the last
peak. Since x, is not a peak, there exists s, > 5, such that X, <X, . Since X, is not a peak,
there exists s, > s, such that x, < x_ . Continuing in this way, we obtain an increasing

subsequence (x,k) of X. ? QE.D.

It is not difficult to see that a given sequence may have one subsequence that is
increasing, and another subsequence that is decreasing.

The Bolzano-Weierstrass Theorem

We will now use the Monotone Subsequence Theorem to prove the Bolzano-Weierstrass
Theorem, which states that every bounded sequence has a convergent subsequence. Because
of the importance of this theorem we will also give a second proof of it based on the Nested
Interval Property.

3.4.8 The Bolzano-Weierstrass Theorem A bounded sequence of real numbers has a
convergent subsequence.

First Proof. 1t follows from the Monotone Subsequence Theorem that if X = (x,) is
a bounded sequence, then it has a subsequence X’ = (xnk) that is monotone. Since this
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subsequence is also bounded, it follows from the Monotone Convergence Theorem 3.3.2
that the subsequence is convergent. QED.

Second Proof. Since the set of values {x, : n € N} is bounded, this set is contained in an
interval 1, := [a, b]. We take n, := 1.

We now bisect 1, into two equal subintervals I; and Iy, and divide the set of indices
{n € N:n > 1} into two parts:

A;:={neN:n>n.x, €l}, B,={neN:n>n.x, el).

If A, is infinite, we take I, := I| and let n, be the smallest natural number in A,. (See
1.2.1.) If A, is a finite set, then B, must be infinite, and we take I, := I’ and let n, be the
smallest natural number in B,.

We now bisect I, into two equal subintervals I; and I;, and divide the set {n € N :
n > n,} into two parts:

A,={neN:n>n,x, €L}, B,:={neN:n>n,x, € ;)

If A, is infinite, we take I, := I; and let n, be the smallest natural number in A,.If A, is a
finite set, then B, must be infinite, and we take I, := I, and let n, be the smallest natural
number in B,.

We continue in this way to obtain a sequence of nested intervals I, 2 I, 2 --- 2 [, 2
--- and a subsequence (xnk) of X such that X, € I, for k € N. Since the length of ], is

equal to (b — a)/2*~!, it follows from Theorem 2.5.3 that there is a (unique) common point
¢ € I, for all k € N. Moreover, since Xn, and & both belong to /,, we have

1%, — &1 < (b —a)/2*",
whence it follows that the subsequence (x"k) of X converges to &. QED.

Theorem 3.4.8 is sometimes called the Bolzano-Weierstrass Theorem for sequences,
because there is another version of it that deals with bounded sets in R (see Exercise 11.2.6).

It is readily seen that a bounded sequence can have various subsequences that converge
to different limits or even diverge. For example, the sequence ((—1)") has subsequences
that converge to —1, other subsequences that converge to +1, and it has subsequences that
diverge.

Let X be a sequence of real numbers and let X’ be a subsequence of X. Then X' is a
sequence in its own right, and so it has subsequences. We note that if X” is a subsequence
of X', then it is also a subsequence of X.

3.4.9 Theorem LetX = (x,) be a bounded sequence of real numbers and let x € R have
the property that every convergent subsequence of X converges to x. Then the sequence X
converges {0 x.

Proof. Suppose M > 0 is a bound for the sequence X so that |x,| < M for all n € N.
If X does not converge to x, then Theorem 3.4.4 implies that there exist ¢, > 0 and a
subsequence X' = (x, ) of X such that

) Ix,,k —x| =g, forall k e N.

Since X’ is a subsequence of X, the number M is also a bound for X’. Hence the Bolzano-
Weierstrass Theorem implies that X’ has a convergent subsequence X”. Since X” is also a
subsequence of X, it converges to x by hypothesis. Thus, its terms ultimately belong to the
&,-neighborhood of x, contradicting (1). QED.
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. Exercises for Section 3.4

Z

s

2.

10.

11.
12.

13.

14.

15.

16.

€.,
Give an e\xamﬁle of an unbounded sequence that has a convergent subsequence.

Use the method of Example 3.4.3(b) to show that if 0 < ¢ < 1, then lim(c!/") = 1.

Let (f,) be the Fibonacci sequence of Example 3.1.2(d), and let x, := f, ,/f,. Given that
lim(xnl\= L exists, determine the value of L.

Show that the following sequences are divergent.
@ (1-(D"+1/n), (b) (sinnm/4).

LetX=(x)and Y = (y,) be given sequences, and let the “shuffied” sequence Z = (z,) be
definedby z, :=x,, 2, :=y,,-*-.2,,_, i=X,,2,, :=Y,, - Show that Z is convergent if and
only if both X and Y are convergent and lim X =1limY.

Letx, :=n'/" forn € N.

(@) Show thatx, , < x  if and only if (1 4+ 1/n)" < n, and infer that the inequality is valid
for n > 3. (See Example 3.3.6.) Conclude that (x,) is ultimately decreasing and that
x := lim(x,) exists.

(b) Use the fact that the subsequence (xy,) also converges to x to conclude that x = 1.

Establish the convergence and find the limits of the following sequences:

@ (a+1m7), ® ((1+1/2n)"), .
© (a+1yay>), @ ((1+2/m)").

Determine the limits of the following.

@ (Gm)">), ® ((1+1/2n)).

Suppose that every subsequence of X = (x,) has a subsequence that converges to 0. Show that
limX =0.

Let (x,) be a bounded sequence and for eachn € Nlets, := sup{x,: k > n} and § := inf(s, }.
Show that there exists a subsequence of (x,) that converges to S.

Suppose that x, > 0 for all n € N and that lim ((—1)"x, ) exists. Show that (x,) converges.

Show that if (x,) is unbounded, then there exists a subsequence (xnk) such that lim(1 /xnk) =0.
If x, ;= (—1)"/n, find the subsequence of (x,) that is constructed in the second proof of the
Bolzano-Weierstrass Theorem 3.4.8, when we take / =[-11]).

Let (x,) be a bounded sequence and let s := sup{x,: n € N}. Show thatifs ¢ {x,: n € N}, then
there is a subsequence of (x,) that converges to s.

Let (1) be a nested sequence of closed bounded intervals. For each n € N, let x, € I . Use the
Bolzano-Weierstrass Theorem to give a proof of the Nested Intervals Property 2.5.2.

Give an example to show that Theorem 3.4.9 fails if the hypothesis that X is a bounded sequence
is dropped.

Section 3.5 The Cauchy Criterion

The Monotone Convergence Theorem is extraordinarily useful and important, but it has the
significant drawback that it applies only to sequences that are monotone. It is important for
us to have a condition implying the convergence of a sequence that does not require us to
know the value of the limit in advance, and is not restricted to monotone sequences. The
Cauchy Criterion, which will be established in this section, is such a condition.
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3.5.1 Definition A sequence X = (x,) of real numbers is said to be a Cauchy sequence
if for every ¢ > 0 there exists a natural number H(¢) such that for all natural numbers
n,m > H(g), the terms x,, x,, satisfy |x, — x, | < &.

The significance of the concept of Cauchy sequence lies in the main theorem of this
section, which asserts that a sequence of real numbers is convergent if and only if it is a
Cauchy sequence. This will give us a method of proving a sequence converges without
knowing the limit of the sequence.

However, we will first highlight the definition of Cauchy sequence in the following
examples.

3.5.2 Examples (a) The sequence (1/n) is a Cauchy sequence.

If ¢ > 0 is given, we choose a natural number H = H(¢) such that H > 2/¢. Then
if m,n> H, we have 1/n < 1/H < ¢/2 and similarly 1/m < ¢/2. Therefore, it follows
thatif m, n > H, then

1 1

n m

<l+l<e+s__€
“n m 2 2 7

Since ¢ > 0 is arbitrary, we conclude that (1/n) is a @uchy sequence.

(b) The sequence (1 + (—1)") is not a Cauchy sequence.

The negation of the definition of Cauchy sequence is: There exists £, > 0 such that for
every H there exist at least one n > H and at least one m > H such that |x, — x| > &,.
For the terms x, := 1 + (—1)", we observe that if n is even, then x, =2 and x, | = 0. If
we take &, = 2, then for any H we can choose an even number n > H andletm :=n + 1
to get

|x, — xn+l| =2= €o-

We conclude that (x,) is not a Cauchy sequence. O

Remark We emphasize that to prove a sequence (x,) is a Cauchy sequence, we may
not assume a relationship between m and n, since the required inequality |x, — x,| < ¢
must hold for all n, m > H (¢). But to prove a sequence is not a Cauchy sequence, we may
specify a relation between n and m as long as arbitrarily large values of n and m can be
chosen so that |x, — x| > &,.

Our goal is to show that the Cauchy sequences are precisely the convergent sequences.
We first prove that a convergent sequence is a Cauchy sequence.

3.5.3 Lemma IfX = (x,) is a convergent sequence of real numbers, then X is a Cauchy
sequence.

Proof. If x :=lim X, then given ¢ > 0 there is a natural number K (¢/2) such that if
n > K(g/2) then |x, — x| < €/2. Thus, if H(¢) := K(¢/2) and if n,m > H(¢), then we
have

X, = Xl = (x, = x) + (x — x,)|
Slx,—xl+Ix, —x| <e/2+¢/2=¢.

Since € > 0 is arbitrary, it follows that (x,) is a Cauchy sequence. QED.
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In order to establish that a Cauchy sequence is convergent, we will need the following
result. (See Theorem 3.2.2.)

3.54 Lemma A Cauchy sequence of real numbers is bounded.

Proof. Let X := (x,) be a Cauchy sequence and let ¢ := 1. If H := H(1) and n > H,
then |x, — x| < 1. Hence, by the Triangle Inequality, we have |x,| < |x,| + 1 for all
n > H.If we set

M :=sup {Ix,|, Ix,l, - -, [xy_y | Ixgl + 1},
then it follows that |x,| < M foralln € N. Q.ED.
We now present the important Cauchy Convergence Criterion.

3.5.5 Cauchy Convergence Criterion A sequence of real numbers is convergent if and
only if it is a Cauchy sequence.

Proof. 'We have seen, in Lemma 3.5.3, that a convergent sequence is a Cauchy sequence.

Conversely, let X = (x,) be a Cauchy sequence; we will show that X is convergent to
some real number. First we observe from Lemma 3.5.4 that the sequence X is bounded.
Therefore, by the Bolzano-Weierstrass Theorem 3.4.8, there is a subsequence X’ = (x"k)

of X that converges to some real number x*. We shall complete the proof by showing that

X converges to x*.
Since X = (x,) is a Cauchy sequence, given ¢ > O there is a natural number H (¢/2)
such that if n, m > H(e/2) then

(1) Ix, —x, | < &/2.

Since the subsequence X' = (x, ) converges to x*, there is a natural number K > H(¢/2)
belonging to the set {n,, n,, - - -} such that

Ixp —x*| < /2.
Since K > H(e/2), it follows from (1) with m = K that
|x, —xx| < €/2 for n > H(e/2).
Therefore, if n > H(e/2), we have

Ix, = x*| = [(x, — xg) + (xx — x¥)|
=< |x,, — x|+ IxK - x*
<éef2+¢e/2=c¢.

Since & > Ois arbitrary, we infer that lim(x,) = x*. Therefore the sequence X is convergent.
QED.

We will now give some examples of applications of the Cauchy Criterion.

3.5.6 Examples (a) Let X = (x,) be defined by

1
x =1 x,:=2  ad x, = 5 (x,g+x,_;) for n>2
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nbe shown by Inductionthat1 < x, < 2foralln € N. (Doso.) Some calculation shows
at the sequence X is not monotone. However, since the terms are formed by averaging, it
» ==adily seen that

|x for neN.

n _xn+l| = 2n—l

Prove this by Induction.) Thus, if m > n, we may employ the Triangle Inequality to obtain

X, = x| < Ix, _xn+l| + Ixn-l-l _xn+2| +.-+ Ixm—l = Xl
1 1 1
=patmtootas
1 1 1 1
= 2n—l 1+§+“.+2m—n-l < 2n—2‘

Therefore, given ¢ > 0, if n is chosen so large that 1/2" < £/4 and if m > n, then it follows
that |x, — x,,| < €. Therefore, X is a Cauchy sequence in R. By the Cauchy Criterion 3.5.5
« < infer that the sequence X converges to a number x.
To evaluate the limit x, we might first “pass to the limit” in the rule of definition
z(x,l 1 +x,_,) to conclude that x must satisfy the relation x = %(x + x), which is
true, but not informative. Hence we must try something else.
Since X converges to x, so does the subsequence X’ with odd indices. By Induction,
uie reader can establish that [see 1.2.4(f)]
1 1

1
Xppi = l+2+23+ +2

2 1
=1+§(1—4—")

"t follows from this (how?) that x =limX =limX' =1+ 2 = 1.
(b) LetY = (y,) be the sequence of real numbers given by

1 1 1 1 1 (—=1)*+!
yl'=ﬁ’ yz ll 2!’...’ y"°_ﬁ_5|-+.+ n! g
Clearly, Y is not a monotone sequence. However, if m > n, then
(_l)n+2 (_1)n+3 (_l)m+l
ym—yn= +...+—_.
(n+1)!  (n+2)! m!
Since 2"~! < r! [see 1.2.4(e)], it follows that if m > n, then (why?)
I | < : + 1 +-o 4 1
Im I =@ T nt2) m!
1 1 1 1
Sxtomt ot T <

Therefore, it follows that (y,) is a Cauchy sequence. Hence it converges to a limit y. At the
present moment we cannot evaluate y directly; however, passing to the limit (with respect
to m) in the above inequality, we obtain

ly, =yl < 1/2"1.

Hence we can calculate y to any desired accuracy by calculating the terms y, for sufficiently
large n. The reader should do this and show that y is approximately equal to 0.632 120 559.
(The exact value of y is 1 — 1/e.)
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1 1 1
(c) The sequence (T + 3 +---+ ;) diverges.
Let H := (h,) be the sequence defined by

1 1 1
h = - - .o -
n 1+2+ +n for neN,
which was considered in 3.3.3(b). If m > n, then
1 1
h,—h, =—— —_
n+1+ +

Since each of these m — n terms exceeds l/m thenh, —h, > (m —n)/m=1—-n/m.In
particular, if m = 2n we have h,, —h, > 3 Thls shows that H is not a Cauchy sequence
(why?); therefore H is not a convergent sequence (In terms that will be introduced in
Section 3.7, we have just proved that the “harmonic series” Y oo, 1/n is divergent) O
3.5.7 Definition We say that a sequence X = (x,) of real numbers is contractive if there
exists a constant C, 0 < C < 1, such that

Clx,;. . —x

Ixn+2 n I

u+l I -
forall n € N. The number C is called the constant of the contractive sequence.

358 Theorem?very contractive sequence is a Cauchy sequence, and therefore is con-
vergent.

Proof. ﬁ'_we successively apply the defining condition for a contractive sequence, we can
work our way back to the beginning of the sequence as follows:

1Xp42 = Xpia] = Clxyy,

=< Cslxn_l n—2| <-= C"Ixz - xll'

2
-x,| <C%x, —x,_,|

For m > n, we estimate |x,, — x,| by first applying the Triangle Inequality and then using
the formula for the sum of a geometric progression (see 1.2.4(f)). This gives
Ixm - xnl = Ixm - xm-ll + Ixm—l - "m-zl +--+ Ixn+l - xnl
< (Cm—2 + Cm—3 4o+ Cn—l) Ix2 _ x]l

L (1-Cm"

af 1
<C" ‘(l_c)|x2—x,|.

Since 0 < C < 1, we know lim(C") = 0 [see 3.1.11(b)]. Therefore, we infer that (x,) is a
Cauchy sequence. It now follows from the Cauchy Convergence Criterion 3.5.5. that (x,)
is a convergent sequence. QED.

In the process of calculating the limit of a contractive sequence, it is often very
important to have an estimate of the error at the nth stage. In the next result we give two
such estimates: the first one involves the first two terms in the sequence and 7n; the second
one involves the difference x, — x,_,.

3.5.9 Corollary IfX := (x,) is a contractive sequence with constant C,0 < C < 1, and
if x* :=1im X, then
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Proof. From the preceding proof, if m > n, then |x,, — x,| < (C*"!/(1 — C))Ix, — x,|.
If we let m — o0 in this inequality, we obtain (i).
To prove (ii), recall that if m > n, then

X = Xp| < 1Xpy = Xy | 20+ X,y — X,

Since it is readily established, using Induction, that

Xtk = Xpgr| = Ckl"n Xy b
we infer that
x —x|<(C™"+.--+C*+O)x, —x,_,
=< 1— CIX" _x,,__||
We now let m — o0 in this inequality to obtain assertion (ii). QED.

3.5.10 Example We are told that the cubic equation x> — 7x +2 = 0 has a solution
between 0 and 1 and we wish to approximate this solution. This can be accomplished by
means of an iteration procedure as follows. We first rewrite the equation as x = (x3 +2)/7
and use this to define a sequence. We assign to x, an arbitrary value between 0 and 1, and
then define

Xy = :,'-(x,:: +2) for neN.

Because 0 < x; < 1, it follows that 0 < x, < 1 for all n € N. (Why?) Moreover, we have
X4z = Xpial = I%(x.fﬂ +2) - l(x.f +2)| = '|'|x3+l _le

7I +l+xn+lx +‘x |lx X1 — X, I— 7| n+1 xnl'

Therefore, (x,) is acontractive sequence and hence there exists 7 such thatlim(x,) = r.If we
pass to the limit on both sides of the equality x, | = (x] +2)/7, we obtainr = (r* +2)/7
and hence r* — 7r + 2 = 0. Thus r is a solution of the equation.

We can approximate r by choosing x, and calculating x,, x,, - - - successively. For

example, if we take x, = 0.5, we obtain (to nine decimal places):

= 0303571429, x,=0.289710830,
x4 = 0.289188016, x; = 0.289169 244,
= 0.289168 571, etc.

To estimate the accuracy, we note that |x, — x,| < 0.2. Thus, after n steps it follows from
Corollary 3.5.9(i) that we are sure that |x* — x| < 3"~"/(7""2.20). Thus, when n = 6,
we are sure that

lx* — xgl < 3%/(7*- 20) = 243/48 020 < 0.0051.

Actually the approximation is substantially better than this. In fact, since |x; — x| <
0.000 0005, it follows from 3.5.9(ii) that |x* — x| < 4lx6 — x4| < 0.0000004. Hence the
first five decimal places of x4 are correct. O
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Exercises for Section 3.5
P’\
1. Give an example of a bounded sequence that is not a Cauchy sequence.  ~ | !
2. Show directly from the dgfinition that the following are Cauchy sequences.
n+1 1 1

@ ( ! ) ® (‘*i*'“*ﬁ)'

3. Show directly from the definition that the following are not Cauchy sequences.
-1)"
@ (v, ®) (n + & ) © @nn).
n

4. Show directly from the definition that if (x,) and (y,) are Cauchy sequences, then (x, + y,) and

10.

11.

12.

13.

14.

(x,,) are Cauchy sequences.
Ifx, := J/n, show that (x,) satisfies lim |x, +1 — %, = 0, but that it is not a Cauchy sequence.

Let p be a given natural number. Give an example of a sequence (x,) that is not a Cauchy

sequence, but that satisfies lim |x, p x,|=0.

Let (x,) be a Cauchy sequence such that x, is an integer for every n € N. Show that (x,) is
ultimately constant.

Show directly that a bounded, monotone increasing sequence is a Cauchy sequence.

If0<r <1and |"n+| -x,| < r" for all n € N, show that (x,) is a Cauchy sequence.

If x, < x, are arbitrary real numbers and x, := 1(x,_, + x,_,) for n > 2, show that (x,) is

convergent. What is its limit?

If y, <y, are arbitrary real numbers and y, := 1y,_, + %y,_, for n > 2, show that (y,) is
convergent. What is its limit?

Ifx, >0and x, a=0Q+ xn)" for n > 1, show that (x,) is a contractive sequence. Find the
limit.

Ifx,:=2andx, =2+ 1/x, forn > 1, show that (x,) is a contractive sequence. What is its
limit?

The polynomial equation x> — 5x + 1 = 0 has a root r with 0 < r < 1. Use an appropriate
contractive sequence to calculate r within 1074,

Section 3.6 Properly Divergent Sequences

For certain purposes it is convenient to define what is meant for a sequence (x,) of real
numbers to “tend to +00”.

3.6.1 Definition Let (x,) be a sequence of real numbers.

@

(i)

We say that (x,) tends to +00, and write lim(x,) = +00, if for every @ € R there
exists a natural number K () such thatif n > K («), then x, > a.
We say that (x,) tends to —oo, and write lim(x,) = —oo0, if for every B € R there
exists a natural number K (B8) such thatif n > K (8), then x, < B.

We say that (x,) is properly divergent in case we have either lim(x,) = +00 or

lim(x,) = —o0.
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The reader should realize that we are using the symbols +o00 and —oo purely as a con-
venient notation in the above expressions. Results that have been proved in earlier sections
for conventional limits lim(x,) = L (for L € R) may not remain true when lim(x,) = %o00.

3.6.2 Examples (a) lim(n) = +o0.
In fact, if @ € R is given, let K (o) be any natural number such that K (a) > «.
(b) lim(n?) = +o0.
If K() is a natural number such that K(«¢) > «, and if n > K(«a) then we have
n2>n>a.
(¢) Ifc > 1, thenlim(c") = +00.

Letc =1+ b, where b > 0. If @ € R is given, let K (o) be a natural number such that
K(a) > a/b.If n > K (a) it follows from Bernoulli’s Inequality that

"=0+b">14+nb>14a>a.
Therefore lim(c") = +o0. O

Monotone sequences are particularly simple in regard to their convergence. We have
seerr in the Monotone Convergence Theorem 3.3.2 that a monotone sequence is convergent
if and only if it is bounded. The next result is a reformulation of that result.

3.6.3 Theorem A monotone sequence of real numbers is properly divergent if and only
if it is unbounded.

(a) If (x,) is an unbounded increasing sequence, then lim(x,) = +o00.
(b) If(x,) is an unbounded decreasing sequence, then lim(x,) = —00.

Proof. (a) Suppose that(x,) is an increasing sequence. We know that if (x, ) is bounded,
then it is convergent. If (x,) is unbounded, then for any a € R there exists n(a) € N such
that o < Xp(a)* But since (x,) is increasing, we have a < x, for all n > n(e). Since « is
arbitrary, it follows that lim(x,) = +00.

Part (b) is proved in a similar fashion. Q.ED.

The following “comparison theorem” is frequently used in showing that a sequence is
properly divergent. [In fact, we implicitly used it in Example 3.6.2(c).]

3.6.4 Theorem Let(x,) and (y,) be two sequences of real numbers and suppose that
¢)) x, <y, forall neN.

(@ If lim(x,) = +oo, thenlim(y,) = +o0.
(b) If lim(y,) = —oo, thenlim(x,) = —o0.

Proof. (a) If lim(x,) = +00, and if @ € R is given, then there exists a natural number
K () such that if n > K (@), then a < x,. In view of (1), it follows that @ < y, for all
n > K(a). Since « is arbitrary, it follows that lim(y,) = +oo.

The proof of (b) is similar. QED.

Remarks (a) Theorem 3.6.4 remains true if condition (1) is ultimately true; that is, if
there exists m € Nsuchthatx, <y, foralln > m.
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(b) If condition (1) of Theorem 3.6.4 holds and if lim(y,) = +00, it does not follow
that lim(x,) = +o0c. Similarly, if (1) holds and if lim(x,) = —o0, it does not follow that
lim(y,) = —oo. In using Theorem 3.6.4 to show that a sequence tends to +00 [respectively,
—o00] we need to show that the terms of the sequence are ultimately greater [respectively,
less] than or equal to the corresponding terms of a sequence that is known to tend to +00
[respectively, —o0].

Since it is sometimes difficult to establish an inequality such as (1), the following “limit
comparison theorem” is often more convenient to use than Theorem 3.6.4.

3.6.5 Theorem Let(x,) and (y,) be two sequences of positive real numbers and suppose
that for some L € R, L > 0, we have

) lim(x,/y,) = L.
Then lim(x,) = +o0 if and only if lim(y,) = +o0.

Proof. 1f (2) holds, there exists K € N such that
iL<x,/y,<3L forall n>K.

Hence we have (3L) y, < x, < (3L) y, for all n > K. The conclusion now follows from
a slight modification of Theorem 3.6.4. We leave the details to the reader. QED.

The reader can show that the conclusion need not hold if either L =0 or L = +00.
However, there are some partial results that can be established in these cases, as will be
seen in the exercises.

Exercises for Section 3.6

Show that if (x,) is an unbounded sequence, then there exists a properly divergent subsequence.

2. Give examples of properly divergent sequences (x,) and (y,) with y, # 0 for all n € N such
?al;t. (x,/y,) is convergent, () (x,/y,) is properly divergent.

3. Show thatif x, > Oforall n € N, then lim(x,) = 0 if and only if im(1/x,) = +00.

4. Establish the proper divergence of the following sequences.
(@ (vn), ®) (vn+1),
© (vn-1), @ (n/vn+1).

5. Is the sequence (n sin n) properly divergent?

6. Let (x,) be properly divergent and let (y,) be such that lim(x, y,) belongs to R. Show that (y,)
converges to 0.

7. Let(x,) and (y,) be sequences of positive numbers such that lim(x,/y,) = 0.
(a) Show that if lim(x,) = +00, then lim(y,) = +o00.
(b) Show that if (y,) is bounded, then lim(x,) = 0.

8. Investigate the convergence or the divergence of the following sequences:
@ (Va’+2), ® (V/ (n+1).
© (\/n2 +1 /ﬁ), @ (sin/m).

9. Let(x,) and (y,) be sequences of positive numbers such that lim(x, /y,) = +00,
(a) Show that if lim(y,) = +00, then lim(x,) = +o0.
(b) Show that if (x,) is bounded, then lim(y,) = 0.

10. Show that if lim(a,/n) = L, where L > 0, then lim(a,) = +o0.
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Section 3.7 Introduction to Infinite Series

We will now give a brief introduction to infinite series of real numbers. This is a topic
that will be discussed in more detail in Chapter 9, but because of its importance, we will
establish a few results here. These results will be seen to be immediate consequences of
theorems we have met in this chapter.

In elementary texts, an infinite series is sometimes “defined” to be “an expression of
the form”

(l) x|+x2+"'+xn+"’.

However, this “definition” lacks clarity, since there is a priori no particular value that we
can attach to this array of symbols, which calls for an infinite number of additions to be
performed.

3.7.1 Definition If X := (x,) is a sequence in R, then the infinite series (or simply the
series) generated by X is the sequence S := (s,) defined by

5 =X, .-
s, =5+x, (=x+x,)

S =8 ,+x (=x+x+--+x)

The numbers x, are called the terms of the series and the numbers s, are called the partial
sums of this series. If lim S exists, we say that this series is convergent and call this limit
the sum or the value of this series. If this limit does not exist, we say that the series S is
divergent.

It is convenient to use symbols such as

2) Z (x,) or E X, or i X,
n=1

to denote both the infinite series S generated by the sequence X = (x,) and also to denote
the value lim S, in case this limit exists. Thus the symbols in (2) may be regarded merely as
a way of exhibiting an infinite series whose convergence or divergence is to be investigated.
In practice, this double use of these notations does not lead to any confusion, provided it is
understood that the convergence (or divergence) of the series must be established.

Just as a sequence may be indexed such that its first element is not x,, but is x,, or x,
or xy, we will denote the series having these numbers as their first element by the symbols

00 00 00
Z X, or Z X, or Z x,.
n=0 n=99

n=5

It should be noted that when the first term in the series is x, then the first partial sum is
denoted by s,,.

Warning The reader should guard against confusing the words “sequence” and “series”.
In nonmathematical language, these words are interchangeable; however, in mathematics,
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these words are not synonyms. Indeed, a series is a sequence S = (s,) obtained from a
given sequence X = (x,) according to the special procedure given in Definition 3.7.1.

3.7.2 Examples (a) Considerthe sequence X := (r"):" _o Wherer € R, which generates
the geometric series:

00
3) Y =l e e
n=0

We will show that if |r| < 1, then this series converges to 1/(1 — r). (See also Example
1.2.4(f).) Indeed, if s, :=1+7r + r’ 4+ ... 4" forn > 0, and if we multiply s, by r and
subtract the result from s,, we obtain (after some simplification):

s,(1=r)=1-r"*,

Therefore, we have

1 rn+l
Sn 1—r  1-1
from which it follows that
1 Irln-l-l
s - < .
P l=r| T 1 =r|

Since |r|"*! — 0 when Ir] < 1, it follows that the geometric series (3) converges to
1/(1 —r) when|r| < 1.

(b) Consider the series generated by ((—1)"); that is, the series:

O] D =D HEDHED (D + -
n=0

It is easily seen (by Mathematical Induction) that s, = 1if n > Oisevenands, =0
if n is odd; therefore, the sequence of partial sums is (1, 0, 1, 0, - - -). Since this sequence is
not convergent, the series (4) is divergent.

(¢) Consider the series

o) i 1 __1 + ! + ! +
nn+1) 1.2 2.3 3.4

n=1
By a stroke of insight, we note that
1 1 1

kk+1)  k k+1°

Hence, on adding these terms from k = 1 to k = n and noting the telescoping that takes
place, we obtain

_ 1 1
=1 TR
whence it follows that s, — 1. Therefore the series (5) converges to 1. O

We now present a very useful and simple necessary condition for the convergence of
a series. It is far from being sufficient, however.
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3.7.3 The nth Term Test If the series ) _ x, converges, thenlim(x,) = 0.

Proof. By Definition 3.7.1, the convergence of ) x, requires that lim(s,) exists. Since
x, =S, —5,_;, thenlim(x,) = lim(s,) — lim(s,_,) = 0. QE.D.

Since the following Cauchy Criterion is precisely a reformulation of Theorem 3.5.5,
we will omit its proof.

3.7.4 Cauchy Criterion for Series The series ) x, converges if and only if for every
€ > 0 there exists M(¢) € N such thatif m > n > M(¢), then
(6) Ism—sn|=lxn+l+xn+2+'“+xm|<e'
The next result, although limited in scope, is of great importance and utility.
3.7.5 Theorem Let (x,) be a sequence of nonnegative real numbers. Then the series

2_x, converges if and only if the sequence S = (s,) of partial sums is bounded. In this
case,

Zx" = lim(s,) = sup{s, : k € N}.

Proof. Since x, > 0, the sequence S of partial sums is monotone increasing:
sl _<_sz_<_...53k_<_....

By the Monotone Convergence Theorem 3.3.2, the sequence S = (s,) converges if and
only if it is bounded, in which case its limit equals sup(s, }. QED.

3.7.6 Examples (a) The geometric series (3) diverges if |[r| > 1.
This follows from the fact that the terms r" do not approach O when |r| > 1.

00
1
(b) The harmonic series E - diverges.
n=1

Since the terms 1/n — 0, we cannot use the nth Term Test 3.7.3 to establish this
divergence. However, it was seen in Examples 3.3.3(b) and 3.5.6(c) that the sequence (s,)
of partial sums is not bounded. Therefore, it follows from Theorem 3.7.5 that the harmonic
series is divergent.

00
1
(c) The 2-series E — is convergent.
n

n=l1
Since the partial sums are monotone, it suffices (why?) to show that some subsequence

of (s;) is bounded. If k) :=2' — 1 =1, thens, = 1.Ifk, := 2> — 1 =3, then

s —-l-+ l+l <l+2—l+1
kz-l 22 32 22_ 2’

and if k, := 23 — 1 = 7, then we have

_ 1 1 1 1 4 1 1
sk3—sk2+ F+§i+?+7—2‘ <Sk2+F<l+-2'+Ei

By Mathematical Induction, we find that if k; := 2/ — 1, then

0<s, <l+ie @+t @)™
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Since the term on the right is a partial sum of a geometric series with r = %, it is dominated
by 1/(1 - %) = 2, and Theorem 3.7.5 implies that the 2-series converges.

o0
1
(d) The p-series Z P converges when p > 1.
n=1

Since the argument is very similar to the special case considered in part (c), we will
leave some of the details to the reader. As before, if k, :=2' — 1 =1, then s, =1 If

k, = 22 — 1 = 3, then since 2”7 < 3”, we have

1 11 2 1
W=t Ty <ltyp=lteT
Further, if k, := 2* — 1, then (how?) it is seen that
4 1 1
sk3<sk2+4—P< +F+F

Finally, we let r := 1/2P71; since p > 1, we have 0 < r < 1. Using Mathematical Induc-
tion, we show that if k, := 2/ — 1, then

; 1
O0<s, <l+r+ri+.-.+ri7' < -
I —

Therefore, Theorem 3.7.5 implies that the p-series converges when p > 1.

00
1
(e) The p-series E 7 diverges when0 < p < 1.
n=1

We will use the elementary inequality n” < n whenn € Nand 0 < p < 1. It follows
that

1 1
- <= for neN.
n " n

Since the partial sums of the harmonic series are not bounded, this inequality shows that the
partial sums of the p-series are not bounded when O < p < 1. Hence the p-series diverges
for these values of p.

(f) The alternating harmonic series, given by
i (_l)n+l 1 1 1 (_1)n+l
n

n=1

Q)

is convergent.

The reader should compare this series with the harmonic series in (b), which is
divergent. Thus, the subtraction of some of the terms in (7) is essential if this series is to
converge. Since we have

(Lo (Ao, (L
m=\172 374 2n—-1 2n)’

itis clear that the “even” subsequence (s,,) is increasing. Similarly, the “odd” subsequence
(55,+1) is decreasing since

s, =1_(1_1 (1_1)_ _ L__l_)
41 7 2 3 4 5 2n 2n+1)°

Since 0 < s5,, <5,, +1/(2n +1) = s,,., < 1, both of these subsequences are bounded
below by 0 and above by 1. Therefore they are both convergent and to the same value. Thus
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the sequence (s,) of partial sums converges, proving that the alternating harmonic series
(7) converges. (It is far from obvious that the limit of this series is equal to In2.) O
Comparison Tests

Our first test shows that if the terms of a nonnegative series are dominated by the corre-
sponding terms of a convergent series, then the first series is convergent.

3.7.7 Comparison Test LetX := (x,) andY := (y,) be real sequences and suppose that
for some K € N we have

® 0<x,<y, for n>K.

(a) Then the convergence of ) y, implies the convergence of ) x,,.
(b) The divergence of )_ x, imples the divergence of Yy Y,

Proof. (a) Suppose that 3 y, converges and, given € > 0, let M(¢) € N be such that if
m > n > M(g), then

yn+l+'”+ym <E€.
If m > sup{K, M()}, then it follows that
O<x,, + +Xx, <Y+ +y, <&

from which the convergence of _ x, follows.
(b) This statement is the contrapositive of (a). Q.ED.

Since it is sometimes difficult to establish the inequalities (8), the next result is fre-
quently very useful.

3.7.8 Limit Comparison Test SupposethatX := (x,) andY := (y,) are strictly positive
sequences and suppose that the following limit exists in R:

©) r:=1lim (x—") .
In

(@) Ifr #0then)_ x, is convergent if and only if )y, is convergent.
(b) Ifr =0andif }_y, is convergent, then }_ x, is convergent.

Proof. (a) It follows from (9) and Exercise 3.1.17 that there exists K € N such that
3r <x,/y, <2rforn > K, whence

(4r)y, <x,<(@r)y, for nxK.

If we apply the Comparison Test 3.7.7 twice, we obtain the assertion in (a).
(b) If r = 0, then there exists K € N such that

O0<x, <y, for n> K,

so that Theorem 3.7.7(a) applies. QED.

Remark The Comparison Tests 3.7.7 and 3.7.8 depend on having a stock of series that
one knows to be convergent (or divergent). The reader will find that the p-series is often
useful for this purpose.
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1
3.7.9 Examples (a) The series Z T, converges.
n=1

It is clear that the inequality

1 1
O<5—<= for neN
n“+n n
is valid. Since the series »_ 1/ n? is convergent (by Example 3.7.6(c)), we can apply the
Comparison Test 3.7.7 to obtain the convergence of the given series.

1
(b) The series ———— is convergent.
; n—n+1 8

If the inequality

1 1
10 ——— <5
(19) nP—n+1" n?
were true, we could argue as in (a). However, (10) is false for all n € N. The reader can
probably show that the inequality

1 2
0< 55— —2
n—n+17"
is valid for all n € N, and this inequality will work just as well. However, it might take
some experimentation to thmk of such an mequahty and then establish it.

Instead, if we take x, =1/(n® —n+1)and Y, = 1/n2, then we have

X n? 1

Y, m—n+l 1-Q/m+U/md)

Therefore, the convergence of the given series follows from the Limit Comparison Test
3.7.8(a).

[o )
1
(c) The series
,; Jn+1

This series closely resembles the series Y 1/./n which is a p-series with p = -2';; by
Example 3.7.6(e), it is divergent. If we let x, := 1/4/n + 1 and y, := 1/./n, then we have

il = ﬁ = 1 -1
y, n+1 JT1+1/n
Therefore the Limit Comparison Test 3.7.8(a) applies.

is divergent.

(d) The series Z — is convergent.

It would be possnble to establish this convergence by showing (by Induction) that
n? < n! for n > 4, whence it follows that

1
0<-—<—2 for n>4.

Alternatively, if weletx := 1/n!and y, := 1/ n?, then (when n > 4) we have

n2 n 1

x
< L= e = 0.
0=y =M =T2 -0 “n=z_
Therefore the Limit Comparison Test 3.7.8(b) applies. (Note that this test was a bit trou-
blesome to apply since we do not presently know the convergence of any series for which
the limit of x,/y, is really easy to determine.) O
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Exercises for Section 3.7

10.

11.

12.

13.

14.

15.

Let 3" a,_ be a given series and let 3 b, be the series in which the terms are the same and in
the same order as in ) a, except that the terms for which a, = 0 have been omitted. Show that
Y_a, converges to A if and only if ) b, converges to A.

Show that the convergence of a series is not affected by changing a finite number of its terms.
(Of course, the value of the sum may be changed.)

By using partial fractions, show that
(=

1 = 1 1 .
@ z(n+l)(n+2)=l' ®) n;o(a+n)(a+n+l)=;>o'lfa>o’
© 5 !
= n(n+l)(n +2) 4

If Y x_ and Yy, are convergent, show that 3 (x, + y,) is convergent.

Can you give an example of a convergent series ) x_ and a divergent series ) y, such that
2 (x, +,) is convergent? Explain.

00
(a) Show that the series Z cos n is divergent.
n °=° 1
(b) Show that the series Z(cos n) /n2 is convergent.

n=1 (- n
Use an argument similar to that in Example 3.7.6(f) to show that the series Z Jl_)

is
convergent.

If 3" a, with a, > 0 is convergent, then is a? always convergent? Either prove it or give a
counterexample.

If Y"a, witha, > 0is convergent, then is 3 ,/a, always convergent? Either prove it or give a
counterexample.

If " a, with a, > 0 is convergent, then is 3 /a,a, ., always convergent? Either prove it or
give a counterexample.

If Z:an with a, > 0 is convergent, and if b, := (a, +--- +a,)/n for n € N, then show that
Y b, is always divergent.

0
Let Z a(n) be such that (a(n)) is a decreasing sequence of strictly positive numbers. If s(n)
n=1 :
denotes the nth partial sum, show (by grouping the terms in s(2") in two different ways) that
L(a() +2a(@) + - +2"a(2") < 5(2") < (a(1) +2a(2) +--- +2"'a(2"™")) +a(2").

o0 0
Use these inequalities to show that Za(n) converges if and only if ZZ"a(Z") converges.
n=1

This result is often called the Cauchy Condensation Test; 1t is very powerful.
Use the Cauchy Condensation Test to discuss the p-series Z(l /nP) for p > 0.

Use the Cauchy Condensation Test to establish the divergence of ihc series:
(@) Z lnn : ®) Z n(inn)(Inlnn)’

© 2 EmGEmGEEm

Show that if c > 1, then the following series are convergent:

1
@ Do ann)" ®) Zn(lnn)(lnlnn)"




CHAPTER 4

I

LIMITE

“Mathematical analysis” is generally understood to refer to that area of mathematics in
which systematic use is made of various limiting concepts. In the preceding chapter we
studied one of these basic limiting concepts: the limit of a sequence of real numbers. In this
chapter we will encounter the notion of the limit of a function.

The rudimentary notion of a limiting process emerged in the 1680s as Isaac Newton
(1642-1727) and Gottfried Leibniz (1646-1716) struggled with the creation of the Cal-
culus. Though each person’s work was initially unknown to the other and their creative
insights were quite different, both realized the need to formulate a notion of function and the
idea of quantities being “close to” one another. Newton used the word “fluent” to denote a
relationship between variables, and in his major work Principia in 1687 he discussed limits
“to which they approach nearer than by any given difference, but never go beyond, nor in
effect attain to, till the quantities are diminished in infinitum”. Leibniz introduced the term
“function” to indicate a quantity that depended on a variable, and he invented “infinites-
imally small” numbers as a way of handling the concept of a limit. The term “function”
soon became standard terminology, and Leibniz also introduced the term “calculus” for
this new method of calculation.

In 1748, Leonhard Euler (1707-1783) published his two-volume treatise Introductio in
Analysin Infinitorum, in which he discussed power series, the exponential and logarithmic
functions, the trigonometric functions, and many related topics. This was followed by Insti-
tutiones Calculi Differentialis in 1755 and the three-volume Institutiones Calculi Integralis
in 1768-70. These works remained the standard textbooks on calculus for many years. But
the concept of limit was very intuitive and its looseness led to a number of problems. Verbal
descriptions of the limit concept were proposed by other mathematicians of the era, but
none was adequate to provide the basis for rigorous proofs.

In 1821, Augustin-Louis Cauchy (1789-1857) published his lectures on analysis in his
Cours d’Analyse, which set the standard for mathematical exposition for many years. He
was concerned with rigor and in many ways raised the level of precision in mathematical
discourse. He formulated definitions and presented arguments with greater care than his
predecessors, but the concept of limit still remained elusive. In an early chapter he gave the
following definition:

If the successive values attributed to the same variable approach indefinitely a
fixed value, such that they finally differ from it by as little as one wishes, this latter
is called the limit of all the others.

The final steps in formulating a precise definition of limit were taken by Karl Weier-
strass (1815-1897). He insisted on precise language and rigorous proofs, and his definition
of limit is the one we use today.

96
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Gottfried Leibniz

Gottfried Wilhelm Leibniz (1646—-1716) was born in Leipzig, Germany. He
was six years old when his father, a professor of philosophy, died and left his
son the key to his library and a life of books and leamning. Leibniz entered the
University of Leipzig at age 15, graduated at age 17, and received a Doctor
of Law degree from the University of Altdorf four years later. He wrote
on legal matters, but was more interested in philosophy. He also developed
original theories about language and the nature of the universe. In 1672, he
went to Paris as a diplomat for four years. While there he began to study
mathematics with the Dutch mathematician Christiaan Huygens. His travels to London to visit the
Royal Academy further stimulated his interest in mathematics. His background in philosophy led
him to very original, though not always rigorous, results.

Unaware of Newtons’s unpublished work, Leibniz published papers in the 1680s that pre-
sented a method of finding areas that is known today as the Fundamental Theorem of Calculus. He
coined the term “calculus” and invented the dy/dx and elongated S notations that are used today.
Unfortunately, some followers of Newton accused Leibniz of plagiarism, resulting in a dispute
that lasted until Leibniz’s death. Their approaches to calculus were quite different and it is now
evident that their discoveries were made independently. Leibniz is now renowned for his work in
philosophy, but his mathematical fame rests on his creation of the calculus.

Section 4.1 Limits of Functions

In this section we will introduce the important notion of the limit of a function. The intuitive
idea of the function f having a limit L at the point c is that the values f(x) are close to
L when x is close to (but different from) c. But it is necessary to have a technical way of
working with the idea of “close to” and this is accomplished in the ¢-§ definition given
below.

In order for the idea of the limit of a function f at a point ¢ to be meaningful, it is
necessary that f be defined at points near c. It need not be defined at the point c, but it
should be defined at enough points close to ¢ to make the study interesting. This is the
reason for the following definition.

G
4.1.1 Definition Let A C R. A point ¢ € R is a cluster point of A if for every § > 0
there exists at least one point x € A, x # c such that |x — ¢| < 4.

This definition is rephrased in the language of neighborhoods as follows: A point c is
a cluster point of the set A if every §-neighborhood V;(c) = (c — 8, ¢ + §) of ¢ contains at
least one point of A distinct from c.

Note The point ¢ may or may not be a member of A, but even if it is in A, it is ignored
when deciding whether it is a cluster point of A or not, since we explicitly require that there
be points in V;(c) N A distinct from c in order for ¢ to be a cluster point of A.

For example, if A := {1, 2}, then the point 1 is not a cluster point of A, since choosing
8= % gives a neighborhood of 1 that contains no points of A distinct from 1. The same is
true for the point 2, so we see that A has no cluster points.

4.1.2 Theorem A numberc € R is a cluster point of a subset A of R if and only if there
exists a sequence (a,) in A such that lim(a,) = c anda, # c foralln € N.
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Proof. If c is a cluster point of A, then for any n € N the (1/n)-neighborhood V, /n(€)
contains at least one point a, in A distinct fromc. Thena, € A, a, #c,andl|a, —c| < 1/n
implies lim(a,) = c.
Conversely, if there exists a sequence (a,) in A\{c} with lim(a,) = c, then for any
d > 0 there exists K such that if n > K, then a, € V,(c). Therefore the §-neighborhood
V;(c) of c contains the points a,, for n > K, which belong to A and are distinct from c.
QED.

The next examples emphasize that a cluster point of a set may or may not belong to
the set.

4.1.3 Examples (a) Fortheopeninterval A, := (0, 1), every point of the closed interval
[0,1] is a cluster point of A,. Note that the points 0,1 are cluster points of A,, but do not
belong to A,. All the points of A, are cluster points of A,.

(b) A finite set has no cluster points.
(c) The infinite set N has no cluster points.

(d) Theset A, := {1/n : n € N} has only the point 0 as a cluster point. None of the points
in A, is a cluster point of A,.

(e) If I:=[0,1], then the set A; := I NQ consists of all the rational numbers in /. It
follows from the Density Theorem 2.4.8 that every point in [ is a cluster point of A;. [

Having made this brief detour, we now return to the concept of the limit of a function
at a cluster point of its domain.

The Definition of the Limit

We now state the precise definition of the limit of a function f at a point c. It is important
to note that in this definition, it is immaterial whether f is defined at ¢ or not. In any case,
we exclude ¢ from consideration in the determination of the limit.

4.1.4 Definition Let A C R, and let ¢ be a cluster point of A. For a function f : A — R,
a real number L is said to be a limit of f at c if, given any ¢ > 0 there exists ad > 0 such
thatifx e AandO < |x —c| < §,then |f(x) — L| < &.

Remarks (a) Since the value of § usually depends on &, we will sometimes write 3(¢)
instead of § to emphasize this dependence.
(b) The inequality O < |x — c| is equivalent to saying x # c.

If L is a limit of f at ¢, then we also say that f converges to L at c. We often write
L=1lim f(x) or L=limf.
X—>C X=>C
We also say that “ f (x) approaches L as x approaches c¢”. (But it should be noted that the
points do not actually move anywhere.) The symbolism
f(x)—>L as x—c

is also used sometimes to express the fact that f has limit L at c.

If the limit of f at ¢ does not exist, we say that f diverges at c.

Our first result is that the value L of the limit is uniquely determined. This uniqueness
is not part of the definition of limit, but must be deduced.
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4.1.5 Theorem If f: A — R and if c is a cluster point of A, then f can have only one
limit at c.

Proof. Suppose that numbers L and L’ satisfy Definition4.1.4. For any ¢ > 0, there exists
8(¢/2) > Osuchthatifx € Aand0Q < |x — c| < 8(¢/2),then | f(x) — L| < £/2. Alsothere
exists 8'(¢/2) such thatif x € Aand 0 < |x — ¢| < 8'(¢/2), then | f(x) — L’| < ¢/2. Now
let 8 := inf{6(¢/2), 8'(¢/2)}. Then if x € A and 0 < |x — c| < &, the Triangle Inequality
implies that

IL-L'|<|L-fx)|+|f(x)—L'|<e/2+¢e/2=c¢.
Since £ > 0 is arbitrary, we conclude that L — L' = 0, sothat L = L'. QED.

The definition of limit can be very nicely described in terms of neighborhoods. (See
Figure 4.1.1.) We observe that because

Vi) =(—8,c+d8)=(x:|x—c| <é},

the inequality 0 < |x — c| < & is equivalent to saying that x # ¢ and x belongs to the §-
neighborhood V;(c) of c. Similarly, the inequality | f(x) — L| < ¢ is equivalent to saying
. that f(x) belongs to the e-neighborhood V, (L) of L. In this way, we obtain the following
result. The reader should write out a detailed argument to establish the theorem.

5 S
Given V(L)%

dabaded

Y SR

X
There exists V5(c)

Figure4.1.1 The limitof f atcis L.

4.1.6 Theorem Let f: A — R and let ¢ be a cluster point of A. Then the following
statements are equivalent.

) lim f(x)=L.

X=>C

(ii) Given any e-neighborhood V(L) of L, there exists a §-neighborhood V;(c) of ¢ such
that if x # c is any point in Vy(c) N A, then f (x) belongs V,(L).

We now give some examples that illustrate how the definition of limit is applied.

4.1.7 Examples (a) }1_13 b=b.
To be more explicit, let f(x) := b for all x € R. We want to show that lim f(x) = b.
X=>C

If ¢ > 0 is given, we let & := 1. (In fact, any strictly positive § will serve the purpose.)
Then if 0 < |x — c| < 1, we have | f(x) — b| = |b — b] = 0 < &. Since & > 0 is arbitrary,
we conclude from Definition 4.1.4 that hmc f(x)=b.
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(b) li_r’r‘ltx =c.

Letg(x) := xforallx € R.Ife > 0, wechoose §(¢) := £. Thenif0 < |[x — c| < 8(¢),
we have |g(x) — c| = |x — ¢| < ¢. Since € > 0 is arbitrary, we deduce that lim g = c.

X—>C

(© limx?=c2
X—>C

Let h(x) := x? for all x € R. We want to make the difference
|h(x) — 2| = |x? = |

less than a preassigned ¢ > O by taking x sufficiently close to c. To do so, we note that

x%2 = ¢* = (x + ¢)(x = ¢). Moreover, if lx —c| < 1, then

x| <|c|+1 so that Ix+c|l <lIx|+]lcl <2]c|+ 1.
Therefore, if [x — c| < 1, we have
0)) |X2—02|=|1+C||X—C|_<_(2|C|+1)|X—C|-

Moreover this last term will be less than ¢ provided we take [x — c| < £/(2|c| + 1). Con-
sequently, if we choose

. €
8(8) = lﬂf{],m},

then if 0 < |x — c| < 8(¢), it will follow first that |[x — c| < 1 so that (1) is valid, and
therefore, since [x — ¢| < €/(2|c| + 1) that

|x2=c* < Qlel+DIx—c| <e.

Since we have a way of choosing §(¢) > 0 for an arbitrary choice of £ > 0, we infer that
lim h(x) = lim x? = ¢%.
X—>C X—C
(d) liml =lifc>0.
x>cx €

Let ¢(x) := 1/x for x > 0 and let ¢ > 0. To show that lim ¢ = 1/c we wish to make
X—>C
the difference

less than a preassigned € > 0 by taking x sufficiently close to ¢ > 0. We first note that

1 1
x c

=—|x—c|
cX

for x > 0. It is useful to get an upper bound for the term 1/(cx) that holds in some
neighborhood of c. In particular, if |x — c| < %c, then %c <x< %c (why?), so that
1 2
0<—<— for |x—c|<%c.
cx ¢

Therefore, for these values of x we have

2

1 2
¢(x)—-’ Sskx—-cl<e€
c C

In order to make this last term less than it suffices to take |x — c| < 3c?¢. Consequently,
if we choose

8(¢) :=inf {1c, ic%},
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then if 0 < |x — ¢| < 8(¢), it will follow first that |x — ¢| < %c so that (2) is valid, and
therefore, since |x — ¢| < (1c?) ¢, that

1
¢(x)——| =
c

Since we have a way of choosing §(¢) > 0 for an arbitrary choice of ¢ > 0, we infer that
limgp =1/c.

X—=>C

P-4 4
lim = -.
(e) m s 1=5
Let ¥(x) := (x* — 4)/(x?> + 1) for x € R. Then a little algebraic manipulation gives
us

4| |5x —ax? 24
w(x)—_l 52+ 1)

|5x +6x+12|
5x2+1)

To get a bound on the coefficient of |x — 2|, we restrict x by the condition 1 < x < 3.
For x in this interval, we have 5x? + 6x + 12 <5-32+6-3+12=75and 5(x* + 1) >
5(1 +1) = 10, so that

- lx =2].

75 15
|'/’( )——l Sﬁlx—ZI —lx—2|.

Now for given ¢ > 0, we choose

3(e) := inf{l, 5€ }
Thenif 0 < |x — 2| < §(¢), we have | (x) — (4/5)] < (15/2)|]x —2| < ¢.Sincee > O is
arbitrary, the assertion is proved. a

Sequential Criterion for Limits

The following important formulation of limit of a function is in terms of limits of sequences.
This characterization permits the theory of Chapter 3 to be applied to the study of limits of
functions.

4.1.8 Theorem (Sequential Criterion) Let f: A > R and let ¢ be a cluster point of A.
Then the following are equivalent.
@ limf=L.

X=>C
(ii) For every sequence (x,) in A that converges to ¢ such that x, # c for alln € N, the
sequence ( f(x,)) converges to L.

Proof. (i) = (ii). Assume f has limit L at c, and suppose (x,) is a sequence in A with
lim(x,) = ¢ and x, # c for all n. We must prove that the sequence ( fx )) converges to
L. Let £ > 0 be given. Then by Definition 4.1.4, there exists § > 0 such that if x € A
satisfies 0 < |x — ¢| < §, then f(x) satisfies | f (x) — L| < &. We now apply the definition
of convergent sequence for the given é to obtain a natural number X (8) such thatifn > K(8)
then |x, — c| < . But for each such x, we have | f(x,) — L| < ¢. Thus if n > K (3), then
| f(x,) — L| < &. Therefore, the sequence (f(x,)) converges to L.
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(ii) = (i). [The proof is a contrapositive argument.] If (i) is not true, then there exists
an g,-neighborhood Veo(L) such that no matter what §-neighborhood of ¢ we pick, there
will be at least one number x; in A N V;(c) with x; # c such that f(x;) ¢ VSO(L). Hence
for every n € N, the (1/n)-neighborhood of ¢ contains a number x, such that

0<|x,—c|<1/n and x €A,
but such that
|fx) - L|>¢, forall ne N.

We conclude that the sequence (x,) in A\{c} converges to c, but the sequence (f(x,)) does
not converge to L. Therefore we have shown that if (i) is not true, then (ii) is not true. We
conclude that (ii) implies (i). QED.

We shall see in the next section that many of the basic limit properties of functions can
be established by using corresponding properties for convergent sequences. For example,
we know from our work with sequences that if (x,) is any sequence that converges to a
number c, then (xf) converges to c2. Therefore, by the sequential criterion, we can conclude
that the function A(x) := x? has limit lim h(x) = ¢?.

xX—>C

Divergence Criteria

It is often important to be able to show (i) that a certain number is not the limit of a function
at a point, or (ii) that the function does not have a limit at a point. The following result
is a consequence of (the proof of) Theorem 4.1.8. We leave the details of its proof as an
important exercise.

4.1.9 Divergence Criteria Let AC R, let f: A — R and let c € R be a cluster point
of A.

(@) IfL € R, then f does not have limit L at c if and only if there exists a sequence (x, )
in A with x, # c for alln € N such that the sequence (x,) converges to c but the sequence
(f(x,)) does not converge to L.

(b) The function f does not have a limit at c if and only if there exists a sequence (x,,)
in A with x_ # c for all n € N such that the sequence (x,) converges to ¢ but the sequence
(f(x,)) does not converge inR.

We now give some applications of this result to show how it can be used.
4.1.10 Example (a) lin(l) (1/x) does not exist in R.
x—

As in Example 4.1.7(d), let ¢(x) := 1/x for x > 0. However, here we consider ¢ = 0.
The argument given in Example 4.1.7(d) breaks down if ¢ = 0 since we cannot obtain a
bound such as that in (2) of that example. Indeed, if we take the sequence (x,) with x, :=
1/n for n € N, then lim(x,) = 0, but ¢(x,) = 1/(1/n) = n. As we know, the sequence
((p(x" )) = (n) is not convergent in R, since it is not bounded. Hence, by Theorem 4.1.9(b),
)lri_r’r(l) (1/x) does not exist in R.

(b) liﬂ(l) sgn(x) does not exist.
x—
Let the signum function sgn be defined by

+1 for x>0,
sgn(x) := 0 for x =0,
-1 for x <O.
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Note that sgn(x) = x/|x| for x # 0. (See Figure 4.1.2.) We shall show that sgn does not
have a limit at x = 0. We shall do this by showing that there is a sequence (x,) such that
lim(x,) = 0, but such that (sgn(x,)) does not converge.

1¢

@- >

) -1

Figure 4.1.2 The signum function.

Indeed, let x, := (—1)"/n forn € N so that lim(x,) = 0. However, since
sgn(x,) =(-1)" for neN,

it follows from Example 3.4.6(a) that (sgn(x,)) does not converge. Therefore lin(n)sgn(x)
x—

does not exist.

©! lirr(x) sin(1/x) does not exist in R.

Let g(x) :=sin(1/x) for x # 0. (See Figure 4.1.3.) We shall show that g does not
have a limit at ¢ = 0, by exhibiting two sequences (x,) and (y,) with x, # 0Oand y, # 0
for alln € N and such that lim(x,) =0 and lim(y,) = 0, but such that lim (g(x,)) #
lim (g(y,))- In view of Theorem 4.1.9 this implies that P_rf(l) g cannot exist. (Explain why.)

Figure 4.1.3 The function g(x) = sin(1/x) (x # 0).

Indeed, we recall from calculus that sint = 0 if ¢t = nw for n € Z, and that sint =
+1if t = im + 27n for n € Z. Now let x, := 1/nx for n € N; then lim(x,) = 0 and
g(x,) =sinnw =0 for all n € N, so that lim (g(x,)) = 0. On the other hand, let y, :=

(47 +27n) " forn € N;thenlim(y,) = Oand g(y,) = sin (17 + 27n) = 1foralln € N,
so that lim (g(y,)) = 1. We conclude that lin(l) sin(1/x) does not exist. 0O
x—

In order to have some interesting applications in this and later examples, we shall make use of well-known
properties of trigonometric and exponential functions that will be established in Chapter 8.
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Exercises for Section 4.1

1. Determine a condition on |x — 1| that will assure that;
(@ Ix*-1<3, ®) Ix2-1] <1/1073,
() Ix*=1l<1/n foragivenn €N, (d) |x*—1]<1/n foragivenn € N.

2. Determine a condition on |x — 4| that will assure that:

(@ IVx-2l<3, ®) |/x—2] <1072

3. Let c be a cluster point of A C R and let f: A — R. Prove that lim f(x) = L if and only if
X—C
lim|f(x) — L| =0.
X—C

4, Let f:R— Randletc € R. Showthat}imf(x): Lifandonlyiflin})f(x +c)=L.
—c X —>

5. Let I := (0, a) where a > 0, and let g(x) := x2forx e I. For any points x, ¢ € I, show that
|g(x) — c?| < 2a|x — c]. Use this inequality to prove that lim x> = ¢? forany c € 1.

X=>C

6. LetIbeanintervalinR,let f : I — R, and let ¢ € 1. Suppose there exist constants K and L
such that | f(x) — L] < K|x — c| for x € I. Show that lim f(x) = L.
X=>C

7. Show that lim x> = ¢? for any ¢ € R.
X—=C

8. Show that lim \/x = ,/c forany ¢ > 0.
X—=C

9. Use either the ¢-8 definition of limit or the Sequential Criterion for limits, to establish the
following limits.

. 1 ) x 1
® Jim— ==t ® s =3
2 2
- 1 1 FUNR
xX—> x— g .
= L, <
10. Use the definition of limit to show that +s
. 2 _ . X _
(a) }l_lpz(x +4x) =12, (b) xlin}l 13 =4,
11. Show that the following limits do not exist.
o1 .1
(a) P-%x_z x> 0), (b) Pﬂ)ﬁ (x> 0),
(c) lin'(n)(x+ sgn(x)), @ lim sin(1/x2).
Xx—> x—

12. Suppose the function f : R — R has limit L at 0, and let @ > 0. If g : R — R is defined by
g(x) := f(ax) for x € R, show that lin(1)g(x) =1L.

2
13. Letc € Randlet f : R — R be such that linl(f(x)) =L
(a) Show thatif L =0, then lim f(x) = 0.
(b) Show by example that if L # 0, then f may not have a limit at c.
14. Let f : R — R be defined by setting f(x) := x if x is rational, and f(x) = O if x is irrational.

(a) Show that f has a limit at x = 0.
(b) Use a sequential argument to show that if ¢ # 0, then f does not have a limit at c.

15. Let f : R — R, let I be an open interval in R, and let ¢ € I. If f, is the restriction of f to /,
show that f, has a limit at c if and only if f has a limit at c, and that the limits are equal.

16. Let f : R — R, let J be a closed interval in R, and let ¢ € J. If f, is the restriction of f to J,
show that if f has a limit at ¢ then f, has a limit at c. Show by example that it does not follow
that if £, has a limit at c, then f has a limit at c.
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Section 4.2 Limit Theorems

We shall now obtain results that are useful in calculating limits of functions. These results
are parallel to the limit theorems established in Section 3.2 for sequences. In fact, in most
cases these results can be proved by using Theorem 4.1.8 and results from Section 3.2.
Alternatively, the results in this section can be proved by using -8 arguments that are very
similar to the ones employed in Section 3.2.

4.2.1 Definition Let A C R,let f: A — R, and let ¢ € R be a cluster point of A. We say
that f is bounded on a neighborhood of c if there exists a §-neighborhood V;(c) of ¢ and
a constant M > 0 such that we have | f(x)| < M forall x € AN V,(c).

4.2.2 Theorem IfACRandf:A — Rhasalimitatc € R, then f is bounded on some
neighborhood of c.

Proof. IfL := lim f, then fore = 1, there exists § > O such thatif 0 < |[x — c| < §, then
X—>C
| f(x) — L| < 1; hence (by Corollary 2.2.4(a)),
If —ILI < |f(x) - L] < 1.

Therefore, if x € AN V,(c),x #c,then|f(x)| < |L|+ 1.lfc ¢ A,wetake M = |L| + 1,
while if c € A we take M :=sup {| f(c)|, |L| + 1}}. It follows that if x € A N V,(c), then
| f(x)| < M. This shows that f is bounded on the neighborhood V; (c) of c. Q.E.D.

The next definition is similar to the definition for sums, differences, products, and
quotients of sequences given in Section 3.2.

4.2.3 Definition Let A C R and let f and g be functions defined on A to R. We define
the sum f + g, the difference f — g, and the product fg on A to R to be the functions
given by

(f +8)(x) = f(x) + g(x), (f —8)Xx) = f(x) — g(x),
(fg)(x) := f(x)g(x) ,

for all x € A. Further, if b € R, we define the multiple bf to be the function given by
bf)(x) :=bf (x) forall x € A.
Finally, if h(x) # 0 for x € A, we define the quotient f/h to be the function given by

A PR C))
(h)(x)._—h(x) forall x € A.

4.2.4 Theorem LetA C R, let f and g be functionson A toR, and letc € R be a cluster
point of A. Further, letb € R.

(@) Iflim f =L and lim g = M, then:
x—=c x—c

lm(f9)=LM,  lim () =bL.
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() Ifh: A — R,ifh(x) #0forallx € A, and iflimh = H # O, then

X—>C

) f L
lim (;) =4

Proof. One proof of this theorem is exactly similar to that of Theorem 3.2.3. Alternatively,
it can be proved by making use of Theorems 3.2.3 and 4.1.8. For example, let (x,) be any
sequence in A such that x, # c forn € N, and ¢ = lim(x,,). It follows from Theorem 4.1.8
that

lim(f(x,)) =L, lim(gx,)) =M.
On the other hand, Definition 4.2.3 implies that
(fe)x,) = f(x,)gx,) for ne N.

Therefore an application of Theorem 3.2.3 yields
lim ((fg)(x,)) = lim (f(x,)g(x,))
= [hm (f(xn))] [hm (g(xn))] =LM.
Consequently, it follows from Theorem 4.1.8 that

lim(fg) = lim ((fg)(x,)) = LM.

The other parts of this theorem are proved in a similar manner. We leave the details to
the reader. QED.

Remarks (1) We note that, in part (b), the additional assumption that H = Ergh #0is
made. If this assumption is not satisfied, then the limit
. f(x)
lim —=2
xe h(x)

may or may not exist. But even if this limit does exist, we cannot use Theorem 4.2.4(b) to
evaluate it.

(2)Let A C R,andlet f,, f,,---, f, be functions on A to R, and let ¢ be a cluster point of
A If

L, :=lim f, for k=1,---,n,

X—>C

then it follows from Theorem 4.2.4 by an Induction argument that
Li+L+--+L,=lm(fi+ f,+---+ 1),
and
L,-L,---L,=1lim(f,- f,--- f,).

In particular, we deduce that if L = lim f and n € N, then

X=>C

L" = lim (f(x))".

X=>C
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4.2.5 Examples (a) Some of the limits that were established in Section 4.1 can be
proved by using Theorem 4.2.4. For example, it follows from this result that since lim x = c,

X—>C
then lim x2 = cz, and that if ¢ > 0, then
X=—>C

1 1

lim —

x—c X llm x
X—>C

1
e

®) lin;(x2 + 1)(x*—4)=20
x—>
It follows from Theorem 4.2.4 that

1irr5(x2+1)(x3—4)=(lun(x +1))( lim (x° —4))

=5-4=20.
3
x’ -4 4
li - =-.
(© x_rg(xz_*_l) 5

If we apply Theorem 4.2.4(b), we have

x3_4 P_Ig(x "‘4)

Li
Jt—lgxz+l lim (x +l)
x—2

4
=3

Note that since the limit in the denominator [i.e., lin} (x2 + 1) = 5] is not equal to 0, then
x—>
Theorem 4.2.4(b) is applicable.
x2-4 4

@ lm=3"%"3

Ifwelet f(x):= x% — 4and h(x) := 3x — 6 for x € R, then we cannot use Theorem
4.2.4(b) to evaluate lirr; (f(x)/ h(x)) because
x—>
H = lim h(x) = lim(3x — 6)
x—2 x—2
=3limx-6=3-2—-6=0.
x—2

However, if x # 2, then it follows that

2-4 (x+2)x-2) 1
3x—6 3(x—-2) - §(x+2).

Therefore we have

x2—4 1 4
}1_133)‘_6 hm (x+2) (hmx+2)_§.
Note that the function g(x) = 2 - 4)/(3x — 6) has a limit at x = 2 even though it is not
defined there.

(e) hm 1 does not exist in R.

x—0 X
Of course hm l1=1and H := hmx = (. However, since H = 0, we cannot use

Theorem 4.2. 4(b) to evaluate hm(l /x) In fact, as was seen in Example 4.1.10(a), the

function ¢(x) = 1/x does not have a limit at x = 0. This conclusion also follows from
Theorem 4.2.2 since the function ¢(x) = 1/x is not bounded on a neighborhood of x = 0.

(Why?)
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(f) If p is a polynomial function, then }im p(x) = p(c).

Let p be a polynomial function on R so that p(x) = a,x" + an_lx”‘l +---+ax+
a, for all x € R. It follows from Theorem 4.2.4 and the fact that lim x* = c*, that

x—c
lim p(x) = lim [a,x" +a,_x"'+..-+a,x +a,)
= lim (a,x") + lim (a,_,x""") +--- + lim (a,x) + lim a,
=a,"+a, "' +---+ac+a,
=p(o).
Hence P-»’I} p(x) = p(c) for any polynomial function p.

(@ If p and q are polynomial functions on R and if g(c) # O, then

lim G p(C).
x=>cq(x) q(c)
Since g(x) is a polynomial function, it follows from a theorem in algebra that there are
.at most a finite number of real numbers «, - - -, «,, [the real zeroes of g(x)] such that
q(aj) = 0 and such that if x ¢ {a,, -, @,}, then g(x) # 0. Hence, if x ¢ {a;,---,,},
we can define

p(x)
r(x) == —.
( q(x)
If ¢ is not a zero of q(x), then g(c) # 0, and it follows from part (f) that lim g(x) =
X=>C

q(c) # 0. Therefore we can apply Theorem 4.2.4(b) to conclude that

px)  HmPX) 5 a

x>cq(x)  limg(x)  g(c)’

The next result is a direct analogue of Theorem 3.2.6.

4.2.6 Theorem LetA CR,let f: A — R andletc € R be a cluster point of A. If
a<f(x)<b forall xe€ A, x #c,

and if lim f exists, thena < lim f < b.
X=>C X=C

Proof. Indeed, if L = lim f, then it follows from Theorem 4.1.8 that if (x,) is any

X=>C

sequence of real numbers such that ¢ # x, € A for all n € N and if the sequence (x,)
converges to ¢, then the sequence ( f (xn)) converges to L. Since a < f(x,) < b for all
n € N, it follows from Theorem 3.2.6 thata < L < b. QED.

We now state an analogue of the Squeeze Theorem 3.2.7. We leave its proof to the
reader.
4.2.7 Squeeze Theorem LetA C R, let f,g,h: A — R, and letc € R be a cluster point
of A. If
f(x)<gx)<h(x) forall xe€ A,x#c,
andiflim f =L = limh, thenlimg = L.

X—=>C X—=C X—=>C
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4.2.8 Examples (a) lim x¥? =0 (x > 0).

Let f(x) := x2 for x > 0. Since the inequality x < x'/2 <1 holds for 0 < x < 1
(why?), it follows that x2 < f(x) = x*? < x for0 < x < 1. Since

limx2=0 and lim x = 0,
x>0 x—0

it follows from the Squeeze Theorem 4.2.7 that }i_%x” 2=0.
) P_{l‘l) sinx = 0.

It will be proved later (see Theorem 8.4.8), that

—x <sinx <x forall x >0.

Since }i_r’x(l)(:!:x) = 0, it follows from the Squeeze Theorem that P_r)% sinx = 0.
(© JEi_t’l})cosx =1.

It will be proved later (see Theorem 8.4.8) that
¢)) 1—%x25cosx51 forall x € R.
Since }1_15 ( 1- %xz) = 1, it follows from the Squeeze Theorem that P_I;[(l) cosx = 1.

@ lim (M) —o.

x—0 X
We cannot use Theorem 4.2.4(b) to evaluate this limit. (Why not?) However, it follows

from the inequality (1) in part (c) that
—%xs(cosx—l)/xso for x>0

and that

0 < (cosx —1)/x < —ix for x <O.

Now let f(x) := —x/2 for x > 0 and f(x) := 0 for x <0, and let h(x) :=0 for x >0
and h(x) := —x/2 for x < 0. Then we have

f(x) < (cosx —1)/x < h(x) for x #0.
Since it is readily seen that P_r)r()) f=0= P_I’I(l)h, it follows from the Squeeze Theorem that
P;%(cosx -1)/x=0.

(&) lim (ﬂ‘i) =1.
x=>0 X

Again we cannot use Theorem 4.2.4(b) to evaluate this limit. However, it will be
proved later (see Theorem 8.4.8) that

x—ix*<sinx<x for x>0
and that
x<sinx<x-3x* for x<O.
Therefore it follows (why?) that
1-ix? <(sinx)/x <1 forall x3#0.

But since lim(1 — xH=1-1. liu(x)x2 = 1, we infer from the Squeeze Theorem that
x— x=>

lin(l,(sinx)/x =1

x—>
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@ lin}) (xsin(1/x)) =0.
X—>
Let f(x) = xsin(1/x) for x # 0. Since —1 <sinz < 1 for all z € R, we have the
inequality
= x| = f(x) = xsin(1/x) < Ix|
for all x € R, x # 0. Since hm |x] =0, it follows from the Squeeze Theorem that
hm f = 0. For a graph, see Flgure 5.1.3 or the cover of this book. a

There are results that are parallel to Theorems 3.2.9 and 3.2.10; however, we will leave
them as exercises. We conclude this section with a result that is, in some sense, a partial
converse to Theorem 4.2.6.

4.2.9 Theorem LetA CR,let f: A — R and letc € R be a cluster point of A. If
lim f >0 [respectively, lim f < o] ,

X=>C

then there exists a neighborhood V;(c) of ¢ such that f(x) > O [respectively, f(x) < 0]
forallx € ANV(c), x #c.

Proof. LetL := lim f and suppose that L > 0. We take ¢ = 3L > 0in Definition 4.1.4,
X—>

and obtain a number§ > Osuchthatif0 < |[x —¢c|] <dandx € A,then|f (x) - L| < %L.
Therefore (why?) it follows that if x € A N V;(c), x # c, then f(x) > -;-L > 0.
If L < 0, a similar argument applies. QED.

Exercises for Section 4.2

1. Apply Theorem 4.2.4 to determine the following limits:

2
@ lmGE+D@r+3 ek, ® 52 G>o0,
. 1 1 x+1
() P—Ig(x+l__2;) (x > 0), (d) }l_l}}) 212 (x € R).

2. Determine the following limits and state which theorems are used in each case. (You may wish
to use Exercise 14 below.)

2x +1 e

(€] ~ 13 (x > 0), (b) P_ng_z (x> 0),
2 _ -

(©) hm-(xilu (x> 0), (d) hm‘/; (x > 0).
x—0 x =1 x-1

3. Find lim s/l+2x—\/zl+3x
x—0 x+2x
4. Prove that l'u%cos(l/x) does not exist but that lin})x cos(1/x) =0.
x—> x—>

where x > 0.

5. Let f, g be defined on A C R to R, and let ¢ be a cluster point of A. Suppose that f is bounded
on a neighborhood of ¢ and that hm g = 0. Prove that lim fg = 0.

X=>C

6. Use the definition of the limit to prove the first assertion in Theorem 4.2.4(a).
7. Use the sequential formulation of the limit to prove Theorem 4.2.4(b).
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8. Letn € N be such that n > 3. Derive the inequality —x? < x" < x?for —1 < x < 1. Then use
the fact that lin})x2 = 0 to show that lin‘l)x" =0.
X—> X—

9. Let f, g be defined on A to R and let ¢ be a cluster point of A.
(a) Show that if both lim f and lim ( f + g) exist, then lim g exists.

®) If hm f and hm fg exist, does it follow that lim g exists?

X—C

10. Give examples of functions f and g such that f and g do not have limits at a point ¢, but such
that both f + g and fg have limits at c.

11. Determine whether the following limits exist in R.

@ limsin(1/x%) (x #0), (®) limxsin(1/x%) (x #0),
(© lim sgnsin(1/x) (x #0), @) lim ﬁsin(l /x%) (x> 0).

12. Let f:R — Rbesuchthat f(x +y) = f(x) + f(y) forall x, y in R. Assume that hmf L
exists. Prove that L = 0, and then prove that f has a limit at every point ¢ € R. [Hmt Fu'st note
that f(2x) = f(x) + f(x) = 2 f(x) for x € R. Also note that f(x) = f(x — c) + f(c) forx,
cinR.]

13. Let ACR,let f: A— R and let c € R be a cluster point of A. Ifhmf exists, and if | f|
denotes the function defined for x € A by | f| (x) := | f(x)], prove that hm 1fl= hm fl

14. Let ACR,let f: A— R, and let c € R be a cluster point of A. In addition, suppose that
f(x) 20 for all x € A, and let /f be the function defined for x € A by (\/ 7 )(x) =

VIfx). If}x_ng exists, prove that }1_!2 Vf = /}1_12 f.

Section 4.3 Some Extensions of the Limit Concept'

In this section, we shall present three types of extensions of the notion of a limit of a
function that often occur. Since all the ideas here are closely parallel to ones we have
already encountered, this section can be read easily.

One-sided Limits

There are times when a function f may not possess a limit at a point ¢, yet a limit does
exist when the function is restricted to an interval on one side of the cluster point c.

For example, the signum function considered in Example 4.1.10(b), and illustrated
in Figure 4.1.2, has no limit at ¢ = 0. However, if we restrict the signum function to the
interval (0, 0o), the resulting function has a limit of 1 at ¢ = 0. Similarly, if we restrict the
signum function to the interval (—o0, 0), the resulting function has a limit of —1 atc = 0.
These are elementary examples of right-hand and left-hand limits at ¢ = 0.

4.3.1 Definition Let A€ Randlet f: A — R.
(i) If c € R is a cluster point of the set A N (¢, 00) = {x € A: x > c}, then we say that

L € R is a right-hand limit of f at ¢ and we write 4
Jmf=L o lm 0=

"This section can be largely omitted on a first reading of this éhapter.
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if given any & > O there exists a § = § (¢) > 0 such that for all x € A with 0 <
x—c<d,then|f(x)—L| <e.
@ii) If c € Ris acluster point of the set A N (—00, ¢) = {x € A: x < c}, then we say that
L € R is a left-hand limit of f at c and we write
lir? f=L or lim f(x)=L
X=>c— X=>Cc—

if given any € > O there exists a § > 0 such that for all x € A with0 < ¢ — x < 4,
then |f(x) — L| < &.

Notes (1) The limits hm f and lim f are called one-sided limits of f at c. It is

X=>C—

possible that neither one-s1ded limit may exist. Also, one of them may exist without the
other existing. Similarly, as is the case for f(x) := sgn(x) at ¢ = 0, they may both exist
and be different.

(2) If A is an interval with left endpoint c, then it is readily seen that f: A — R has a
limit at c if and only if it has a right-hand limit at c. Moreover, in this case the limit lim f

X—>C

and the right-hand limit lim+ f are equal. (A similar situation occurs for the left-hand limit
X=>C
when A is an interval with right endpoint c.)

The reader can show that f can have only one right-hand (respectively, left-hand)
limit at a point. There are results analogous to those established in Sections 4.1 and 4.2 for
two-sided limits. In particular, the existence of one-sided limits can be reduced to sequential
considerations.

4.3.2 Theorem Let ACR, let f: A — R, and let c € R be a cluster point of AN
(c, 00). Then the following statements are equivalent:

() lim f=L.

x—c+
(ii) Forevery sequence (x,) that converges toc such thatx, € A andx, > c foralln € N,
the sequence ( f (x,)) converges to L.

We leave the proof of this result (and the formulation and proof of the analogous result
for left-hand limits) to the reader. We will not take the space to write out the formulations
of the one-sided version of the other results in Sections 4.1 and 4.2.

The following result relates the notion of the limit of a function to one-sided limits.
We leave its proof as an exercise.

4.3.3 Theorem LetA CR,let f: A — R, andletc € R be a cluster point of both of the
sets AN (c,00) and AN (—o0,c). Thenlim f = Llfandonlyxfhm f=L= lim f.

X=>C x=>Cc+ X—=>C—

4.3.4 Examples (a) Let f(x) := sgn(x).
We have seen in Example 4.1.10(b) that sgn does not have a limit at 0. It is clear that
hr(r)t+ sgn(x) = +1 and that hm sgn(x) = —1. Since these one-sided limits are different,

it also follows from Thcorem 4. 3 3 that sgn(x) does not have a limit at 0.
(b) Let g(x) := e"/* for x # 0. (See Figure 4.3.1.)
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A

Figure 4.3.1 Graph of g(x) = e'/”* (x # 0).

We first show that g does not have a finite right-hand limit at ¢ = O since it is not
bounded on any right-hand neighborhood (0, &) of 0. We shall make use of the inequality

(1) O<t<e | for t>0,

which will be proved later (see Corollary 8.3.3). It follows from (1) that if x > 0, then
0 < 1/x < e'/*. Hence, if we take x, = 1/n, then g(x,) > n for all n € N. Therefore

lim e!/* does not exist in R.
x—0+

However, lim e'/* = 0. Indeed, if x < 0 and we take t = —1/x in (1) we obtain

x=0-

0 < —1/x < e~"/*. Since x < 0, this implies that 0 < e'/* < —x for all x < 0. It follows
from this inequality that lim e/ =0.

() Leth(x):=1/("* + 1) for x # 0. (See Figure 4.3.2.)
We have seen in part (b) that 0 < 1/x < e'/* for x > 0, whence

1 1

0< Vx4 1 < S/

<X,

which implies that lim 4 = 0.
x—0+

Figure 4.3.2 Graph of h(x) = 1/(e'* + 1) (x # 0).
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Since we have seen in part (b) that lim e!/* =0, it follows from the analogue of
x—0—
Theorem 4.2.4(b) for left-hand limits that

1 1 1
lim _) = = =1.
x—0- (e'/" + l) lim e/*+1 O0+1

x—0-—
Note that for this function, both one-sided limits exist in R, but they are unequal. a
Infinite Limits

The function f(x) :=1 /x2 forx # 0(see Figure 4.3.3) is not bounded on a neighborhood of
0, so it cannot have a limit in the sense of Definition 4.1.4. While the symbols 0o (= +00)
and —oo do not represent real numbers, it is sometimes useful to be able to say that
“f(x) = 1/x? tends to 0o as x — 0. This use of +oo will not cause any difficulties,
provided we exercise caution and never interpret oo or —oo as being real numbers.

Figure 4.3.3 Graph of Figure 4.3.4 Graph of
fx)=1/x* (x #0) g(x) = 1/x (x #0)

4.3.5 Definition Let A CR,let f: A — R, and let ¢ € R be a cluster point of A.

(i) We say that f tends to 0o as x — ¢, and write

lim f = oo,

X—>C

if for every a € R there exists § = §(a) > O such that forall x € A with0 < |x — ¢|
< §, then f(x) > a.

(ii) We say that f tends to —oo as x — c, and write

lim f = —o0,

X—>C

if forevery 8 € Rthereexistsé = §(8) > Osuchthatforallx € AwithO < |x —¢| <
é, then f(x) < 8.

4.3.6 Examples (a) lim (1/x%) = oo.
x—
For, if @ > 0 is given, let 8 := 1/./a. It follows that if 0 < |x| < §, then x2 < 1/a so
that 1/x2 > a.
(b) Let g(x) := 1/x for x # 0. (See Figure 4.3.4.)
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The function g does not tend to either oo or —oo asx — 0.For, ifa > Othen gx) <«
forall x < 0, so that g does not tend to 0o as x — 0. Similarly, if 8 < 0 then g(x) > B for
dlx > 0, so that g does not tend to —oo as x — 0. O

While many of the results in Sections 4.1 and 4.2 have extensions to this limiting
notion, not all of them do since +00 are not real numbers. The following result is an
analogue of the Squeeze Theorem 4.2.7. (See also Theorem 3.6.4.)

43.7 Theorem Let A CR, Jet f,8: A— R, and let c € R be a cluster point of A.
Suppose that f(x) < g(x) forallx € A, x #c.
@ Iflim f = oo, then lim g = oo.

X—>C

X—>C

(b) Iflim g = —o0, then lim f=—0c0.
X—>C X—>C

Proof. (a) If lim f =o00 and @ € R is given, then there exists § (@) > 0 such that if

I<|x —¢| < 8x(a) andx € A,then f(x) > a.Butsince f(x) <g(x)forallx € A, x #c,
itfollows that if 0 < |x — ¢l <d(a)and x € A, then g(x) > «. Therefore lim g = oo.

X—=>C

The proof of (b) is similar. QED.

The function g(x) = 1/x considered in Example 4.3.6(b) suggests that it might be
useful to consider one-sided infinite limits. We will define only right-hand infinite limits.

43.8 Definition Let A € R and let f:A—> R If c e Ris a cluster point of the set
AN(c,00) ={x € A: x > c}, then we say that f tends to oo [respectively, —oo] as
= ¢+, and we write

X—>Cc+

lim f =00 [resPectively, lim+ f= —oo],
X—>C

E iffor every o € R there is § = 8(a) > 0 such that for all x € A with 0 < x — ¢ < 8, then
fo) >« [respectively, f(x) < «].

‘439 Examples (a) Let g(x) := 1/x for x # 0. We have noted in Example 4.3.6(b)
that lin(1) g does not exist. However, it is an easy exercise to show that
x—

lix(1)1+(l/x) =00 and liI(I)l (1/x)y= —o0.

| () Itwasseenin Example 4.3.4(b) that the function g(x) := e'* forx # 0 1is not bounded
‘Onany interval (0, ), & > 0. Hence the right-hand limit of e!/* as x — 0+ does not exist
in the sense of Definition 4.3. 1(i). However, since

1/x

1/x <e for x>0,

itis readily seen that lilgl+ e'* = 0o in the sense of Definition 4.3.8. O
x—

Limits at Infinity

Itis also desirable to define the notion of the limit of a function as x — o0. The definition
Bx —> —00 is similar.
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4.3.10 Definition Let A C R and let f: A — R. Suppose that (a, o0) € A for some
a € R. We say that L € R is a limit of f as x — 00, and write

lim f=L or linggf(x):L,

X=>00

if given any & > 0 there exists K = K(¢) > a such that for any x > K, then
|f(x)—-L| <e.

The reader should note the close resemblance between 4.3.10 and the definition of a
limit of a sequence.

We leave it to the reader to show that the limits of f as x — +00 are unique whenever
they exist. We also have sequential criteria for these limits; we shall only state the criterion
as x — 00. This uses the notion of the limit of a properly divergent sequence (see Definition
3.6.1).

4.3.11 Theorem Let ACR, let f: A — R, and suppose that (a,00) € A for some
a € R. Then the following statements are equivalent:

@ L= lim f.

X=>00
(ii) For every sequence (x,) in A N (a, 0o) such thatlim(x,) = oo, the sequence ( fx, ))
converges to L.

We leave it to the reader to prove this theorem and to formulate and prove the companion
result concerning the limit as x — —o0.

4.3.12 Examples (a) Letg(x):=1/xforx #0.

It is an elementary exercise to show that xl_l’nclo (1/x)=0= xgr_noo(l /x). (See Figure
4.34)
(b) Let f(x):=1/x*forx #0.

The reader may show that xlil?o (1 /xz) =0= i LiIPoo( 1 /xz). (See Figure 4.3.3.) One
way to do this is to show thatif x > 1then0 < 1 /x2 < 1/x. In view of part (a), this implies
that lim (1/x%) =0. m)

Just as it is convenient to be able to say that f(x) > oo asx — c forc € R, it is
convenient to have the corresponding notion as x — +00. We will treat the case where
X — 00.

4.3.13 Definition Let A C R and let f: A — R. Suppose that (a, 00) € A for some
a € A. We say that f tends to oo [respectively, —oc] as x — 00, and write

lim f =00 [respcctively, xl_i{g) f= —oo]

X—>00

if given any o € R there exists K = K(a) > a such that for any x > K, then f(x) > «
[respectively, f(x) < a].

As before there is a sequential criterion for this limit.

4.3.14 Theorem Let A€ R, let f: A— R, and suppose that (a, c0) C A for some
a € R. Then the following statements are equivalent:
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(@) xl_lglo f = oo [respectively, ,l_if& f = —oo].
(i) For every sequence (x,) in (a, 00) such that lim(x,) = oo, then lim (f(x,)) = o0
[respectively, lim( f (x,)) = —o0].

The next result is an analogue of Theorem 3.6.5.

4.3.15 Theorem Let A CR,let f, g: A — R, and suppose that (a, 00) C A for some
a € R. Suppose further that g(x) > 0 for all x > a and that for some L € R, L # 0, we
have

f®_,
x—00 g (x)
(i) IfL > 0, then lixgof:ooifandonlyif lin°1°g=oo.
x= x—
(i) IfL <O, then lirgof = —oo if and only if lir&g:oo.
X X=>

Proof. (i) Since L > 0, the hypothesis implies that there exists @, > a such that

1< 1O

0<]
g(x)

IL  for x>a,.
Therefore we have (3L) g(x) < f(x) < ( %L) g(x) for all x > a,, from which the conclu-
sion follows readily.

The proof of (ii) is similar. Q.ED.

We leave it to the reader to formulate the analogous result as x — —o0.

4.3.16 Examples (a) xlirgo x" =ooforn € N.

Let g(x) := x" for x € (0, 00). Givena € R, let K := sup{l, a}. Then forallx > X,

we have g(x) = x" > x > a. Since o € R is arbitrary, it follows that lim g = oo.
X=» 00

(b) lim x"=ocoforn e N,neven,and lim x" = —ooforn € N, n odd.
X——=00 X—>—00

We will treat the case n odd, say n =2k +1 withk =0, 1, ---. Given o € R, let
K :=inf{a, —1}. For any x < K, then since (x2)* > 1, we have x" = (x¥)*x <x < a.
Since o € R is arbitrary, it follows that lim x" = —o0.

X=»—00

() Let p: R — R be the polynomial function
p(x):=ax" + an_lx"'l +---+a,x +a,.

Then lim p =o0ifa, > 0,and lim p = —c0ifa, < 0.
X=>00 X=>00

Indeed, let g(x) := x" and apply Theorem 4.3.15. Since

p(x) 1 1 1
t =t (3) o ra(om) e (7).

it follows that hngo( p(x)/g(x)) = a,. Since xl_i{go g = 00, the assertion follows from The-
orem 4.3.15.
(d) Let p be the polynomial function in part (c). Then xElPoo P = oo [respectively, —o0]

if n is even [respectively, odd] and a, > 0.
We leave the details to the reader. O
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Exercises for Section 4.3

> v -

10.
11.

12.

13.

Prove Theorem 4.3.2.
Give an example of a function that has a right-hand limit but not a left-hand limit at a point.
Let f (x) := |x|~!/2 for x # 0. Show that lim f(x)= lim f (x) = +oo.

x— x—0-

Let ¢ € R and let f be defined for x € (¢, 00) and f(x) > O for all x € (c, 00). Show that
lim f = ooxfandonlyxfhml/f 0.

X—=C

Evaluate the following limits, or show that they do not exist.

@ lLm —— #1), ®) lim-— (x#]1),

() x%(x+2)/~/f (x > 0), @ lim(x+2)/J/x (x>0),

(e) Jh_%(\/x+l)/x x> -1, ® lim (Vx+1)/x (x>0),
. Jx—5 . Jx—x

® xli."f,‘o\/;+3 (x> 0), (h) x'i‘i‘o¢;+x (x> 0).

Prove Theorem 4.3.11.

Suppose that f and g have limits in R as x — oo and that f(x) < g(x) for all x € (a, 00).
Prove that lim f < lim g.

X —>00 X =00

Let f be defined on (0, 0o) to R. Prove that xlh?o f(x) = L if and only if lh&f(l/x) =L
n d X—>
Show that if f: (a, 00) — R is such that limoxf(x) = L where L € R, then lm.lof(x) =0.

Prove Theorem 4.3.14.

Suppose that Jh_rg f(x) = L where L > 0, and that Jl‘i_r’xlg(x) = 00. Show that P_ng(x)g(x) =
oo. If L = 0, show by example that this conclusion may fail.

Find functions f and g defined on (0, o0o) such that hm f =ocand hm g = 0o, and hm ( f -
g) = 0. Can you find such functions, with g(x) > Oforallx € (0, oo) such that hm f/g 0?

Let f and g be defined on (a, 00) and suppose xlff?o f=L and xlf.%g = 00. Prove that
lim fog=1L

X —>00
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CHAPTER 5

S ——

CONTINUOUS FUNCTIONS

We now begin the study of the most important class of functions that arises in real analysis:
the class of continuous functions. The term “continuous” has been used since the time of
Newton to refer to the motion of bodies or to describe an unbroken curve, but it was not
made precise until the nineteenth century. Work of Bernhard Bolzano in 1817 and Augustin-
Louis Cauchy in 1821 identified continuity as a very significant property of functions and
proposed definitions, but since the concept is tied to that of limit, it was the careful work of
Karl Weierstrass in the 1870s that brought proper understanding to the idea of continuity.

We will first define the notions of continuity at a point and continuity on a set, and then
show that various combinations of continuous functions give rise to continuous functions.
Then in Section 5.3 we establish the fundamental properties that make continuous functions
so important. For instance, we will prove that a continuous function on a closed bounded
interval must attain a maximum and a minimum value. We also prove that a continuous
function must take on every value intermediate to any two values it attains. These properties
and others are not possessed by general functions, as various examples illustrate, and thus
they distinguish continuous functions as a very special class of functions.

In Section 5.4 we introduce the very important notion of uniform continuity. The
distinction between continuity and uniform continuity is somewhat subtle and was not fully
appreciated until the work of Weierstrass and the mathematicians of his era, but it proved to

Karl Weierstrass

Karl Weierstrass (=WeierstraB) (1815-1897) was born in Westphalia, Ger-
many. His father, a customs officer in a salt works, insisted that he study
law and public finance at the University of Bonn, but he had more interest
in drinking and fencing, and left Bonn without receiving a diploma. He then
enrolled in the Academy of Miinster where he studied mathematics with
Christoph Gudermann. From 1841-1854 he taught at various gymnasia in
Prussia. Despite the fact that he had no contact with the mathematical world
during this time, he worked hard on mathematical research and was able
to publish a few papers, one of which attracted considerable attention. Indeed, the University of
Konigsberg gave him an honorary doctoral degree for this work in 1855. The next year, he secured
positions at the Industrial Institute of Berlin and the University of Berlin. He remained at Berlin
until his death.

A methodical and painstaking scholar, Weierstrass distrusted intuition and worked to put
everything on a firm and logical foundation. He did fundamental work on the foundations of
arithmetic and analysis, on complex analysis, the calculus of variations, and algebraic geometry.
Due to his meticulous preparation, he was an extremely popular lecturer; it was not unusual for
him to speak about advanced mathematical topics to audiences of more than 250. Among his
auditors are counted Georg Cantor, Sonya Kovalevsky, Gosta Mittag-Leffler, Max Planck, Otto
Hélder, David Hilbert, and Oskar Bolza (who had many American doctoral students). Through
~ his writings and his lectures, Weierstrass had a profound influence on contemporary mathematics.
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be very significant in applications. We present one application to the idea of approximating
continuous functions by more elementary functions (such as polynomials).

The notion of a “gauge” is introduced in Section 5.5 and is used to provide an alter-
native method of proving the fundamental properties of continuous functions. The main
significance of this concept, however, is in the area of integration theory where gauges are
essential in defining the generalized Riemann integral. This will be discussed in Chapter 10.

Monotone functions are an important class of functions with strong continuity proper-
ties and they are discussed in Section 5.6.

Section 5.1 Continuous Functions

In this section, which is very similar to Section 4.1, we will define what it means to say
that a function is continuous at a point, or on a set. This notion of continuity is one of the
central concepts of mathematical analysis, and it will be used in almost all of the following
material in this book. Consequently, it is essential that the reader master it.

5.1.1 Definition Let A C R,let f: A — R, and let c € A. We say that f is continuous
at c if, given any number £ > O there exists § > O such that if x is any point of A satisfying
lx —c| <é,then |f(x) — f(c)| < e.

If f fails to be continuous at c, then we say that f is discontinuous at c.

As with the definition of limit, the definition of continuity at a point can be formulated
very nicely in terms of neighborhoods. This is done in the next result. We leave the
verification as an important exercise for the reader. See Figure 5.1.1.

Ve(f () {f(c) Vel(f (c) {

O e

Figure 5.1.1 Given V_(f(c)), a neighborhood V;(c) is to be determined.

5.1.2 Theorem A function f : A — R is continuous at a point c € A if and only if given
any ¢-neighborhood V_(f (c)) of f (c) there exists a §-neighborhood Vi(c) of ¢ such that if
x is any point of A N V,(c), then f(x) belongs to V_(f(c)), that is,

FAN V() € V,(f(c)).
Remark (1) Ifc € A is acluster point of A, then a comparison of Definitions 4.1.4 and
5.1.1 show that f is continuous at c if and only if
) f (© = lim f(x).
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Thus, if ¢ is a cluster point of A, then three conditions must hold for f to be continuous
atc:

(i) f must be defined at c (so that f (c) makes sense),
(ii) the limit of f at ¢ must exist in R (so that P_rg f(x) makes sense), and
(iii) these two values must be equal.

(2) If c € A is not a cluster point of A, then there exists a neighborhood V;(c) of ¢ such
that A N V;(c) = {c}. Thus we conclude that a function f is automatically continuous at a
point ¢ € A that is not a cluster point of A. Such points are often called “isolated points”
of A. They are of little practical interest to us, since they have no relation to a limiting
process. Since continuity is automatic for such points, we generally test for continuity only
at cluster points. Thus we regard condition (1) as being characteristic for continuity at c.

A slight modification of the proof of Theorem 4.1.8 for limits yields the following
sequential version of continuity at a point.

5.1.3 Sequential Criterion for Continuity A function f : A — R is continuous at the
point ¢ € A if and only if for every sequence (x,) in A that converges to c, the sequence

(f(x,)) converges to f(c).

The following Discontinuity Criterion is a consequence of the last theorem. It should
be compared with the Divergence Criterion 4.1.9(a) with L = f(c). Its proof should be
written out in detail by the reader.

5.1.4 Discontinuity Criterion Let ACR, let f: A— R, and let c € A. Then f is
discontinuous at c if and only if there exists a sequence (x,) in A such that (x,) converges
to c, but the sequence ( f (x,)) does not converge to f(c).

So far we have discussed continuity at a point. To talk about the continuity of a function
on a set, we will simply require that the function be continuous at each point of the set. We
state this formally in the next definition.

5.1.5 Definition Let A CRandlet f: A — R. If B is a subset of A, we say that f is
continuous on the set B if f is continuous at every point of B. "

5.1.6 Examples (a) The constant function f(x) := b is continuous on R.
It was seen in Example 4.1.7(a) that if ¢ € R, then P_'g f(x) =b. Since f(c) = b,

we have lim f(x) = f(c), and thus f is continuous at every point ¢ € R. Therefore f is
X—>C
continuous on R.

(b) g(x) := x is continuous on R.
It was seen in Example 4.1.7(b) that if ¢ € R, then we have lim g = c. Since g(c) = c,

X—>C

then g is continuous at every point ¢ € R. Thus g is continuous on R.
(¢©) h(x) := x? is continuous on R.
It was seen in Example 4.1.7(c) that if ¢ € R, then we have limh = 2. Since h(c)

X—>C

= ¢?, then h is continuous at every point ¢ € R. Thus & is continuous on R.
- (@) ¢(x) := 1/x is continuous on A := {x € R: x > 0}.
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It was seen in Example 4.1.7(d) that if ¢ € A, then we have linzfp = 1/c. Since
x—>

@(c) = 1/c, this shows that ¢ is continuous at every point ¢ € A. Thus ¢ is continuous
on A.

(e) @(x) := 1/x is not continuous at x = 0.
Indeed, if ¢(x) = 1/x for x > O, then ¢ is not defined for x = 0, so it cannot be
continuous there. Alternatively, it was seen in Example 4.1.10(a) that lin}) @ does not exist
x—

in R, so ¢ cannot be continuous at x = 0.

(f) The signum function sgn is not continuous at 0.
The signum function was defined in Example 4.1.10(b), where it was also shown that
hm sgn(x) does not exist in R. Therefore sgn is not continuous at x = 0 (even though sgn 0

1s deﬁned)
It is an exercise to show that sgn is continuous at every point ¢ # 0.

(g Let A:=Randlet f be Dirichlet’s “discontinuous function” defined by

Flx) = 1 if xisrational,
“ 10 if x isirrational.

We claim that f is not continuous at any pomt of R. (This function was introduced in 1829
by P. G. L. Dirichlet.) .

Indeed, if ¢ is a rational number, let (x,) be a sequence of irrational numbers that
converges to c. (Corollary 2.4.9 to the Density Theorem 2.4.8 assures us that such a
sequence does exist.) Since f(x,) =0 for all n € N, we have lim ( f (xn)) =0, while
f(c) = 1. Therefore f is not continuous at the rational number c.

On the other hand, if b is an irrational number, let (y,) be a sequence of rational
numbers that converge to b. (The Density Theorem 2.4.8 assures us that such a sequence
does exist.) Since f(y,) =1 for all n € N, we have lim ( f (yn)) =1, while f(b) =
Therefore f is not continuous at the irrational number b.

Since every real number is either rational or irrational, we deduce that f is not
continuous at any point in R.

(h) Let A := {x € R: x > 0}. For any irrational number x > 0 we define h(x) = 0. For

a rational number in A of the form m/n, with natural numbers m, n having no common
factors except 1, we define h(m/n) := 1/n. (See Figure 5.1.2.)

1+ . .
0.8
0.6 -
041
0.2+ .* . . ., .o . . .
.’o . o. «% .. .o . o‘ I. . o. «% . AN
| | | |

0 0.5 1 1.5 2
Figure 5.1.2 Thomae’s function.
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We claim that h is continuous at every irrational number in A, and is discontinuous
at every rational number in A. (This function was introduced in 1875 by K. J. Thomae.)

Indeed, if a > O is rational, let (x,) be a sequence of irrational numbers in A that
converges to a. Then lim (k(x,)) = 0, while h(a) > 0. Hence h is discontinuous at a.

On the other hand, if b is an irrational number and ¢ > 0, then (by the Archimedean
Property) there is a natural number n, such that 1/n, < ¢. There are only a finite num-
ber of rationals with denominator less than n, in the interval (b — 1, b+ 1). (Why?)
Hence § > 0 can be chosen so small that the neighborhood (b — 6, b + ) contains no
rational numbers with denominator less than n,,. It then follows that for [x — b| < 4§, x €
A, we have |h(x) — h(b)| = |h(x)| < 1/n, < &. Thus h is continuous at the irrational
number b.

Consequently, we deduce that Thomae’s function A is continuous precisely at the
irrational points in A. a

5.1.7 Remarks (a) Sometimes a function f: A — R is not continuous at a point ¢
because it is not defined at this point. However, if the function f has a limit L at the point
¢ and if we define F on AU {c} — R by

L for x =c,

F(x) := [
f(x) for x € A,

then F is continuous at c. To see this, one needs to check that lim F = L, but this follows
(why?), since lim f = L. e

(b) Ifa funcjtti_c;:l g : A — R does not have a limit at ¢, then there is no way that we can
obtain a function G : A U {c} — R that is continuous at ¢ by defining

C for x =c,

G =
(x) Ig(x) for x € A.

To see this, observe that if }im G exists and equals C, then lim g must also exist and
—C X—=>C
equal C.

5.1.8 Examples (a) The function g(x) := sin(1/x) for x # 0 (see Figure 4.1.3) does
not have a limit at x = 0 (see Example 4.1.10(c)). Thus there is no value that we can assign
at x = 0 to obtain a continuous extension of g at x = 0.

(b) Let f(x) = xsin(1/x) for x # 0. (See Figure 5.1.3.) Since f is not defined at x = 0,

the function f cannot be continuous at this point. However, it was seen in Example 4.2.8(f)

that lil’I‘l) (x sin(1 /x)) = 0. Therefore it follows from Remark 5.1.7(a) that if we define
X =

F:R— Rby

F(x) = { for x=0,
x sin(1/x) for x #0,

"~ then F is continuous at x = 0. 0O
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\/\\n
|

Figure 5.1.3 Graphof f(x) = xsin(1/x) (x #0).

Exercises for Section 5.1

10.
11.

12.

13.

Prove the Sequential Criterion 5.1.3.

Establish the Discontinuity Criterion 5.1.4.

Leta < b < c. Suppose that f is continuous on [a, b], that g is continuous on [b, c], and that
f(b) = g(b). Define hon [a, c] by h(x) := f(x) forx € [a, b] and h(x) := g(x) forx € (b, c].
Prove that h is continuous on [a, c).

If x € R, we define f[x] to be the greatest integer n € Z such that n < x. (Thus, for exam-
ple, [8.3] = 8, [7] = 3, [-n] = —4.) The function x > [x] is called the greatest integer
function. Determine the points of continuity of the following functions:

@ fx):=1[0x] ®) g(x):=x[x],

(¢) h(x) :=[sinx], @ k(x):=01/x1 (x#0).

Let f be defined for all x € R, x # 2, by f(x) = (x2 + x — 6)/(x — 2). Can f be defined at
x = 2 in such a way that f is continuous at this point?

Let AC Randlet f: A — R be continuous at a point ¢ € A. Show that for any & > 0, there
exists a neighborhood V;(c) of ¢ such thatif x, y € AN V;(c), then | f(x) — f(¥)| < &.

Let f : R — R be continuous at ¢ and let f(c) > 0. Show that there exists a neighborhood
V;(c) of c such that if x € Vj(c), then f(x) > 0.

Let f : R — R be continuous on R and let § := {x € R : f(x) = 0} be the “zero set” of f. If
(x,) isin S and x = lim(x,), show that x € S.

Let AC B CR,let f: B — R and let g be the restriction of f to A (that is, g(x) = f(x) for
x € A).

(a) If f is continuous at ¢ € A, show that g is continuous at c.

(b) Show by example that if g is continuous at c, it need not follow that f is continuous at c.

Show that the absolute value function f(x) := |x| is continuous at every point ¢ € R.

Let K > Oandlet f : R — R satisfy the condition | f(x) — f(y)| < K|x — y|forallx, y € R.
Show that f is continuous at every point ¢ € R.

Suppose that f : R — R is continuous on R and that f(r) = 0 for every rational number 7.
Prove that f(x) =0 forall x € R.

Define g : R = R by g(x) := 2x for x rational, and g(x) := x + 3 for x irrational. Find all
points at which g is continuous.
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14. Let A := (0, 00) and let k : A — R be defined as follows. For x € A, x irrational, we define
k(x) = 0; for x € A rational and of the form x = m/n with natural numbers m, n having no
common factors except 1, we define k(x) := n. Prove that k is unbounded on every open interval
in A. Conclude that k is not continuous at any point of A. (See Example 5.1.6(h).)

15. Let f:(0,1) —» R be bounded but such that lin(l) f does not exist. Show that there are two
X =

sequences (x,) and (y,) in (0, 1) with lim(x,) = 0 = lim(y,), but such that lim ( f (x")) and
lim (f(y,)) exist but are not equal.

Section 5.2 Combinations of Continuous Functions

Let ACR and let f and g be functions that are defined on A to R and let b € R. In
Definition 4.2.3 we defined the sum, difference, product, and multiple functions denoted
by f +g, f — &, fg, bf. In addition, if h : A — R is such that h(x) # 0 for all x € A,
then we defined the quotient function denoted by f/h.

The next result is similar to Theorem 4.2.4, from which it follows.

5.2.1 Theorem LetA C R, let f and g be functions on A to R, and let b € R. Suppose
that c € A and that f and g are continuous at c.

(@) Then f+g, f — g, fg, and bf are continuous at c.

(b) Ifh: A — R iscontinuous atc € A and if h(x) # O for all x € A, then the quotient
f/ h is continuous at c.

Proof. If c € A is not a cluster point of A, then the conclusion is automatic. Hence we
assume that c is a cluster point of A.

(a) Since f and g are continuous at ¢, then
f()=1lm f and g(c) =limg.
X—>C X—>C
- Hence it follows from Theorem 4.2.4(a) that

(f +8)(©) = £(©) +g(0) = lim(f +g).

Therefore f + g is continuous at c. The remaining assertions in part (a) are proved in a -
similar fashion.

(b) Since ¢ € A, then h(c) # 0. Butsince h(c) = }Ln} h, it follows from Theorem 4.2.4(b)
that

lim f

_f_‘ - f(c) _x=>c” g (f )
Ok " e -2 \x)
Therefore f/ h is continuous at c. QED.

The next result is an immediate consequence of Theorem 52.1, applied to every point
of A. However, since it is an extremely important result, we shall state it formally.
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5.2.2 Theorem LetA C R, let f and g be continuous on A toR, and letb € R.

(@) The functions f + g, f — 8, fg, and bf are continuous on A.

(d) Ifh: A — R is continuous on A and h(x) # O for x € A, then the quotient f/h is
continuous on A.

Remark To define quotients, it is sometimes more convenient to proceed as follows. If
p:A—> R, et A = {x € A: ¢ (x)# 0}. We can define the quotient f/¢ on the set A,
by

(1) (i) x) := -":@ for x€A,.
¢ ¥ (x)

If ¢ is continuous at a point ¢ € A,, it is clear that the restriction ¢, of ¢ to A, is also
continuous at c. Therefore it follows from Theorem 5.2.1(b) applied to ¢, that f/¢,
is continuous at ¢ € A. Since (f/@)(x) = (f/@,)(x) for x € A, it follows that f/g is
continuous at ¢ € A,. Similarly, if f and ¢ are continuous on A, then the function f/¢,
defined on A, by (1), is continuous on A,.

5.2.3 Examples (a) Polynomial functions.
If p is a polynomial function, so that p(x) = a,x" +a,_,x""' +---+a,x +a, for
all x € R, then it follows from Example 4.2.5(f) that p(c) = lim p for any ¢ € R. Thus
X—>C
a polynomial function is continuous on R.

(b) Rational functions.

If p and g are polynomial functions on R, then there are at most a finite number
a,---,a, ofreal roots of ¢. If x ¢ {@,,---, ¢, } then g(x) # O so that we can define the
rational function r by

_ p()
q (x)
It was seen in Example 4.2.5(g) that if g(c) # O, then

rix):

for x ¢{a,,---,,})

c . X .
p(©) =llmp( ) = limr (x).
q (o) x—c g (x) x—c
In other words, r is continuous at c. Since c is any real number that is not a root of g, we
infer that a rational function is continuous at every real number for which it is defined.

(c) We shall show that the sine function sin is continuous on R.
To do so we make use of the following properties of the sine and cosine functions.
(See Section 8.4.) For all x, y, z € R we have:

r{c) =

|sinz| < |z|, |cosz| <1,
sinx —siny = 2sin[$(x — y)]cos[3(x + y)].
Hence if ¢ € R, then we have
| sinx — sinc| 52-%|x—c|-l=|x—c|.

Therefore sin is continuous at c. Since ¢ € R is arbitrary, it follows that sin is continuous
on R.

(d) The cosine function is continuous on R.
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We make use of the following properties of the sine and cosine functions. For all
x, Y,z € R we have:

|sinz| < |z|, Isinz| <1,
cosx —cosy = —2 sin[%(x + y)] sin[%(x -l
Hence if ¢ € R, then we have
| cosx — cosc| 52-1-%|c—x| =|x—c|.

Therefore cos is continuous at c. Since ¢ € R is arbitrary, it follows that cos is continuous
on R. (Altematively, we could use the relation cos x = sin(x + 7/2).)

(e) The functions tan, cot, sec, csc are continuous where they are defined.
For example, the cotangent function is defined by

COos x

cotx (= —
sin x

provided sin x # O (that is, provided x # nm, n € Z). Since sin and cos are continuous
on R, it follows (see the Remark before Example 5.2.3) that the function cot is continuous
on its domain. The other trigonometric functions are treated similarly. o

5.2.4 Theorem LetACR,let f: A— R, and let | f| be defined by | f|(x) := | f(x)]|
forx € A.

(a) If f is continuous at a point ¢ € A, then | f| is continuous at c.
(b) If f is continuous on A, then | f| is continuous on A.

Proof. This is an immediate consequence of Exercise 4.2.13. QED.

5.2.5 Theorem LetACR,let f: A — R, andlet f(x) >0 forallx € A. We let /f
be defined for x € A by (V) (x) :== V().

(a) If f is continuous at a point c € A, then \/f is continuous at c.
(b) If f is continuous on A, then \/f is continuous on A.

Proof. This is an immediate consequence of Exercise 4.2.14. QED.

Compesition of Continuous Functions

We now show that if the function f : A — R is continuous at a pointc andif g : B - R
is continuous at b = f(c), then the composition g o f is continuous at c. In order to assure
that g o f is defined on all of A, we also need to assume that f (A) € B.

5.2.6 Theorem LetA,BCRandlet f: A — R and g: B — R be functions such that
f(A) C B. If f is continuous at a point ¢ € A and g is continuous atb = f(c) € B, then
the composition g o f : A — R is continuous at c.

Proof. Let W be an e-neighborhood of g(b). Since g is continuous at b, there is a 8-
neighborhood V of b = f(c) such thatif y € B N V then g(y) € W. Since f is continuous
at c, there is a y-neighborhood U of ¢ such that if x e ANU, then f(x) € V. (See
Figure 5.2.1.) Since f(A) € B, it follows that if x € ANU, then f(x) € BNV so that
g o f(x) = g(f(x)) € W.Butsince W is an arbitrary &-neighborhood of g (b), this implies
that g o f is continuous at c. QED.
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A B C

Figure 5.2.1 The composition of f and g.

5.2.7 Theorem LetA, B CR,letf: A — R be continuouson A, andletg: B — R be
continuous on B. If f(A) C B, then the composite function g o f : A — R is continuous
on A.

Proof. The theorem follows immediately from the preceding result, if f and g are con-
tinuous at every point of A and B, respectively. QED.

Theorems 5.2.6 and 5.2.7 are very useful in establishing that certain functions are
continuous. They can be used in many situations where it would be difficult to apply the
definition of continuity directly.

5.2.8 Examples (a) Letg, (x) := |x| for x € R. It follows from the Triangle Inequality
that
|8,(x) — g,(©)| < Ix — ¢l

for all x, c € R. Hence g, is continuous at c € R. If f: A — R is any function that is
continuous on A, then Theorem 5.2.7 implies that g, o f = | f| is continuous on A. This
gives another proof of Theorem 5.2.4.
(b) Let g,(x) := Jx for x > 0. It follows from Theorems 3.2.10 and 5.1.3 that g, is
continuous at any number ¢ > 0. If f: A — R is continuous on A and if f(x) > O for
all x € A, then it follows from Theorem 5.2.7 that g, o f = /f is continuous on A. This
gives another proof of Theorem 5.2.5.
(c) "Let g4(x) := sinx for x € R. We have seen in Example 5.2.3(c) that g, is continuous
onR. If f : A — Ris continuous on A, then it follows from Theorem 5.2.7 that g, o f is
continuous on A.

In particular, if f(x) := 1/x for x # 0, then the function g(x) := sin(1/x) is contin-
uous at every point ¢ # 0. [We have seen, in Example 5.1.8(a), that g cannot be defined
at 0 in order to become continuous at that point.] O

Exercises for Section 5.2

1. Determine the points of continuity of the following functions and state which theorems are used

in each case. 2 4o a1
@ f@w=T7" @eB), ® g =Vt VR (20,
©) hx):= —lg (x #0), (d) k(x):=cosy1+x* (xeR).
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13.

14.
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Show thatif f : A — R is continuous on A € R and if n € N, then the function f" defined by
f*(x) = (f(x))" for x € A, is continuous on A.

Give an example of functions f and g that are both discontinuous at a point ¢ in R such that
(a) the sum f 4+ g is continuous at c, (b) the product fg is continuous at c.

Let x — [x] denote the greatest integer function (see Exercise 5.1.4). Determine the points of
continuity of the function f(x) := x — [x]. x € R.

Let g bedefinedon Rby g(1) :=0,and g(x) :=2ifx # 1,and let f(x) := x + 1forallx € R.
Show that lin(n) g o f # (g o f)(0). Why doesn’t this contradict Theorem 5.2.6?
x—»

Let f, g be defined on R and let ¢ € R. Suppose that lim f = b and that g is continuous
P Snd
at b. Show that lim g o f = g(b). (Compare this result with Theorem 5.2.7 and the preceding
X=rC
exercise.)

Give an example of a function f : [0, 1] — R that is discontinuous at every point of [0, 1] but
such that | f| is continuous on [0, 1].

Let f, g be continuous from R to R, and suppose that f(r) = g(r) for all rational numbers r.
Is it true that f(x) = g(x) for all x € R?

Let i: R — R be continuous on R satisfying h(m/2") = 0 for all m € Z, n € N. Show that
h(x) = O forall x € R.

Let f: R — R be continuouson R, and let P := {x € R : f(x) > 0}. If c € P, show that there
exists a neighborhood V,(c) € P.

If f and g are continuous on R, let § := {x e R: f(x) > g(x)}. If (s,) € S and lim(s,) =55,
show thats € S.
A function f : R — Ris said to be additive if f(x + y) = f(x) + f(y) forall x, y inR. Prove

that if f is continuous at some point x,, then it is continuous at every point of R. (See Exercise
42.12)

Suppose that f is a continuous additive function on R. If ¢ := f (1), show that we have
f(x) = cx for all x € R. [Hint: First show that if r is a rational number, then f(r) = cr.]

Let g : R — R satisfy the relation g(x + y) = g(x)g(y) for all x, y in R. Show that if g is
continuous at x = 0, then g is continuous at every point of R. Also if we have g(a) = 0 for
some a € R, then g(x) =0 forall x € R.

Let f,g: R — R be continuous at a point ¢, and let h(x) := sup { f(x), g(x)} for x e R.
Show that A(x) = %(f(x) + g(x)) + %If(x) — g(x)| for all x € R. Use this to show that & is
continuous at c.

Section 5.3 Continuous Functions on Intervals

Functions that are continuous on intervals have a number of very important properties that
are not possessed by general continuous functions. In this section, we will establish some
deep results that are of considerable importance and that will be applied later. Alternative
proofs of these results will be given in Section 5.5.

5.3.1 Definition A function f : A — R is said to be bounded on A if there exists a
constant M > O such that | f(x)| < M for all x € A.

In other words, a function is bounded on a set if its range is a bounded set in R. To

say that a function is not bounded on a given set is to say that no particular number can
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serve as a bound for its range. In exact language, a function f is not bounded on the set
A if given any M > 0, there exists a point x,, € A such that | f (x,,)| > M. We often say
that f is unbounded on A in this case.

For example, the function f defined on the interval A := (0, 00) by f(x) :=1/x is
not bounded on A because for any M > 0 we can take the point x,, :=1/(M + 1) in A
to get f(x,,) = 1/x,, = M + 1 > M. This example shows that continuous functions need
not be bounded. In the next theorem, however, we show that continuous functions on a
certain type of interval are necessarily bounded.

5.3.2 Boundedness Theorem' Let I := [a, b] be a ‘cldscd 'bounded interval and let
f:1 — R be continuous on I. Then f is bounded on I.

Proof. Suppose that f is not bounded on I. Then, for any n € N there is a number x, € I
suchthat | f (x,) | > n. Since I is bounded, the sequence X := (x, ) is bounded. Therefore,
the Bolzano-Weierstrass Theorem 3.4.8 implies that there is a subsequence X' = (x, ) of X

that converges to a number x. Since / is closed and the elements of X’ belong to I, it follows
from Theorem 3.2.6 that x € I. Then f is continuous at x, so that (f(x, )) converges to

f(x). We then conclude from Theorem 3.2.2 that the convergent sequence (f(x, )) must
be bounded. But this is a contradiction since ’

|f(xn)>n,2r for reN.
Therefore the supposition that the continuous function f is not bounded on the closed
bounded interval / leads to a contradiction. QED.

To show that each hypothesis of the Boundedness Theorem is needed, we can construct
examples that show the conclusion fails if any one of the hypotheses is relaxed.

(i) The interval must be bounded. The function f(x) := x for x in the unbounded,
closed interval A := [0, o0) is continuous but not bounded on A.

(i) The interval must be closed. The function g(x) := 1/x for x in the half-open
interval B := (0, 1] is continuous but not bounded on B.

(iii) The function must be continuous. The function & defined on the closed interval
C :=[0, 1] by h(x) := 1/x for x € (0, 1] and h(0) := 1 is discontinuous and unbounded
onC.

The Maximum-Minimum Theorem

5.3.3 Definition Let AC Randlet f: A — R. We say that f has an absolute maxi-
mum on A if there is a point x* € A such that

f&x*) > f(x) forall x € A.
We say that f has an absolute minimum on A if there is a point x, € A such that
f(x,)<f(x) forall xe A.

We say that x* is an absolute maximum point for f on A, and that x, is an absolute
minimum point for f on A, if they exist.

{This theorem, as well as 5.3.4, is true for an arbitrary closed bounded set. For these developments, see Sections
11.2and 11.3. » .



We note that a continuous function on a set A does not necessarily have an absolute
maximum or an absolute minimum on the set. For example, f(x) := 1/x has neither an
absolute maximum nor an absolute minimum on the set A := (0, 00). (See Figure 5.3.1).
There can be no absolute maximum for f on A since f is not bounded above on A, and
there is no point at which f attains the value 0 = inf{ f (x) : x € A}. The same function has
neither an absolute maximum nor an absolute minimum when it is restricted to the set (0, 1),
while it has both an absolute maximum and an absolute minimum when it is restricted to
the set [1, 2]. In addition, f(x) = 1/x has an absolute maximum but no absolute minimum
when restricted to the set [1, 0o0), but no absolute maximum and no absolute minimum
when restricted to the set (1, 00).

It is readily seen that if a function has an absolute maximum point, then this point
is not necessarily uniquely determined. For example, the function g(x) := x? defined for
x € A :=[—1, +1] has the two points x = +1 giving the absolute maximum on A, and
the single point x = 0 yielding its absolute minimum on A. (See Figure 5.3.2.) To pick an
extreme example, the constant function hA(x) := 1 for x € R is such that every point of R
is both an absolute maximum and an absolute minimum point for 4.

b e e — — — ——
— e e — —— — —

Pt B e —

2 -1
Figure 5.3.1 The function Figure §3.2 The function
f@x) =1/x (x> 0). gy =x>(Ix| < 1).

3.3.4 Maximum-Minimum Theorem Let! := [a, b] be a closed bounded interval and
let f : I - R be continuous on I. Then f has an absolute maximum and an absolute
minimumon I.

Proof. Considerthe nonemptyset f(I) := {f(x) : x € I} of values of f on I.In Theorem
5.3.2 it was established that f (/) is a bounded subset of R. Let s* := sup f(/) and s, :=
inf f(I). We claim that there exist points x* and x, in I such that s* = f(x*) and 5, =
f(x,). We will establish the existence of the point x*, leaving the proof of the existence of
x, to the reader.
Since s* = sup f(I), if n € N, then the number s* — 1/n is not an upper bound of the
set f(I). Consequently there exists a number x, € I such that

1
J) s* — =< f(x,)<s* forall neN.

ince I is bounded, the sequence X := (x,) is bounded. Therefore, by the Bolzano—
Weierstrass Theorem 3.4.8, there is a subsequence X’ = (x, ) of X that converges to some

umber x*. Since the elements of X’ belong to I = [a, b], it follows from Theorem 3.2.6
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that x* € I. Therefore f is continuous at x* so that (lim f(x, )) = f(x*). Since it follows
from (1) that ’

1
s*—n—<f(xu)5s"‘ forall r eN,

r

we conclude from the Squeeze Theorem 3.2.7 that lim(f (x, )) = s*. Therefore we have

fx*) = lim(f(xn’)) =s*=supf ().
We conclude that x* is an absolute maximum point of f on /. QED.

The next result is the theoretical basis for locating roots of a continuous function by
means of sign changes of the function. The proof also provides an algorithm, known as
the Bisection Method, for the calculation of roots to a specified degree of accuracy and
can be readily programmed for a computer. It is a standard tool for finding solutions of
equations of the form f(x) = 0, where f is a continuous function. An alternative proof of
the theorem is indicated in Exercise 11.

5.3.5 Location of Roots Theorem Let ! = [a,b] and let f : I — R be continuous on
I1.If f(a) <0 < f(b), orif f(a) > 0> f(b), then there exists a number ¢ € (a, b) such
that f(c) = 0.

Proof. We assume that f(a) < 0 < f(b). We will generate a sequence of intervals by
successive bisections. Let /, := [a,, b,], wherea, :=a, b, := b, and let p, be the midpoint
p, = %(al +b)).1f f(p,) = 0, wetakec := p, and we are done. If f(p,) # O, then either
f(p)) > 0or f(p,) <O.If f(p,) > O, then weseta, :=a,, b, := p,, whileif f(p,) <0,
then we set a, := p, b, := b,. In either case, we let I, := [a,, b,]; then we have I, C I,
and f(a,) <0, f(b,) > 0.

We continue the bisection process. Suppose that the intervals I, I,, ---, I, have
been obtained by successive bisection in the same manner. Then we have f(a,) <0
and f(b,) > 0, and we set p, := %(ak +b,). If f(p,) =0, we take c := p, and we are

done. If f(p,) > O, we set a, | :=aq,, b, := p,, while if f(p,) <0, we seta,_, 1=
Pys by = b Ineithercase,welet [, | :=[a,,,, b, };then], , C I, and f(a, ) <O,
fbeyy) > 0.

If the process terminates by locating a point p, such that f(p,) = 0, then we are done.
If the process does not terminate, then we obtain a nested sequence of closed bounded
intervals /, := [a,, b,] such that for every n € N we have

fa,) <0 and f,) >0.

Furthermore, since the intervals are obtained by repeated bisection, the length of I is
equal to b, —a, = (b — a)/2""". It follows from the Nested Intervals Property 2.5.2 that
there exists a point ¢ that belongs to , for alln € N. Sincea, <c < b, foralln € N, we
have 0 <c—a, <b,—a,=(b —a)/2”", and0<b,—c<b,—a,= (b—a)/2”".
Hence, it follows that lim(a,) = ¢ = lim(b,). Since f is continuous at ¢, we have

lim (f(a,)) = f(c) =1lim (f(5,).

The fact that f(a,) < O for all n € N implies that f(c) = lim (f(a,)) < 0. Also, the fact
that f(b,) > O for all n € N implies that f(c) = lim (f(b,)) > 0. Thus, we conclude that
f(c) = 0. Consequently, c is a root of f. QED.
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The following example illustrates how the Bisection Method for finding roots is applied
in a systematic fashion.

5.3.6 Example The equation f(x) =xe* —2 =0 has a root c in the interval [0, 1],
because f is continuous on this interval and f(0) = —2 <0and f(1) =e—2 > 0. We
construct the following table, where the sign of f( p,) determines the interval at the next
step. The far right column is an upper bound on the error when p, is used to approximate
the root ¢, because we have

|pu —CI = %(bn _an) = l/2n‘

We will find an approximation p, with error less than 1072,

n a, b, P, f)  30,-a)
1 0 1 5 -1.176 .5

2 5 1 75 —-412 25

3 .75 1 875 +.099  .125

4 .15 875 8125 ~.169  .0625

5 .8125 875 84375  —.0382 .03125

6 .84375 .875 859375  +.0296 .015625

7 84375 859375 8515625 — 0078125

We have stopped at n = 7, obtaining ¢ ~ p, = .8515625 with error less than .0078125.
This is the first step in which the error is less than 102, The decimal place values of P, past
the second place cannot be taken seriously, but we can conclude that .843 < ¢ < .860. O

Bolzano’s Theorem

The next result is a generalization of the Location of Roots Theorem. It assures us that a
continuous function on an interval takes on (at least once) any number that lies between
two of its values.

5.3.7 Bolzano’s Intermediate Value Theorem Let ] be aninterval andlet f : I - R
be continuouson I. Ifa, b € I andif k € R satisfies f(a) < k < f(b), then there exists a
point c € I between a and b such that f(c) = k.

Proof. Suppose that a < b and let g(x) := f(x) — k; then g(a) <0 < g(b). By the
Location of Roots Theorem 5.3.5 there exists a point ¢ with a < ¢ < b such that 0 =
g(c) = f(c) — k. Therefore f(c) = k.

Ifb < a,leth(x) :=k — f(x)sothat h(b) < 0 < h(a). Therefore there exists a point
c with b < ¢ <asuchthat0 = h(c) =k — f(c), whence f(c) = k. QED.

5.3.8 Corollary Let I = [a,b] be a closed, bounded interval and let f : I — R be
continuous on I. If k € R is any number satisfying
inf f(I) <k <sup f(J),
then there exists a number ¢ € I such that f(c) = k.
Proof. It follows from the Maximum-Minimum Theorem 5.3.4 that there are points c,
and c* in 7 such that
inf f(I) = f(c,) <k < f(c*) = sup f(I)

The conclusion now follows from Bolzano’s Theorem 5.3.7. QED.
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The next theorem summarizes the main results of this section. It states that the image
of a closed bounded interval under a continuous function is also a closed bounded interval.
The endpoints of the image interval are the absolute minimum and absolute maximum
values of the function, and the statement that all values between the absolute minimum
and the absolute maximum values belong to the image is a way of describing Bolzano’s
Intermediate Value Theorem.

5.3.9 Theorem Let I be a closed bounded interval and let f : I — R be continuous
on I. Then the set f(I) := {f(x) : x € I} is a closed bounded interval.

Proof. If we let m ;= inf f(I) and M := sup f(I), then we know from the Maximum-
Minimum Theorem 5.3.4 that m and M belong to f (/). Moreover, we have f(I) C [m, M].
If k is any element of [m, M], then it follows from the preceding corollary that there exists
a point ¢ € I such that k = f(c). Hence, k € f(I) and we conclude that [m, M] C f(I).
Therefore, f(I) is the interval [m, M]. Q.ED.

Warning If / := [a, b] is an interval anfi, f : I = Ris continuous on /, we have proved
that f(7) is the interval [m, M]. We have not proved (and it is not always true) that f (/)
is the interval [ f (a), f(b)]. (See Figure 5.3.3.)

|
1

.
a x. x

Figure 3.3 f(I) =[m, M].

The preceding theorem is a “preservation” theorem in the sense that it states that
the continuous image of a closed bounded interval is a set of the same type. The next
theorem extends this result to general intervals. However, it should be noted that although
the continuous image of an interval is shown to be an interval, it is not true that the image
interval necessarily has the same form as the domain interval. For example, the continuous
image of an open interval need not be an open interval, and the continuous image of an
unbounded closed interval need not be a closed interval. Indeed, if f(x) :=1/ x2+1)
for x € R, then f is continuous on R [see Example 5.2.3(b)]. It is easy to see that if
I, := (-1,1), then f(1,) = (3, 1], which is not an open interval. Also, if I, := [0, 00),
then f(I,) = (0, 1], which is not a closed interval. (See Figure 5.34.)
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Figure 534 Graphof f(x) = 1/(x* + 1) (x € R).

To prove the Preservation of Intervals Theorem 5.3.10, we will use Theorem 2.5.1

characterizing intervals.

5.3.10 Preservation of Intervals Theorem Let ! be an interval and let f : I — R be
continuous on I. Then the set f(I) is an interval.

Proof. Leta, B € f(I) with a < B; then there exist points a, b € I such that @ = f(a)
and B8 = f(b). Further, it follows from Bolzano’s Intermediate Value Theorem 5.3.7 that
if k € («, B) then there exists a number ¢ € I with k = f(c) € f(I). Therefore [a, B] C
f(I), showing that f(I) possesses property (1) of Theorem 2.5.1. Therefore f(/) is an
interval. Q.ED.

Exercises for Section 5.3

10.

Let 7 :=[a,b] and let f : I — R be a continuous function such that f(x) > 0 for each x in /.
Prove that there exists a number « > 0 such that f(x) > a forall x € /.

Let/ :=[a,blandlet f: I — R and g : I — R be continuous functions on /. Show that the
set E := {x € I : f(x) = g(x)} has the property that if (x,) € E and x, — x,, thenx, € E.

Let/ :=[a,b) and let f : I — R be a continuous function on / such that for each x in / there
exists y in / such that | f(y)| < %l f(x)|. Prove there exists a point ¢ in / such that f(c) =

Show that every polynomial of odd degree with real coefficients has at least one real root.

Show that the polynomial p(x) := x* + 7x* — 9 has at least two real roots. Use a calculator to
locate these roots to within two decimal places.

Let f be continuous on the interval [0, 1] to R and such that f(0) = f (1). Prove that there
existsapointcin [0, 11suchthat f(c) = f (c + }). [Hint: Consider g(x) = f(x) — f (x + }).]
Conclude that there are, at any time, antipodal points on the earth’s equator that have the same
temperature.

Show that the equation x = cos x has a solution in the interval [0, 7/2]. Use the Bisection
Method and a calculator to find an approximate solution of this equation, with error less than
1073,

Show that the function f(x) := 2Inx + /x — 2 has root in the interval [1, 2]. Use the Bisection
Method and a calculator to find the root with error less than 1072,

(a) The function f(x) := (x — 1)(x — 2)(x — 3)(x — 4)(x — 5) has five roots in the interval
[0, 7). If the Bisection Method is applied on this interval, which of the roots is located?
(b) Same question for g(x) := (x — 2)(x — 3)(x — 4)(x — 5)(x — 6) on the interval [0, 7].

If the Bisection Method is used on an interval of length 1 to find p, with error |p, — ¢| < 1073,
determine the least value of n that will assure this accuracy.
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11. Let I :={a,b], let f: 1 — R be continuous on /, and assume that f(a) <0, f(b) > 0. Let
W:={xel: f(x) <0}, and let w := sup W. Prove that f(w) = 0. (This provides an alter-
native proof of Theorem 5.3.5.)

12. Let I :=[0,7/2] and let f : I — R be defined by f(x) := sup(xz, cosx} for x € I. Show
there exists an absolute minimum point x, € / for f on /. Show that x, is a solution to the

equation cos x = x2.

13. Suppose that f : R — R is continuous on R and that lim f = 0and xl_iglo f = 0. Prove that

X = =00

f is bounded on R and attains either a maximum or minimum on R. Give an example to show
that both a maximum and a minimum need not be attained.

14. Let f : R — R be continuous on R and let 8 € R. Show that if x, € R is such that f(x,) < 8,
then there exists a §-neighborhood U of x, such that f(x) < g forallx € U.

15. Examine which open [respectively, closed] intervals are mapped by f(x) := x for x € R onto
open [respectively, closed] intervals.

16. Examine the mapping of open [respectively, closed] intervals under the functions g(x) :=
1/(x2 + 1) and h(x) := x* forx € R.

17. If f:[0,1] — R is continuous and has only rational [respectively, irrational] values, must f
be constant? Prove your assertion.

18. Let] :=[a,b]andlet f : I — R be a (not necessarily continuous) function with the property
that for every x € I, the function f is bounded on a neighborhood V; (x) of x (in the sense of
Definition 4.2.1). Prove that f is bounded on /. :

19. Let J :=(a,b) and let g : J — R be a continuous function with the property that for every
x € J, the function g is bounded on a neighborhood V; (x) of x. Show by example that g is not
necessarily bounded on J. :

Section 5.4 Uniform Continuity

Let ACR and let f : A — R. Definition 5.1.1 states that the following statements are
equivalent:

(1) f is continuous at every point u € A;

(ii) givene > 0and u € A, there is a §(¢, u) > 0 such that for all x such thatx € A
and |x — u| < d(e,u),then |f(x) — f(u)| < e&.

The point we wish to emphasize here is that § depends, in general, on both € > 0 and
u € A. The fact that § depends on u is a reflection of the fact that the function f may change
its values rapidly near certain points and slowly near other points. [For example, consider
f(x) :=sin(1/x) for x > 0; see Figure 4.1.3.]

Now it often happens that the function f is such that the number é can be chosen to be
independent of the point ¥ € A and to depend only on ¢. For example, if f(x) := 2x for
all x € R, then

If () = fW)=2]x —ul,

and so we can choose (¢, u) := ¢/2 forall ¢ > 0, u € R. (Why?)
On the other hand if g(x) := 1/x forx € A := {x € R: x > 0}, then

Uu—x

(1) Togkx)—glw) =
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If u € A is given and if we take
) 8(e, u) := inf {Ju, Ju’e},

then if |x — u| < §(¢, u), we have |x — u| < %u so that %u <x< %u, whence it follows

that 1/x < 2/u. Thus, if |x — u| < %u, the equality (1) yields the inequality
3 lg(x) — g@)| < 2/u?) |x — ul.
Consequently, if |x — u| < é(¢, u), then (2) and (3) imply that

8(x) — g < (2/u?) (3u’) = &.

We have seen that the selection of é (¢, u) by the formula (2) “works” in the sense that it
enables us to give a value of § that will ensure that |g (x) — g(¥)| < € when |x —u| < §
and x, u € A. We note that the value of § (¢, u) given in (2) certainly depends on the point
u € A. If we wish to consider all u € A, formula (2) does not lead to one value § (¢) > 0
that will “work” simultaneously for all u > 0, since inf{é(¢, u) : u > 0} = 0.

An alert reader will have observed that there are other selections that can be made
for 5. (For example we could also take 5, (¢, u) := inf {Ju, 2u’¢}, as the reader can show;
however, we still have.inf {5, (¢, u): u > 0} = 0.) In fact, there is no way of choosing one
value of § that will “work” for all u > O for the function g(x) = 1/x, as we shall see.

The situation is exhibited graphically in Figures 5.4.1 and 5.4.2 where, for a given
e-neighborhood V(3) about 3 = £(2) and V(2) about 2 = f(3), the corresponding max-
imum values of § are seen to be considerably different. As u tends to 0, the permissible
values of § tend to O.

A
A
2\
vea |
1
2
v,%}
»X
> X — 1
& —neighborhood & - neighborhood
Figure 54.1 g(x)=1/x (x> 0). Figure54.2 g(x)=1/x (x> 0).

5.4.1 Definition Let A C Randlet f : A — R. We say that f is uniformly continuous
on A if for each ¢ > O there is a §(¢) > 0 such that if x, u € A are any numbers satisfying
|x — u| < 8(e), then | f(x) — f(u)| <&.

It is clear that if f is uniformly continuous on A, then it is continuous at every point of
A. In general, however, the converse does not hold, as is shown by the function g(x) = 1/x
ontheset A:={x e R:x > 0}.

It is useful to formulate a condition equivalent to saying that f is not uniformly
continuous on A. We give such criteria in the next result, leaving the proof to the reader as
an exercise.
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5.4.2 Nonuniform Continuity Criteria Let A C R and let f : A — R. Then the fol-
lowing statements are equivalent:

(i) f is not uniformly continuous on A.
(i) There exists an ¢y > O such that for every 8§ > 0 there are points x;, u, in A such that
x5 — us| < & and|f(xg) — f(uy)l = &,
(iii) There exists an &, >0 and two sequences (x,) and (u,) in A such that
lim(x, —u,) =0and|f(x,) — f(u,)| > g, foralln € N.
We can apply this result to show that g(x) := 1/x is not uniformly continuous on A :=
{x e R:x > 0}. For, if x, :==1/n and u, := 1/(n + 1), then we have lim(x, —u,) =0,
but |g(x,) — g(u,)| = 1foralln € N.

We now present an important result that assures that a continuous function on a closed
bounded interval / is uniformly continuous on /. Other proofs of this theorem are given in
Sections 5.5 and 11.3.

5.4.3 Uniform Continuity Theorem Let ! be a closed bounded interval andlet f : I —
R be continuous on I. Then f is uniformly continuous on I.

Proof. If f is not uniformly continuous on / then, by the preceding result, there exists
€, > 0 and two sequences (x,) and (u,) in I such that |[x, —u,| < 1/n and |f(x,) —
f(u,)| = ¢, for all n € N. Since I is bounded, the sequence (x,) is bounded; by the
Bolzano-Weierstrass Theorem 3.4.8 there is a subsequence (x"k) of (x,) that converges to
an element z. Since / is closed, the limit z belongs to /, by Theorem 3.2.6. It is clear that
the corresponding subsequence (“nk) also converges to z, since

4, — 2| < 4, =%, | +1%, -z

Now if f is continuous at the point z, then both of the sequences (f(x, )) and (f (x,, ))
must converge to f(z). But this is not possible since

|f(x,) = f(u,)| =g

forall n € N. Thus the hypothesis that f is not uniformly continuous on the closed bounded
interval I implies that f is not continuous at some point z € /. Consequently, if f is
continuous at every point of /, then f is uniformly continuous on /. QED.

Lipschitz Functions

If a uniformly continuous function is given on a set that is not a closed bounded interval,
then it is sometimes difficult to establish its uniform continuity. However, there is a condi-
tion that frequently occurs that is sufficient to guarantee uniform continuity.

5.4.4 Definition Let A CR and let f : A — R. If there exists a constant K > 0 such
that
“@ |f &) — fWI <K |x —uj

for all x,u € A, then f is said to be a Lipschitz function (or to satisfy a Lipschitz
condition) on A.
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The condition (4) that a function f : / — R on an interval I is a Lipschitz function
an be interpreted geometrically as follows. If we write the condition as

f(x) — fu)
xX—u

| n the quantity inside the absolute values is the slope of a line segment joining the points

x, f(x)) and (u, f(u)). Thus a function f satisfies a Lipschitz condition if and only if the

1npes of all line segments joining two points on the graph of y = f(x) over I are bounded
., some number K.

<K, x,u€l,x#u,

* 5 Theorem If f: A — R is a Lipschitz function, then f is uniformly continuous
mA.

-r00f. If condition (4) is satisfied, then given ¢ > 0, we cantake § ;== ¢/K. If x,u € A
:atisfy |x — u| < 4, then
€

If) - fWI <K&

- erefore f is uniformly continuous on A. QED.

= €.

7 1.6 Examples (a) If f(x):= x2on A := [0, b], where b > 0, then
| f(x) = f@)] = I|x +u|lx —ul <2b|x —u

© -all x, uin [0, b]. Thus f satisfies (4) with K := 2b on A, and therefore f is uniformly
>ontinuous on A. Of course, since f is continuous and A is a closed bounded interval, this
. n also be deduced from the Uniform Continuity Theorem. (Note that f does nor satisfy
1 Lipschitz condition on the interval [0, 00).)

™) Not every uniformly continuous function is a Lipschitz function.

Let g(x) := /x for x in the closed bounded interval I := [0, 2]. Since g is continuous

an 1, it follows from the Uniform Continuity Theorem 5.4.3 that g is uniformly continuous
I. However, there is no number K > 0 such that |g(x)| < K|x| for all x € 1. (Why

not?) Therefore, g is not a Lipschitz function on /.

i ) The Uniform Continuity Theorem and Theorem 5.4.5 can sometimes be combined to

establish the uniform continuity of a function on a set.

We consider g(x) := 4/x on the set A := [0, 00). The uniform continuity of g on
we interval I := [0, 2] follows from the Uniform Continuity Theorem as noted in (b). If
J :=[1, 00), then if both x, u are in J, we have

Ix — ul <%|x—u|.

|8(x)—8(u)|=|f—ﬁ|=m_

1nus g is a Lipschitz function on J with constant K = %, and hence by Theorem 5.4.5,
g is uniformly continuous on [1, 00). Since A =TI U J, it follows [by taking é(¢) :=

f{l, 5,(6), 9 _,(e)}] that g is uniformly continuous on A. We leave the details to the
reader. O

‘The Continuous Extension Theorem

‘e have seen examples of functions that are continuous but not uniformly continuous on
open intervals; for example, the function f(x) = 1/x on the interval (0, 1). On the other
*and, by the Uniform Continuity Theorem, a function that is continuous on a closed bounded
.uterval is always uniformly continuous. So the question arises: Under what conditions is a
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function uniformly continuous on a bounded open interval? The answer reveals the strength
of uniform continuity, for it will be shown that a function on (a, b) is uniformly continuous
if and only if it can be defined at the endpoints to produce a function that is continuous on
the closed interval. We first establish a result that is of interest in itself.

5.4.7 Theorem If f : A — R is uniformly continuous on a subset A of R and if (x,) is
a Cauchy sequence in A, then (f(x,)) is a Cauchy sequence in R.

Proof. Let (x,) be a Cauchy sequence in A, and let £ > 0 be given. First choose § > 0
such that if x, u in A satisfy [x — u| < §, then | f(x) — f(u)| < €. Since (x,) is a Cauchy
sequence, there exists H (8) such that |x, — x, | < & for all n, m > H (). By the choice of
3, this implies thatforn, m > H(8), wehave | f(x,) — f(x,)| < &. Therefore the sequence
(f(x,)) is a Cauchy sequence. Q.ED.

The preceding result gives us an alternative way of seeing that f(x) := 1/x is not
uniformly continuous on (0, 1). We note that the sequence given by x, := 1/nin (0, 1) is
a Cauchy sequence, but the image sequence, where f(x,) = n, is not a Cauchy sequence.

5.4.8 Continuous Extension Theorem A function f is uniformly continuous on the
interval (a, b) if and only if it can be defined at the endpoints a and b such that the ex-
tended function is continuous on [a, b].

Proof. (<) This direction is trivial.

(=) Suppose f is uniformly continuous on (a, b). We shall show how to extend f
to a; the argument for b is similar. This is done by showing that Jlrl_l;n f(x) = L exists, and
this is accomplished by using the sequential criterion for limits. Ifc (x,) is a sequence in
(a, b) with lim(x,) = a, then it is a Cauchy sequence, and by the preceding theorem, the
sequence (f(x,)) is also a Cauchy sequence, and so is convergent by Theorem 3.5.5. Thus
the limit lim( f (xn)) = L exists. If (u,) is any other sequence in (a, b) that converges to a,
thenlim(u, —x,) =a—a= 0, so by the uniform continuity of f we have

lim(f(u,)) = lim(fu,) — f(x,)) + lim(f(x,))
=0+4+L=L.

Since we get the same value L for every sequence converging to a, we infer from the
sequential criterion for limits that f has limit L at a. If we define f(a) := L, then f is
continuous at a. The same argument applies to b, so we conclude that f has a continuous
extension to the interval [a, b]. QED.

Since the limit of f(x) := sin(1/x) at 0 does not exist, we infer from the Continuous
Extension Theorem that the function is not uniformly continuous on (0, b] for any b > 0.
On the other hand, since lill(l) x sin(1/x) = O exists, the function g(x) := xsin(1/x) is

x—

uniformly continuous on (0, b] for all b > 0.

Approximation'

In many applications it is important to be able to approximate continuous functions by
functions of an elementary nature. Although there are a variety of definitions that can be
used to make the word “approximate” more precise, one of the most natural (as well as one of

"The rest of this section can be omitted on a first reading of this chapter.



the most important) is to require that, at every point of the given domain, the approximating
function shall not differ from the given function by more than the preassigned error.

5.4.9 Definition Let / C R be an interval and let s : I — R. Then s is called a step

function if it has only a finite number of distinct values, each value being assumed on one
or more intervals in /.

For example, the function s : [-2, 4] — R defined by

0, —2<x<-1,
1, -1<x<0,
1 1
bR 0 < 2
sx):=4{ 2 | =2
3, 35x< 1,
-2, 1<x<3
2, 3<x<4,
is a step function. (See Figure 5.4.3.)
y
3
-
- —
—
—

4
-
=

-+

Figure 5.4.3 Graph of y = s(x).

We will now show that a continuous function on a closed bounded interval I can be
approximated arbitrarily closely by step functions.

5.4.10 Theorem Let I be aclosed bounded interval and let f : I — R be continuous on
I. If ¢ > 0, then there exists a step function s, : I — R such that | f(x) — s.(x)| < ¢ for
allx € I.

Proof. Since (by the Uniform Continuity Theorem 5.4.3) the function f is uniformly
continuous, it follows that given &€ > O there is a number é(¢) > 0 such that if x,y € 1
and |x — y| < 8(¢), then | f(x) — f(y)| <&. Let I := [a, b] and let m € N be sufficiently
large so that h := (b —a)/m < &(¢). We now divide I = [a, b] into m disjoint intervals
of length h; namely, I, :=[a,a + h],and [, := (a +((k—-Dh,a+ kh] fork=2,---,m.
Since the length of each subinterval I, is h < 8(¢), the difference between any two values
of f in I, is less than £. We now define

- (5) se(x):=f(a+kh) for xel,, k=1,---,m,
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so that s, is constant on each interval /,. (In fact the value of s, on I, is the value of f at
the right endpoint of /,. See Figure 5.4.4.) Consequently if x € I, then

[ f(x) =5, =|f(x)— fla+kh)| <e.
Therefore we have | f(x) —s,(x)| < e forallx € 1. QED.

y=f(x)+¢

y = sx)[

y=fx)

I
I
I
I
I
I
I
b

Figure 5.4.4 Approximation by step functions.

Note that the proof of the preceding theorem establishes somewhat more than was
announced in the statement of the theorem. In fact, we have proved the following, more
precise, assertion.

5.4.11 Corollary Let I := [a, b) be a closed bounded interval and let f : I — R be
continuous on I. If ¢ > 0, there exists a natural number m such that if we divide I into
m disjoint intervals I, having length h := (b — a)/m, then the step function s, defined in
equation (5) satisfies | f (x) — s, (x)| < ¢ forall x € I.

Step functions are extremely elementary in character, but they are not continuous
(except in trivial cases). Since it is often desirable to approximate continuous functions by
elementary continuous functions, we now shall show that we can approximate continuous
functions by continuous piecewise linear functions.

5.4.12 Definition Let/ := [a, b] be an interval. Then a function g : / — R is said to be
piecewise linear on [ if I is the union of a finite number of disjoint intervals I,,---, I,
such that the restriction of g to each interval /, is a linear function.

Remark It is evident that in order for a piecewise linear function g to be continuous
on I, the line segments that form the graph of g must meet at the endpoints of adjacent
subintervals /,, Ik+l k=1,---,m—1).

5.4.13 Theorem Let! be aclosed bounded interval and let f : I — R be continuous on
1. If ¢ > 0, then there exists a continuous piecewise linear function g, : I — R such that
| f(x) — g, (x)| <eforallx € I.

Proof. Since f is uniformly continuous on / := [a, b], there is a number §(¢) > 0 such
that if x, y € I and |x — y| < &(¢), then | f(x) — f(¥)] < €. Let m € N be sufficiently
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large so that h := (b — a)/m < &(¢). Divide I = [a, b] into m disjoint intervals of length
h; namely let I, =[a,a+h),and let I, = (a+ k - l)h,a+kh] fork=2,---,m.On
each interval J, we define g, to be the linear function joining the points

(@+®k=Dh, f@+(k—Dh)) and  (a+kh, f(a+kh)).

Then g, is a continuous piecewise linear function on I. Since, for x € I, the value f(x) is
within ¢ of f(a + (k — 1)h) and f(a + kh), it is an exercise to show that | f (x) — g ()| <
¢ for all x € I,; therefore this inequality holds for all x € I. (See Figure 5.4.5.) QED.

Figure 5.4.5 Approximation by piecewise linear function.

We shall close this section by stating the important theorem of Weierstrass concerning
the approximation of continuous functions by polynomial functions. As would be expected,
in order to obtain an approximation within an arbitrarily preassigned ¢ > 0, we must be
prepared to use polynomials of arbitrarily high degree.

5.4.14 Weierstrass Approximation Theorem Let/ =[a,b) andlet f:I — R be a
continuous function. If ¢ > 0 is given, then there exists a polynomial function p, such
that | f(x) — p,(x)| < ¢ forall x € I.

There are a number of proofs of this result. Unfortunately, all of them are rather
intricate, or employ results that are not yet at our disposal. One of the most elementary
proofs is based on the following theorem, due to Serge Bernstein, for continuous functions
on [0, 1]. Given f : [0, 1] — R, Bernstein defined the sequence of polynomials:

- k
©) B =) f (;) (:)x"(l — X,
k=0

The polynomial function B, is called the nth Bernstein polynomial for f; itis a polynomial
of degree at most n and its coefficients depend on the values of the function f atthen + 1
equally spaced points 0, 1/n,2/n,---,k/n, ---, 1, and on the binomial coefficients

(n)_ n! _nmn=1)---(n—k+1)
k] k\(n-k) 1-2...k )
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5.4.15 Bernstein’s Approximation Theorem Let f : [0, 1] — R be continuous and let
& > 0. There exists ann, € N such that ifn > n_, then we have | f (x) — B, (x)| < ¢ for all
x €[0,1].

The proof of Bernstein’s Approximation Theorem is given in [ERA, pp. 169-172].

The Weierstrass Approximation Theorem 5.4.14 can be derived from the Bernstein
Approximation Theorem 5.4.15 by a change of variable. Specifically, we replace
f :[a, b] = R by a function F : [0, 1] — R, defined by

F(t):= f(a+ (b —a)) for t€[0,1].

The function F can be approximated by Bernstein polynomials for F on the interval [0, 1],
which can then yield polynomials on [a, b] that approximate f.

Exercises for Section 5.4

1. Show that the function f(x) := 1/x is uniformly continuous on the set A := [a, 00), where a
is a positive constant.

2. Show that the function f(x) := 1/x? is uniformly continuous on A := [1, 00), but that it is not
uniformly continuous on B := (0, 00).

3. Use the Nonuniform Continuity Criterion 5.4.2 to show that the following functions are not
uniformly continuous on the given sets.
(@ f(x):=x2 A:=[0, ).
(b) g(x):=sin(1/x), B := (0, 00).

4. Show that the function f(x) := 1/(1 + x2) for x € R is uniformly continuous on R.

5. Show that if f and g are uniformly continuous on a subset A of R, then f + g is uniformly
continuous on A.

6. Show that if f and g are uniformly continuous on A € R and if they are both bounded on A,
then their product fg is uniformly continuous on A.

7. If f(x) := x and g(x) := sin x, show that both f and g are uniformly continuous on R, but that
their product fg is not uniformly continuous on R.

8. Prove thatif f and g are each uniformly continuous on R, then the composite function f o g is
uniformly continuous on R.

9. If f is uniformly continuous on A C R, and | f(x)| > k > O for all x € A, show that 1/f is
uniformly continuous on A.

10. Prove that if f is uniformly continuous on a bounded subset A of R,' then f is bounded on A.

11. Ifg(x) := /xforx € [0, 1], show that there does not exist a constant X such that lg(x)| < K|x|
for all x € [0, 1]. Conclude that the uniformly continuous g is not a Lipschitz function on [0, 1).

12. Show that if f is continuous on [0, 00) and uniformly continuous on [a, 00) for some positive
constant a, then f is uniformly continuous on [0, 00).

13. Let A € R and suppose that f : A — R has the following property: for each £ > 0 there exists
a function g, : A — R such that g, is uniformly continuous on A and | f(x) — g,(x)| < ¢ for
all x € A. Prove that f is uniformly continuous on A. ,

14. A function f: R — R is said to be periodic on R if there exists a number p > 0 such that
f(x + p) = f(x) for all x € R. Prove that a continuous periodic function on R is bounded and
uniformly continuous on R.
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15. If f3(x) := 1 for x € [0, 1], calculate the first few Bernstein polynomials for f,,. Show that they
coincide with f,. [Hint: The Binomial Theorem asserts that

n

o= 35 ()t

k=0
16. If f,(x) := x for x € [0, 1], calculate the first few Bernstein polynomials for f,- Show that they
coincide with f|.
17. If f,(x) := x? for x € [0, 1], calculate the first few Bernstein polynomials for f,. Show that
B (x) = (- 1/m)x* + (1/n)x.

Section 5.5 Continuity and Gauges

We will now introduce some concepts that will be used later—especially in Chapters 7
and 10 on integration theory. However, we wish to introduce the notion of a “gauge” now
because of its connection with the study of continuous functions. We first define the notion
of a tagged partition of an interval.

5.5.1 Definition A partition of an interval / := [a, b]isacollection P = {/,, ---, I} of
non-overlapping closed intervals whose union is [a, b]. We ordinarily denote the intervals
by I, := [x;_,, x;], where

a=xy<:-<X_, <X <---<x,=b.

The points x; (i =0, - - -, n) are called the partition points of P. If a point ¢, has been
chosen from each interval I, fori = 1, - - -, n, then the points ¢, are called the tags and the
set of ordered pairs

P= {(ll' tl)’ T (In' tn)}
is called a tagged partition of /. (The dot signifies that the partition is tagged.)

The “fineness” of a partition P refers to the lengths of the subintervals in . Instead of
requiring that all subintervals have length less than some specific quantity, it is often useful
to allow varying degrees of fineness for different subintervals I, in P. This is accomplished
by the use of a “gauge”, which we now define.

5.5.2 Definition A gauge on [ is a strictly positive function defined on /. If § is a gauge
on I, then a (tagged) partition P is said to be é-fine if
1) t.el, C[t,—48@).t,+48@)] for i=1,.--,n

We note that the notion of §-fineness requires that the partition be tagged, so we do not
need to say “tagged partition” in this case.

Xj-1 X;
| L L | |
‘i-s(ti) ‘i t.+8(“)

Figure 5.5.1 Inclusion (1).

A gauge & on an interval I assigns an interval [t — &(¢),  + 5(#)] to each point? € 1.
The S-fineness of a partition P requires that each subinterval I, of P is contained in the
interval determined by the gauge & and the tag r; for that subinterval. This is indicated



by the inclusions in (1); see Figure 5.5.1. Note that the length of the subintervals is also
controlled by the gauge and the tags; the next lemma reflects that control.

5.5.3 Lemma If a partition P of I := [a, b] is 5-fine and x € I, then there exists a tag 4
in P such that [x — t,| < 4(t,).

Proof. If x € I, there exists a subinterval [x;_,, x;] from P that contains x. Since P is
-fine, then

(2) t,' - 8(',') =< x,‘_] <x=< xi < ti + 8(’,’);
whence it follows that [x — ;| < 3(¢,). Q.ED.

In the theory of Riemann integration, we will use gauges § that are constant functions
to control the fineness of the partition; in the theory of the generalized Riemann integral,
the use of nonconstant gauges is essential. But nonconstant gauge functions arise quite
naturally in connection with continuous functions. For, let f : I — R be continuous on
I and let € > 0 be given. Then, for each point ¢ € I there exists §,(t) > 0 such that
if [x —¢t| <4,(t) and x € I, then | f(x) — f(t)| < &. Since §, is defined and is strictly
positive on /, the function §, is a gauge on /. Later in this section, we will use the relations
between gauges and continuity to give alternative proofs of the fundamental properties of
continuous functions discussed in Sections 5.3 and 5.4.

5.5.4 Examples (a) If$ and y are gauges on / := [a, b] and if 0 < 8(x) < y(x) forall
x € I, then every partition P that is é-fine is also y-fine. This follows immediately from
the inequalities

L,—y@) <t —45@1) and tL+8@) <t +y@)
which imply that
telt, =8¢, +8@)) S, —va).+y@)]  for i=1,---,n
(b) If 4, and §, are gauges on / := [a, b] and if
§(x) := min{§, (x), 8, (x)} forall x e,
then § is also a gauge on I. Moreover, since 8(x) < §,(x), then every -fine partition is

3, -fine. Similarly, every 3-fine partition is also ,-fine.

(c) Suppose that § is defined on 7 := [0, 1] by
L if x=0,
auy={? *

2% if 0<x<l1.

Then § is a gauge on [0, 1]. If 0 < ¢ < 1, then [t — 8(¢), t + 8(¢)] = [5¢, 3], which does
not contain the point 0. Thus, if P is a §-fine partition of /, then the only subinterval in P
that contains 0 must have the point O as its tag.

(d) Lety bedefinedon I := [0, 1] by

16 if x=0o0rx=1,
y(x) = %x if 0<x<li,
1-x) if J<x<l.
Then y is a gauge on /, and it is an exercise to show that the subintervals in any y-fine
partition that contain the points 0 or 1 must have these points as tags. g
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Existence of §-Fine Partitions

In view of the above examples, it is not obvious that an arbitrary gauge § admits a §-fine
partition. We now use the Supremum Property of R to establish the existence of §-fine
partitions. In the Exercises, we will sketch a proof based on the Nested Intervals Theorem
25.2.

5.5.5 Theorem If § is a gauge defined on the interval [a, b), then there exists a -fine
partition of [a, b].

Proof. Let E denote the set of all points x € [a, b] such that there exists a §-fine partition
of the subinterval [a, x]. The set E is not empty, since the pair ([a, x], a) is a §-fine partition
of the interval [a, x] when x € [a,a + §(a)] and x < b. Since E C [a, b], the set E is also
bounded. Let u := sup E so thata < u < b. We will show that u € E and that u = b.

We claim that 4 € E. Since u — §(u) < u = sup E, there exists v € E such that u —
(M) < v <u.Let 'Pl be a §-fine partition of [a, v] and let ’Pz = 'Pl U ([v, 4], u). Then
1’2 is a §-fine partition of [a, u], so that u € E.

If u<b,let we[a,b] be suchthat u < w <u+46u). If Ql is a §-fine partition
of [a, u], we let Q2 = Ql U ([u, w], u). Then Q2 is a §-fine partition of [a, w], whence
w € E. But this contradicts the supposition that u is an upper bound of E. Therefore u = b.

QED.
Some Applications

Following R. A. Gordon (see his Monthly article), we will now show that some of the major
theorems in the two preceding sections can be proved by using gauges.

Alternate Proof of Theorem 5.3.2: Boundedness Theorem. Since f is continuous on
I, then for each ¢ € I there exists §(¢) > O such that if x € I and |x —t| < §(¢), then
|f(x) — f(®)] < 1. Thus é is a gauge on /. Let {(,, t,)};., be a §-fine partition of I and
let K := max{|f(t;)|:i =1,---,n}. By Lemma 5.5.3, given any x € I there exists i with
lx —¢;| < &(z,), whence

I fGI = 1fx) = fFEI+1fE) <1+ K.
Since x € [ is arbitrary, then f is bounded by 1 + K on /. QED.

Alternate Proof of Theorem 5.3.4: Maximum-Minimum Theorem. We will prove the
existence of x*. Let M := sup{f(x) : x € I} and suppose that f(x) < M for all x € I.
Since f is continuous on /, for each ¢t € I there exists §(t) > O such that if x € I and
Ix —t| < 8(t), then f(x) < (M + f(¢)). Thus 4 is a gauge on /, and if {(/;, £,)}}_, isa
3-fine partition of /, we let

M :=lmax{M + f(t)),---, M+ f(t,)).

By Lemma 5.5.3, given any x € I, there exists i with [x — ;| < §(¢,), whence
fER) <3 M+ F@)) <M.

Since x € I is arbitrary, then M (< M) is an upper bound for f on I, contrary to the
definition of M as the supremum of f. QED.

Alternate Proof of Theorem 5.3.5: Location of Roots Theorem. We assume that f(t) # 0
for all ¢ € 1. Since f is continuous at ¢, Exercise 5.1.7 implies that there exists §(t) > 0
such thatif x € I and |x —t| < §(¢), then f(x) < Oif f(t) < 0,and f(x) > 0if f(¢) > 0.
Then & is a gauge on I and we let {(I,, t,)};_, be a 5-fine partition. Note that for each i,
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either f(x) < Oforallx € [x;_,, x;]or f(x) > O for all such x. Since f(x,) = f(a) <0,
this implies that f(x,) < 0, which in turn implies that f(x,) < 0. Continuing in this way,
we have f(b) = f(x,) < 0, contrary to the hypothesis that f(b) > 0. QED.

Alternate Proof of Theorem 5.4.3: Uniform Continuity Theorem. Let ¢ > 0 be given.
Since f is continuous at ¢ € I, there exists §(¢) > Osuch thatif x € I and [x — t| < 28(2),
then | f(x) — f(?)| < %e. Thus § is a gauge on I. If {(J,, ¢,)};_, is a é-fine partition of I,
let 8, := min{3(¢,), - - -, 8(z,)}. Now suppose that x, u € I and |[x — u| < §,, and choose i
with |x —¢,| < 5(¢;). Since

lu—t| <lu—x|+I|x—¢| <8 +5@) <25@),

then it follows that
1f(x) = F@I < 1f@) = fU+1f @) — fW)] < 386+ 36 =¢.
Therefore, f is uniformly continuous on /. QE.D.

Exercises for Section 5.5

1. Let é be the gauge on [0, 1] defined by §(0) := % and é(¢) := %t fort € (0, 1].

(a) Show that P, := {([0, §1.0), ({3. 41, 1). ((3. 10, 2)} is &-fine.
(b) Show that P, := {([0, 11,0), (3. 1. 3). ((3. 1, 2)} is not &-fine.

2. Suppose that §, is the gauge defined by 4, (0) := i. 5,(t) = %t for ¢t € (0, 1]. Are the partitions
given in Exercise 1§ -fine? Note that §(¢) < §,(¢) forall ¢ € [0, 1].

3. Suppose that 4, is the gauge defined by 8,(0) := 7t and 8,(t) := %t for t € (0, 1]. Are the
partitions given in Exercise 1 §,-fine?

4. Let y be the gauge in Example 5.5.4(d).

(@) Ift € (0, 11 show that [t — y (), t + ¥ (1)] = [31, 311 € (0, 2).
(®) Ifre(d, 1) showthat [t — y ().t +y (] S (4, 1).

5. Leta < c < b and let § be a gauge on [a: ?]. If P is a 8-fine partition of [a, c] and if P’ isa
8-fine partition of [c, b], show that P U P is §-fine partition of [a, b] having c as a partition
point.

6. Leta <c < b and let & and §” be gauges on [a, c] and [c, b], respectively. If § is defined on
[a, b] by '

8@ if tela,c),
8(t) := { min{8'(c),8"(c)} if t=c,
8"(t) if te(cb]

then 4 is a gauge on [a, b] Moreover, if 7' is a &'-fine partition of [a, c] and P” is a 8”-fine
pamnon of [c bl,thenP UP"isa tagged partition of [a, b] having c as a partition point. Explain
why 7" U P” may not be §-fine. Give an example.

7. Letd’ and 8" be as in the preceding exercise and let §* be defined by
min{8'(t), 1c — 1)} if t€[a, o),
8*(t) := { min{&'(c), 8" (c)} if t=c,
min{8”(t), 3¢t =)} if ¢ € (c,bl.

Show that §* is a gauge on [a, b] and that every §°-fine partition P of [a, b] havmg c as a partition
point gives rise to a &'-fine partition P’ of [a, c] and a §”-fine partition " of [c, b] such that
P=Pup’
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8. Letébea gauge on I := [a, b] and suppose that I does not have a §-fine partition.
(@) Letc:=: (a + b). Show that at least one of the intervals [a, c] and [c, b] does not have a
8-fine partmon
(b) Construct a nested sequence (/,) of subintervals with the length of /, equal to (b — a)/2"
such that /, does not have a §-fine partition.
(c) Let &€ n >il, and let peN be such that (b—a)/2” <45(£). Show that
I C & - 8(&') & + 6(£)], so the pair (1 &) is a é-fine partition ofI

9. Letl :=[a,b]andlet f: I — R be a (not necessarily continuous) function. We say that f is
“locally bounded” at ¢ € [ if there exists §(c) > O such that f is boundedon I N [c — §(c), c +
8(c)]. Prove that if f is locally bounded at every point of /, then f is bounded on /.

10. Let I :=[a,b] and f : I — R. We say that f is “locally increasing” at c € I if there ex-
ists 8(c) > O such that f is increasing on I N [c — §(c), ¢ + 6(c)]. Prove that if f is locally
increasing at every point of /, then f is increasing on /.

Section 5.6 Monotone and Inverse Functions

Recall that if A C R, then a function f : A — R is said to be increasing on A if whenever
x,, X, € Aandx, < x,,then f(x,) < f(x,). The function f is said to be strictly increasing
on A if whenever x,, x, € A and x; < x,, then f(x|) < f(x,). Similarly, g: A — R is
said to be decreasing on A if whenever x,, x, € A and x, < x, then g(x,) > g(x,). The
function g is said to be strictly decreasing on A if whenever x,, x, € A and x; < x, then
g(x,) > g(xy).

If a function is either increasing or decreasing on A, we say that it is monotone on A. If
f is either strictly increasing or strictly decreasing on A, we say that f is strictly monotone

on A.
We note that if f : A — R is increasing on A then g := — f is decreasing on A;
similarly if ¢ : A — R is decreasing on A then y := —g¢ is increasing on A.

In this section, we will be concerned with monotone functions that are defined on an
interval I € R. We will discuss increasing functions explicitly, but it is clear that there are
corresponding results for decreasing functions. These results can either be obtained directly
from the results for increasing functions or proved by similar arguments.

Monotone functions are not necessarily continuous. For example, if f(x) := 0 for
x €[0,1] and f(x) :=1 for x € (1,2], then f is increasing on [0, 2], but fails to be
continuous at x = 1. However, the next result shows that a monotone function always has
both one-sided limits (see Definition 4.3.1) in R at every point that is not an endpoint of its
domain.

5.6.1 Theorem Let! C R beaninterval andlet f : I — R be increasing on I. Suppose
that ¢ € I is not an endpoint of I. Then

@) xl_if?_f =sup{f(x):x€l,x <c},
(ii) xlir?+f=inf{f(x) :xel, x> c).

Proof. (i) First note that if x € I and x < ¢, then f(x) < f(c). Hence the set { f(x) :
x € I, x < c}, which is nonvoid since ¢ is not an endpoint of /, is bounded above by f(c).
Thus the indicated supremum exists; we denote itby L. If ¢ > Ois given, then L — ¢ is not

] I _Laliln nne YVae o 2l - T L 4 .7 . rr N .T
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Since f isincreasing, we deduce thatif §, := ¢ — y, andif0 <c—y < 4,,theny, <y <c¢
so that

L—e<fO)<fO)=<L.

Therefore | f(y) — L| < € when 0 < ¢ — y < §,. Since ¢ > 0 is arbitrary we infer that (i)
holds.
The proof of (ii) is similar. QED.

The next result gives criteria for the continuity of an increasing function f at a point ¢
that is not an endpoint of the interval on which f is defined.

5.6.2 Corollary Let! C R beaninterval andlet f : I — R be increasing on I. Suppose
that ¢ € I is not an endpoint of 1. Then the following statements are equivalent.
(a) f is continuous at c.
() lim f = f(c)= lim f.
x—>c— x—>c+

€ sup{f(x):xel,x <c}= f(c)=inf{f(x):x €I, x > c}.

This follows easily from Theorems 5.6.1 and 4.3.3. We leave the details to the reader.
Let I be an interval and let f : I — R be an increasing function. If a is the left
endpoint of /, it is an exercise to show that f is continuous at a if and only if

f@) =inf{f(x):x€l,a < x}

or if and only if f(a) = lim+ f. Similar conditions apply at a right endpoint, and for

decreasing functions.
If f : I — Ris increasing on / and if c is not an endpoint of /, we define the jump of
f atctobe jf(c) = 1im+ f — lim f. (See Figure 5.6.1.) It follows from Theorem 5.5.1
X—>C X—=>C—

that
jf(c) =inf{f(x):xe€el, x>c}—sup{f(x):x €I, x <c}

for an increasing function. If the left endpoint a of I belongs to /, we define the jump of
fatatobe j.(a) := lim+ f — f(a). If the right endpoint b of I belongs to I, we define
X—ra

the jump of f at b to be j (b) := f(b) — lil;l f.

Figure 5.6.1 The jump of f atc.

5.6.3 Theorem Let!/ C R beanintervalandlet f : I — R be increasingonI.Ifc € I,
then f is continuous at c if and only if j,(c) = 0.
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Proof. If c is not an endpoint, this follows immediately from Corollary 5.6.2. If c € I is
the left endpoint of I, then f is continuous at ¢ if and only if f(c) = lim+ f, which is
X=>C

equivalent to j r(c) =0. Similar remarks apply to the case of a right endpoint. QED.

We now show that there can be at most a countable set of points at which a monotone
function is discontinuous.

5.6.4 Theorem Letl C R beaninterval andlet f : I — R be monotone on I. Then the
set of points D C I at which f is discontinuous is a countable set.

Proof. We shall suppose that f is increasing on /. It follows from Theorem 5.6.3 that
D={xel: jf (x) # 0}. We shall consider the case that I := [a, b] is a closed bounded
interval, leaving the case of an arbitrary interval to the reader.

We first note that since f is increasing, then jf (c) > 0 for all ¢ € I. Moreover, if
a <x, <---<x, <b, then (why?) we have

) f@ = f@+j, )+ + jyx,) < FB),
whence it follows that
jf (xl) +---+ jf(x,,) < f(®) - f(a).

(See Figure 5.6.2.) Consequently there can be at most k points in I = [a, b] where j(x) >
(f(b) — f(a))/k. We conclude that there is at most one point x € I where jf(x) =
f(b) — f(a); there are at most two points in / where jf(x) > (f(b) — f(a))/2; at most
three points in / where jf (x) = (f(b) — f(a))/3, and so on. Therefore there is at most a
countable set of points x where j.(x) > 0. But since every point in D must be included in
this set, we deduce that D is a countable set. QED.

I\f(b)
|
j,(x4){| |
|
I [
| |
) | |
],(Xg)l | |
| : : f(b) - Ra)
| I |
jf(“Z){| [ I I
I | I
| I I |
o
jf(xl){l | ! ! |
| [ I IJ
A S W R
b | | L
f(“): | | | | |
. | | | | |
a x1 X x3 X4 b

Figure5.6.2 j (x)) +---+j,(x,) < f(b) - f(a).
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Theorem 5.6.4 has some useful applications. For example, it was seen in Exercise
5.2.12 thatif h : R — R satisfies the identity

(2 h(x + y) = h(x) + h(y) forall x,ye€ R,

and if h is continuous at a single point x,, then A is continuous at every point of R. Thus,
if h is a monotone function satisfying (2), then A must be continuous on R. [It follows
from this that h(x) = Cx for all x € R, where C := h(1).]

Inverse Functions

We shall now consider the existence of inverses for functions that are continuous on an
interval ] € R. We recall (see Section 1.1) that a function f : I — R has an inverse
function if and only if f is injective (= one-one); that is, x, y € I and x # y imply that
S (x) # f(y). We note that a strictly monotone function is injective and so has an inverse.
In the next theorem, we show that if f : I — R is a strictly monotone continuous function,
then f has an inverse function g on J := f(I) that is strictly monotone and continuous
on J. In particular, if f is strictly increasing then so is g, and if f is strictly decreasing
thenso is g.

5.6.5 Continuous Inverse Theorem Let I C R be an interval and let f : I — R be
strictly monotone and continuous on I . Then the function g inverse to f is strictly monotone
and continuous on J := f(I).

Proof. We consider the case that f is strictly increasing, leaving the case that f is strictly
decreasing to the reader.

Since f is continuous and / is an interval, it follows from the Preservation of Intervals
Theorem 5.3.10 that J := f (/) is an interval. Moreover, since f is strictly increasing on
I, it is injective on I; therefore the function g : J — R inverse to f exists. We claim
that g is strictly increasing. Indeed, if y,, y, € J withy, < y,,theny, = f(x,)and y, =
f (x,) for some x,, x, € I. We must have x;, < x,; otherwise X, > x,, which implies that
¥ = f(x}) = f(x,) =y,, contrary to the hypothesis that y, < y,. Therefore we have
g(y)) = x; < x, = g(y,). Since y, and y, are arbitrary elements of J with y, < y,, we
conclude that g is strictly increasing on J.

It remains to show that g is continuous on J. However, this is a consequence of the fact
that g(J) = I is an interval. Indeed, if g is discontinuous at a point ¢ € J, then the jump

of g at c is nonzero so that lim g < lim+ g. If we choose any number x # g(c) satisfying
y—>c— y—c

lim g <x < lim+ 8, then x has the property that x # g(y) for any y € J. (See Figure
X—>C

X=>C—

5.6.3.) Hence x ¢ I, which contradicts the fact that 7 is an interval. Therefore we conclude
that g is continuous on J. Q.ED.

The nth Root Function

We will apply the Continuous Inverse Theorem 5.6.5 to the nth power function. We need
to distinguish two cases: (i) n even, and (ii) n odd.

(i) n even. In order to obtain a function that is strictly monotone, we restrict our
attention to the interval I := [0, 00). Thus, let f(x) := x" forx € I.(See Figure 5.6.4.) We
have seen (in Exercise 2.1.23) that if 0 < x < y, then f(x) = x" < y" = f(y); therefore f
is strictly increasing on I. Moreover, it follows from Example 5.2.3(a) that f is continuous
on I. Therefore, by the Preservation of Intervals Theorem 5.3.10, J := f(I) is an interval.
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f,(c){ gle)

Gab——m—————

Figure 5.6.3 g(y)#xforye J.

We will show that J = [0, 00). Let y > 0 be arbitrary; by the Archimedean Property, there
exists k € Nsuch that 0 < y < k. Since

fO)=0=<y<k=<k'=f(k),

it follows from Bolzano’s Intermediate Value Theorem 5.3.7 that y € J. Since y > 0 is
arbitrary, we deduce that J = [0, 00).

We conclude from the Continuous Inverse Theorem 5.6.5 that the function g that is
inverse to f(x) = x" on I = [0, 00) is strictly increasing and continuous on J = [0, 00).
We usually write

gxy=x""  or gx)=Vx

for x > 0 (n even), and call x'/* = %/x the nth root of x > 0 (n even). The function g is
called the nth root function (n even). (See Figure 5.6.5.)
Since g is inverse to f we have

g(fx))=x and f(gx))=x forall x € [0, 00).
We can write these equations in the following form:
(x)/"=x and (xV")" =x

for all x € [0, o0) and n even.

Figure 5.6.4 Graph of Figure 5.6.5 Graph of
f(x) =x" (x > 0, n even). g(x) = x'" (x > 0, n even).
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(ii) n odd. In this case we let F(x) := x" for all x € R; by 5.2.3(a), F is continuous
on R. We leave it to the reader to show that F is strictly increasing on R and that F(R) =
R. (See Figure 5.6.6.)

It follows from the Continuous Inverse Theorem 5.6.5 that the function G that is inverse
to F(x) = x" for x € R, is strictly increasing and continuous on R. We usually write

Gix)=x"" or G()= %/x forx €R,nodd,

and call x!/” the nth root of x € R. The function G is called the nth root function (n odd).
(See Figure 5.6.7.) Here we have

(Jt")l/'l =x and (x'")" =x

for all x € R and n odd.

T

Figure 5.6.6 Graph of Figure 5.6.7 Graph of
F(x) = x" (x € R, n odd). G(x) = x'* (x € R, n odd).
Rational Powers

Now that the nth root functions have been defined for n € N, it is easy to define rational
powers.

5.6.6 Definition (i) Ifm,n € Nandx > 0, we define x™/" := (x!/")™.
(ii) Ifm,n € Nand x > 0, we define x™™/* .= (x1/")~™.

Hence we have defined x” when r is a rational numberand x > 0. The graphs of x > x”
depend on whetherr > 1,r =1,0 <r < 1,r =0, or r < 0. (See Figure 5.6.8.) Since a
rational number r € Q can be written in the form r = m/n with m € Z, n € N, in many
ways, it should be shown that Definition 5.6.6 is not ambiguous. Thatis if r =m/n = p/q
withm, p € Zandn, ¢ € Nandifx > 0,then (x!/*)™ = (x!/9)?. We leave it as an exercise
to the reader to establish this relation.

5.6.7 Theorem Ifm e€Z,n €N, andx > 0, then x™" = (x™)V/".

Proof. If x>0 and m,n € Z, then (x™)" = x™ = (x")". Now let y :=x"/" =
(x'/")™ > 0 so that y" = ((x'/")")" = ((x'/")")" = x™. Therefore it follows that y =
™, QED.

The reader should also show, as an exercise, thatif x > 0 and r, s € Q, then

xXx=x=xx" and (x") =x" = ().
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Figure 5.6.8 Graphsof x — x" (x > 0).

Exercises for Section 5.6

If I := [a, b)isaninterval and f : ] — R is an increasing function, then the point a [respectively,
b] is an absolute minimum [respectively, maximum)] point for f on /. If f is strictly increasing,
then a is the only absolute minimum point for f on /.

If f and g are increasing functions on an interval / C R, show that f + g is an increasing
function on /. If f is also strictly increasing on /, then f + g is strictly increasing on /.

Show that both f(x) := x and g(x) := x — 1 are strictly increasing on / := [0, 1], but that their
product fg is not increasing on /.

Show that if f and g are positive increasing functions on an interval /, then their product fg is
increasing on /.

Show that if I := [a, b] and f : I — R is increasing on /, then f is continuous at g if and only
if f(a) = inf{f(x) : x € (a, b]}.

Let / C R be an interval and let f : I — R be increasing on /. Suppose that ¢ € I is not an
endpoint of /. Show that f is continuous at ¢ if and only if there exists a sequence (x,) in /
such that x, < cforn=1,3,5, X, > cforn=2,4,6, - --; and such that ¢ =lim(xn) and

f(e) =1im (f(x,)).

Let I € Rbe aninterval and let f : I — R be increasing on /. If ¢ is not an endpoint of /, show
thatthejumpjf(c) of f atcis given by inf{f(y) — f(x) :x <c <y, x,y € I}.

Let f, g beincreasing on an interval I C R and let f(x) > g(x) forallx € I.Ify € f(I) N g(l),
show that f~'(y) < g~ '(y). [Hint: First interpret this statement geometrically.]

Let I :=[0, 1]and let f : I — R be defined by f(x) := x for x rational, and f(x) := 1 — x for
x irrational. Show that f is injective on / and that f (f(x)) = x for all x € I. (Hence f is its

own inverse function!) Show that f is continuous only at the point x = 1.
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10. Let] :=[a,b)andlet f : I — R be continuous on /. If f has an absolute maximum [respec-
tively, minimum] at an interior point c of /, show that f is not injective on /.

11. Let f(x):= xforx € [0, 1],and f(x) := 1 + x forx € (1, 2]. Show that f and f " are strictly
increasing. Are f and f~' continuous at every point?

12. Let f : [0, 1] — R be a continuous function that does not take on any of its values twice and
with £(0) < f(1). Show that f is strictly increasing on [0, 1].

13. Let A :[0,1] — R be a function that takes on each of its values exactly twice. Show that h
cannot be continuous at every point. [Hint: If ¢, < c, are the points where } attains its supremum,
show that ¢, = 0, ¢, = 1. Now examine the points where h attains its infimum.]

14. Letx € R,x > 0. Show thatif m, p € Z, n, q € N, and mq = np, then (x'/")™ = (x'/9)?.

15. IfxeR,x > 0,andif r, s € Q, show that x"x* = x"** = x*x" and (x")’ = x"* = (x*)".
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CHAPTER 6

DIFFERENTIATION

|

Prior to the seventeenth century, a curve was generally described as a locus of points
satisfying some geometric condition, and tangent lines were obtained through geometric
construction. This viewpoint changed dramatically with the creation of analytic geometry
in the 1630s by René Descartes (1596—1650) and Pierre de Fermat (1601-1665). In this
new setting geometric problems were recast in terms of algebraic expressions, and new
classes of curves were defined by algebraic rather than geometric conditions. The concept
of derivative evolved in this new context. The problem of finding tangent lines and the
seemingly unrelated problem of finding maximum or minimum values were first seen to
have a connection by Fermat in the 1630s. And the relation between tangent lines to curves
and the velocity of a moving particle was discovered in the late 1660s by Isaac Newton.
Newton’s theory of “fluxions”, which was based on an intuitive idea of limit, would be
familiar to any modern student of differential calculus once some changes in terminology
and notation were made. But the vital observation, made by Newton and, independently, by
Gottfried Leibniz in the 1680s, was that areas under curves could be calculated by reversing
the differentiation process. This exciting technique, one that solved previously difficult area
problems with ease, sparked enormous interest among the mathematicians of the era and
led to a coherent theory that became known as the differential and integral calculus.

Isaac Newton

Isaac Newton (1642-1727) was born in Woolsthorpe, in Lincolnshire, Eng-
land, on Christmas Day; his father, a farmer, had died three months earlier.
His mother remarried when he was three years old and he was sent to live
with his grandmother. He returned to his mother at age eleven, only to be
sent to boarding school in Grantham the next year. Fortunately, a perceptive
teacher noticed his mathematical talent and, in 1661, Newton entered Trinity
College at Cambridge University, where he studied with Isaac Barrow.

When the bubonic plague struck in 1665-1666, leaving dead nearly
70,000 persons in London, the university closed and Newton spent two years back in Woolsthorpe.
It was during this period that he formulated his basic ideas concerning optics, gravitation, and his
method of “fluxions”, later called “calculus”. He returned to Cambridge in 1667 and was appointed
Lucasian Professor in 1669. His theories of universal gravitation and planetary motion were
published to world acclaim in 1687 under the title Philosophie Naturalis Principia Mathematica.
However, he neglected to publish his method of inverse tangents for finding areas and other work
in calculus, and this led to a controversy over priority with Leibniz.

Following an illness, he retired from Cambridge University and in 1696 was appointed War-
den of the British mint. However, he maintained contact with advances in science and mathematics
and served as President of the Royal Society from 1703 until his death in 1727. At his funeral,
Newton was eulogized as “the greatest genius that ever existed”. His place of burial in Westminster
Abbey is a popular tourist site.
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In this chapter we will develop the theory of differentiation. Integration theory, includ-
ing the fundamental theorem that relates differentiation and integration, will be the subject
of the next chapter. We will assume that the reader is already familiar with the geometrical
and physical interpretations of the derivative of a function as described in introductory
calculus courses. Consequently, we will concentrate on the mathematical aspects of the
derivative and not go into its applications in geometry, physics, economics, and so on.

The first section is devoted to a presentation of the basic results concerning the dif-
ferentiation of functions. In Section 6.2 we discuss the fundamental Mean Value Theorem
and some of its applications. In Section 6.3 the important L' Hospital Rules are presented
for the calculation of certain types of “indeterminate” limits.

In Section 6.4 we give a brief discussion of Taylor’s Theorem and a few of its
applications—for example, to convex functions and to Newton’s Method for the location
of roots.

Section 6.1 The Derivative

In this section we will present some of the elementary properties of the derivative. We begin
with the definition of the derivative of a function.

6.1.1 Definition Let / C R be an interval, let f : I — R, and let ¢ € I. We say that a
real number L is the derivative of f at c if given any £ > 0 there exists §(¢) > 0 such that
if x € I satisfies0 < |[x — ¢| < 8(¢), then

fx) - flo

X —C

(D Ll <e.

In this case we say that f is differentiable at ¢, and we write f'(c) for L.

In other words, the derivative of f at c is given by the limit

2 £ = lim L& = £©
xwc  x-—¢

provided this limit exists. (We allow the possibility that ¢ may be the endpoint of the

interval.)

Note It is possible to define the derivative of a function having a domain more general
than an interval (since the point ¢ need only be an element of the domain and also a cluster
point of the domain) but the significance of the concept is most naturally apparent for
functions defined on intervals. Consequently we shall limit our attention to such functions.

Whenever the derivative of f : I — R exists at a point ¢ € I, its value is denoted by
f’(c). In this way we obtain a function f’ whose domain is a subset of the domain of f.
In working with the function f’, it is convenient to regard it also as a function of x. For
example, if f(x) := x? for x € R, then at any c in R we have

_ 2 __ 2
xX—=C X —-—C X=>Cc X —C X=>rC

Thus, in this case, the function f” is defined on all of R and f’(x) = 2x for x € R.
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We now show that continuity of f at a point ¢ is a necessary (but not sufficient)
condition for the existence of the derivative at c.

6.1.2 Theorem If f: I — R has a derivative at ¢ € I, then f is continuous at c.

Proof. Forallx € I, x # c, we have
fx)— f(C)) x — o).

X —=cC

f(x)—f(0)=(

Since f'(c) exists, we may apply Theorem 4.2.4 concerning the limit of a product to

conclude that
al:l—qcl:(f(x) - f(C)) = llll"l: (f( ) — f(C)) (.t-»c x - C))

—-C

= f(c)-0=0.

Therefore, lim f(x) = f(c) so that f is continuous at c. QE.D.
X=>C

The continuity of f: I — R at a point does not assure the existence of the derivative
at that point. For example, if f(x) := |x| for x € R, then for x # 0 we have (f(x) —
f(0))/(x —0) = |x|/x whichisequalto 1 if x > 0,and equalto —1if x < 0. Thus the limit
at 0 does not exist [see Example 4.1.10(b)], and therefore the function is not differentiable
at 0. Hence, continuity at a point c is not a sufficient condition for the derivative to exist
at c.

Remark By taking simple algebraic combinations of functions of the form x > |x — ¢,
it is not difficult to construct continuous functions that do not have a derivative at a finite (or
even a countable) number of points. In 1872, Karl Weierstrass astounded the mathematical
world by giving an example of a function that is continuous at every point but whose
derivative does not exist anywhere. Such a function defied geometric intuition about curves
and tangent lines, and consequently spurred much deeper investigations into the concepts
of real analysis. It can be shown that the function f defined by the series

o0

1
f(x):= Z > cos(3" )
n=0

has the stated property. A very interesting historical discussion of this and other examples of
continuous, nondifferentiable functions is given in Kline, p. 955-966, and also in Hawkins,
p. 44—46. A detailed proof for a slightly different example can be found in Appendix E.

There are a number of basic properties of the derivative that are very useful in the
calculation of the derivatives of various combinations of functions. We now provide the
justification of some of these properties, which will be familiar to the reader from earlier
courses.

6.1.3 Theorem LetI CR be an interval, letce€ I, andlet f:I - Randg: I - R
be functions that are differentiable at c. Then:

(a) Ifa € R, then the function af is differentiable at c, and
3) (@f) (c) =af' (o).
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(b) The function f + g is differentiable at c, and

“4) (f+8)()=f'(c)+ 8.
(c) (Product Rule) The function fg is differentiable at ¢, and
(5) (f8)' () = f'(c)g(c) + f(c)g'(c).

(d) (Quotient Rule) If g(c) # O, then the function f/g is differentiable at ¢, and

Y, _ f©glc) - f(e)g'(c)
=) ©= - :
8 (8©)

Proof. We shall prove (c) and (d), leaving (a) and (b) as exercises for the reader.
(c) Let p := fg;thenfor x € I, x # c, we have

p(x) — p(c) _ f(x)gx) — f(c)g(c)

(6)

X —C X —C
_ fx)gx) — flc)g(x) + f(c)g(x) — f(c)g(c)
X —C
_ f&x)—f() ) + f(©) - g(x) —g(c).
X —C X —-C

Since g is continuous at ¢, by Theorem 6.1.2, then lim g(x) = g(c). Since f and g are
X—>C
differentiable at ¢, we deduce from Theorem 4.2.4 on properties of limits that

lim B(—x;)‘”:—cp_(c_) = f'(c)g(c) + f(c)g(c).

Hence p := fg is differentiable at ¢ and (5) holds.

(d) Let g := f/g. Since g is differentiable at c, it is continuous at that point (by
Theorem 6.1.2). Therefore, since g(c) # 0, we know from Theorem 4.2.9 that there exists
an interval J C I with c € J such that g(x) #2 O forall x € J. Forx € J, x # c, we have

q(x) —q(c) _ f(x)/g(x) — f(c)/g(c) _ f(x)g(c) — f(c)g(x)
x—c x—c T g(x)ge)x — o)
f(x)g(c) — f(c)g(c) + f(c)g(c) — f(c)g(x)
8(x)g(c)(x —¢)

__ 1 f®-f@ o
~ $08© [ x—c (89T SOT

Using the continuity of g at ¢ and the differentiability of f and g at ¢, we get

) = i 12 =90 _ F O8O = fO8'©)
xX—=c X —-C (g(c))

Thus, ¢ = f/g is differentiable at ¢ and equation (6) holds. QED.

Mathematical Induction may be used to obtain the following extensions of the differ-
entiation rules.

g(x) — 8(0)]

c

6.1.4 Corollary Iff,, f,,---, f, are functions on an interval I toR that are differentiable
atc € I, then:

(@) The function f, + f, + - - - + f, is differentiable at ¢ and
0 fi+ ot -+ )OO =£)+ f1&)+---+ fl(c).
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(b) The function f, f, - - - f, is differentiable at c, and
(8) (fify - £,)(© = £i©fr(0) -+ f,(0) + f,(c) f(C) - - - £, (c)
+--+ f1(0) f,(0) - - f,(0).
An important special case of the extended product rule (8) occurs if the functions are
equal, thatis, f, = f, = --- = f, = f. Then (8) becomes
9) (f"(©) =n(f ()" f'©).

In particular, if we take f(x) := x, then we find the derivative of g(x) := x" tobe g'(x) =
nx"~!, n € N. The formula is extended to include negative integers by applying the Quotient
Rule 6.1.3(d).

Notation If / C R is an interval and f : I — R, we have introduced the notation f’ to
denote the function whose domain is a subset of / and whose value at a point c is the
derivative f'(c) of f at c. There are other notations that are sometimes used for f’; for
example, one sometimes writes Df for f’. Thus one can write formulas (4) and (5) in the
form:

D(f + g) = Df + Dg, D(fg) = (Df)-g + f - (Dg).

When x is the “independent variable”, it is common practice in elementary courses to write
df/dx for f'. Thus formula (5) is sometimes written in the form

d _ (¥ a8
‘K(f(x)g(x)) = (dx (x)) glx)+ f(x) (dx (x)).

This last notation, due to Leibniz, has certain advantages. However, it also has certain
disadvantages and must be used with some care.

The Chain Rule

We now turn to the theorem on the differentiation of composite functions known as the
“Chain Rule”. It provides a formula for finding the derivative of a composite function g o f
in terms of the derivatives of g and f.

We first establish the following theorem concerning the derivative of a function at a
point that gives us a very nice method for proving the Chain Rule. It will also be used to
derive the formula for differentiating inverse functions. .

6.1.5 Carathéodory’s Theorem Let f be defined on an interval I containing the point c.
Then f is differentiable at c if and only if there exists a function ¢ on I that is continuous
at c and satisfies

(10) fX)=fl@)=ex)x—c) for xel.
In this case, we have ¢(c) = f'(c).

Proof. (=) If f'(c) exists, we can define ¢ by

f&x) = f(o)
¢(x) = T for x:,éC,XGI,
f'(©) for x =c.

The continuity of ¢ follows from the fact that lim ¢(x) = f'(c). If x = c, then both sides
X=rC

of (10) equal 0, while if x # c, then multiplication of ¢(x) by x — ¢ gives (10) for all other

xel.
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(<) Now assume that a function ¢ that is continuous at ¢ and satisfying (10) exists. If
we divide (10) by x — ¢ # 0, then the continuity of ¢ implies that

i 2% = f(©)

¢(c) = limg(x) =
X—c x—c X —-C

exists. Therefore f is differentiable at ¢ and f'(c) = ¢(c). QE.D.

To illustrate Carathéodory’s Theorem, we consider the function f defined by f(x) :=
x3 for x € R. For c € R, we see from the factorization

-3 = (x2+cx+cz)(x —-c)

that p(x) := x2 + cx + c? satisfies the conditions of the theorem. Therefore, we conclude
that f is differentiable at ¢ € R and that f’(c) = ¢(c) = 3c>.

We will now establish the Chain Rule. If f is differentiable at ¢ and g is differentiable
at f(c), then the Chain Rule states that the derivative of the composite function g o f at ¢
is the product (g o £)'(c) = g'(f(c)) - f'(c). Note this can be written

(8o f)Y =@of) f.

One approach to the Chain Rule is the observation that the difference quotient can be
written, when f(x) # f(c), as the product

g(fw) —g(f©) _ g(f) —g(f©) fx)—f)
x—c T fx) = f(o) x—c

This suggests the correct limiting value. Unfortunately, the first factor in the product on
the right is undefined if the denominator f(x) — f(c) equals O for values of x near c, and
this presents a problem. However, the use of Carathéodory’s Theorem neatly avoids this
difficulty.

6.1.6 Chain Rule Let!, J beintervalsinR,letg : I — Rand f : J — R be functions
such that f(J) € 1, and let c € J. If f is differentiable at ¢ and if g is differentiable at
f(c), then the composite function g o f is differentiable at ¢ and

(11) (8o fY @) =g'(f(e)- f(e).

Proof. Since f'(c) exists, Carathéodory’s Theorem 6.1.5 implies that there exists a func-
tion ¢ on J such that ¢ is continuous at ¢ and f(x) — f(c) = ¢(x)(x — ) for x € J,
and where ¢(c) = f'(c). Also, since g’( f(c)) exists, there is a function ¥ defined on /
such that i is continuous at d := f(c) and g(y) — g(d) = ¥ (y)(y — d) for y € I, where
¥ (d) = g'(d). Substitution of y = f(x) andd = f(c) then produces

g(f®)) - g(f©) =v(f®)(fx) = f(©) =[(¥ o F(¥)) - 0(®)](x —©)
for all x € J such that f(x) € I. Since the function (¥ o f) - ¢ is continuous at ¢ and its
value at ¢ is g'(f(c)) - f'(c), Carathéodory’s Theorem gives (11). QED.

If g is differentiable on I, if f is differentiable on J and if f(J) C I, then it follows
from the Chain Rule that (g o f)' = (g’ o f) - f’ which can also be written in the form

D(go f)=(Dgo f) - Df.
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6.1.7 Examples (a) If f: I — R is differentiable on I and g(y) := y" for y € R and
n € N, then since g’(y) = ny"”!, it follows from the Chain Rule 6.1.6 that

oY) =g(fx) - f'(x) for xel.

Therefore we have (") (x) = n(f(x))"-lf'(x) for all x € I as was seen in (9).

(b) Suppose that f : I — R is differentiable on I and that f(x) # 0 and f'(x) # O for
x € 1. If h(y) :=1/y for y # 0, then it is an exercise to show that h’(y) = —1/y? for
y € R, y # 0. Therefore we have

for xel.

(1) (x) = (ho fY@) = K(f0) f'tx) = — LEL
f ()
(c) The absolute value function g(x) := |x| is differentiable at all x % 0 and has derivative
g'(x) = sgn(x) for x # 0. (The signum function is defined in Example 4.1.10(b).) Though
sgn is defined everywhere, it is not equal to g’ at x = 0 since g’(0) does not exist.

Now if f is a differentiable function, then the Chain Rule implies that the function
g o f = | f| is also differentiable at all points x where f(x) # 0, and its derivative is given
by

£7 ) = sgn (FxN - £1(x) = { T & oo
If f is differentiable at a point ¢ with f(c) = 0, then it is an exercise to show that | f| is
differentiable at ¢ if and only if f'(c) = 0. (See Exercise 7.)
For example, if f(x) := x2 — 1 for x € R, then the derivative of its absolute value
[f1(x) = |x2 = 1]is equalto | f|'(x) = sgn(x2 ~1)-(2x) forx # 1, —1. See Figure 6.1.1
for a graph of | f|.

<

LI O IO I B B |

L by a0 Y [N R U I O O .

-2 -1 1 2

X

Figure 6.1.1 The function | f|(x) = |x% — 1].

(d) It will be proved later that if S(x) := sinx and C(x) := cos x for all x € R, then
S'(x) =cosx = C(x) and C'(x) = —sinx = —S(x)

for all x € R. If we use these facts together with the definitions

sinx 1

tanx := secx =

cosx’ cosx’
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forx # (2k + 1) /2, k € Z, and apply the Quotient Rule 6.1.3(d), we obtain

Ditanx — (cosx)(cos x) — (snznx)(— sin x) — (secx)?,
(cos x)
0 — I(—si i
Dsecx = ( 312nx) = _Smox 5 = (secx)(tanx)
(cosx) (cosx)
forx # Qk+ )n/2,k € Z.
Similarly, since
cos x
cotx ;= —, csCx = ——
sin x sin x
for x # km, k € Z, then we obtain
Dcotx = —(cscx)? and D cscx = —(cscx)(cotx)

forx #kn,k € Z.
(e) Suppose that f is defined by

i x2sin(1/x) for x #0,
f(x)'“[o for x =0.

If we use the fact that D sinx = cosx for all x € R and apply the Product Rule 6.1.3(c)
and the Chain Rule 6.1.6, we obtain (why?)

f/(x) = 2xsin(1/x) —cos(1/x)  for x #O.

If x = 0, none of the calculational rules may be applied. (Why?) Consequently, the deriva-
tive of f at x = 0 must be found by applying the definition of derivative. We find that

- 2.
f®) - fO _ lim ¥ sin (1/x)

) = }1_13(1) =0 lim . = J}1_1’1(1)x sin(1/x) =0.
Hence, the derivative f’ of f exists at all x € R. However, the function f’ does not have a
limit at x = 0 (why?), and consequently f’ is discontinuous at x = 0. Thus, a function f

that is differentiable at every point of R need not have a continuous derivative f’. O

Inverse Functions

We will now relate the derivative of a function to the derivative of its inverse function,
when this inverse function exists. We will limit our attention to a continuous strictly
monotone function and use the Continuous Inverse Theorem 5.6.5 to ensure the existence
of a continuous inverse function.

If f is a continuous strictly monotone function on an interval 7, then its inverse function
g = f~!is defined on the interval J := f(I) and satisfies the relation

g(fx))=x for xel

If cel and d := f(c), and if we knew that both f’(c) and g’(d) exist, then we could
differentiate both sides of the equation and apply the Chain Rule to the left side to get
g'(f(©) - f'(c) = 1. Thus, if f'(c) # 0, we would obtain

1
) = ——.
§D=2%



6.1 THE DERIVATIVE 165

However, it is necessary to deduce the differentiability of the inverse function g from the
assumed differentiability of f before such a calculation can be performed. This is nicely
accomplished by using Carathéodory’s Theorem.

6.1.8 Theorem Let I be an interval in R and let f : I — R be strictly monotone and
continuouson I.LetJ := f(I)andletg : J — R be the strictly monotone and continuous
function inverse to f. If f is differentiable at c € I and f'(c) # O, then g is differentiable
atd := f(c) and

1 1
f'©  fg@)

(12) g =

Proof. Given c € R, we obtain from Carathéodory’s Theorem 6.1.5 a function ¢ on /
with properties that ¢ is continuous atc, f(x) — f(c) = ¢(x)(x —c) forx € I,and ¢(c) =
f'(c). Since ¢(c) # 0 by hypothesis, there exists a neighborhood V := (c — &, ¢ + 8) such
that ¢(x) # 0 forallx € V N I. (See Theorem 4.2.9.) If U := f(V N I), then the inverse
function g satisfies f(g(y)) = y forall y € U, so that

y—d=f(g) - f©)=¢(g®)- (2) — g(@).
Since ¢(g(y)) # 0 for y € U, we can divide to get

1
8(y) —gd) = (y—a).
e(g(»)
Since the function 1/(gp o g) is continuous at d, we apply Theorem 6.1.5 to conclude that
g'(d) exists and g'(d) = 1/¢(g(d)) = 1/¢(c) = 1/f'(c). QED.

Note The hypothesis, made in Theorem 6.1.8, that f'(c) # O is essential. In fact, if
f'(¢) = 0, then the inverse function g is never differentiable atd = f(c), since the assumed
existence of g'(d) would lead to 1 = f'(c)g’(d) = 0, which is impossible. The function
f(x) := x* with ¢ = 0 is such an example.

6.1.9 Theorem Let be an interval and let f : I — R be strictly monotone on I. Let
J:= f(I) andlet g : J — R be the function inverse to f. If f is differentiable on I and
f'(x) #0 forx € I, then g is differentiable on J and

1
" flog’

(13) g

Proof. If f is differentiable on 7, then Theorem 6.1.2 implies that f is continuous on 7,
and by the Continuous Inverse Theorem 5.6.5, the inverse function g is continuous on J.
Equation (13) now follows from Theorem 6.1.8. QED.

Remark If f and g are the functions of Theorem 6.1.9, and if x € 7 and y € J are related
by y = f(x) and x = g(y), then equation (13) can be written in the form
1 1
') = ————— €J, or "o fx)=——, xe€l
£0 = Fogor &' o N0 =
It can also be written in the form g'(y) = 1/f'(x), provided that it is kept in mind that x
and y are related by y = f(x) and x = g(y).



6.1.10 Examples (a) The function f : R — R defined by f(x) := x> + 4x + 3iscon-
tinuous and strictly monotone increasing (since it is the sum of two strictly increasing func-
tions). Moreover, f'(x) = 5x* 4 4 is never zero. Therefore, by Theorem 6.1.8, the inverse
function g = f~! is differentiable at every point. If we take ¢ = 1, then since f(1) =8,
we obtain g'(8) = g'(f(1)) = 1/f'(1) = 1/9.

(b) Letn € N be even, let I := [0, 00), and let f(x) := x" for x € I. It was seen at the
end of Section 5.6 that f is strictly increasing and continuous on /, so that its inverse
function g(y) := y'/" fory € J := [0, 00) is also strictly increasing and continuous on J.
Moreover, we have f'(x) = nx""! for all x € I. Hence it follows that if y > 0, then g’(y)
exists and { q

1
f(g®») n(g(y))"'l "~ ny®b/m

gy =

Hence we deduce that {
gy = ;y“/""' for y>0.

However, g is not differentiable at 0. (For a graph of f and g, see Figures 5.6.4 and 5.6.5.)
(¢) Letn € N,n # 1,beodd, let F(x) := x" forx € R, andlet G(y) := y'/" be its inverse
function defined for all y € R. As in part (b) we find that G is differentiable for y # 0
and that G'(y) = (1/n)y""/"~! for y 3£ 0. However, G is not differentiable at 0, even
though G is differentiable for all y # 0. (For a graph of F and G, see Figures 5.6.6 and
5.6.7.)

(d) Letr :=m/n be a positive rational number, let I := [0, 00), and let R(x) := x" for
x € I. (Recall Definition 5.6.6.) Then R is the composition of the functions f(x) := x™
and g(x) := x"", x € I. That is, R(x) = f(g(x)) for x € I. If we apply the Chain Rule
6.1.6 and the results of (b) [or (c), depending on whether n is even or odd], then we obtain

R'x) = f'(gx))g'(x) = m(x'/"m-1. %x('/")‘l

=M mm-1 -
n
forall x > 0. If r > 1, then it is an exercise to show that the derivative also exists at x =0
and R’(0) = 0. (For a graph of R see Figure 5.6.8.)
(e) The sine function is strictly increasing on the interval I := [—n/2, m/2]; therefore
its inverse function, which we will denote by Arcsin, exists on J := [—1, 1]. That is, if
x € [-n/2,n/2]and y € [—1, 1]then y = sin x if and only if Arcsin y = x. It was asserted
(without proof) in Example 6.1.7(d) that sin is differentiable on / and that Dsinx =
cos x for x € I. Since cos x # O for x in (—n /2, 7 /2) it follows from Theorem 6.1.8 that

D Arcsiny = 1 = L
Dsinx cosx
_ 1 _ 1
S Vi-Ginn? V1-
for all y € (—1, 1). The derivative of Arcsin does not exist at the points —1 and 1. 4

Exercises for Section 6.1

1. Use the definition to find the derivative of each of the following functions:
(@ f(x):=x3forxeR, ®) g(x):=1/xforx eR, x #0,
() h(x):=/xforx >0, d) kx):=1//xforx > 0.



10.

11.

12.

13.

14.

15.

16.

17.
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Show that f(x) := x'/?, x € R, is not differentiable at x = 0.
Prove Theorem 6.1.3(a), (b).

Let f : R — R be defined by f(x) := x? for x rational, f(x) := O for x irrational. Show that
f is differentiable at x = 0, and find f'(0).

Differentiate and simplify:
@ f&x):= T ®) g(x):=v5-2x+x2,

(c) h(x):= (sinx*)" form,k € N, (d) k(x) := tan(x?) for |x| < /7/2.

Letn € Nandlet f : R &> Rbedefined by f(x) := x" forx > 0and f(x) := 0forx < 0. For
which values of n is f’ continuous at 0? For which values of n is f’ differentiable at 0?

Suppose that f : R — R is differentiable at ¢ and that f(c) = 0. Show that g(x) := | f(x)] is
differentiable at c if and only if f'(c) = 0.

Determine where each of the following functions from R to R is differentiable and find the
derivative:

@ fx):=Ixl+Ix+1], ) gx):=2x+|x|,

©) h(x) :=x|x|, (@) k(x):=|sinx|,

Prove that if f : R — R is an even function [that is, f(—x) = f(x) for all x € R] and has a
derivative at every point, then the derivative f’ is an odd function [that is, f'(—x) = — f'(x)
for all x € R). Also prove that if g : R — R is a differentiable odd function, then g’ is an even
function.

Let g : R — R be defined by g(x) := x2sin(1/x?) for x # 0, and g(0) := 0. Show that g is
differentiable for all x € R. Also show that the derivative g’ is not bounded on the interval
[-1,1).

Assume that there exists a function L : (0, o0) = R suchthat L'(x) = 1/x for x > 0. Calculate
the derivatives of the following functions:

(@ f(x):=L2x+3)forx >0, b) gx):= (L(x%)?forx > 0,

(¢) h(x):=L(ax)fora>0,x >0, (d k(x):=L(L(x))whenL(x)>0,x>0.

If r > O is a rational number, let f : R — R be defined by f(x) := x" sin(1/x) for x # 0, and
£(0) := 0. Determine those values of r for which f’(0) exists.

If f : R —> Ris differentiable at ¢ € R, show that
f© =1lm(n{fc+1/n)— fO)}).

However, show by example that the existence of the limit of this sequence does not imply the
existence of f'(c).

Given that the function A(x) := x> + 2x + 1 for x € R has an inverse #~! on R, find the value
of (h~')'(y) at the points corresponding to x =0, 1, —1.

Given that the restriction of the cosine function cos to / := [0, ] is strictly decreasing and
that cos0 =1, cosm® = —1, let J :=[—1, 1], and let Arccos: J — R be the function inverse
to the restriction of cos to /. Show that Arccos is differentiable on (—1, 1) and DArccos y =
(=1)/(1 = y»)'* for y € (—1, 1). Show that Arccos is not differentiable at —1 and 1.

Given that the restriction of the tangent function tan to / := (—n/2, 7r/2) is strictly increasing
and that tan(/) = R, let Arctan: R — R be the function inverse to the restriction of tan to /.
Show that Arctan is differentiable on R and that DArctan(y) = (1 + y?)~! fory € R.

Let f : I — R be differentiable at ¢ € /. Establish the Straddle Lemma: Given ¢ > 0 there
exists 8(¢) > 0 such that if u, v € I satisfy ¢ — 8(¢) < u < ¢ < v < ¢+ 8(¢), then we have
|f(v) — fw) — (v—w)f'(c)] < & — u). [Hins: The 5(¢) is given by Definition 6.1.1. Sub-
tract and add the term f(c) — cf’(c) on the left side and use the Triangle Inequality.]
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Section 6.2 The Mean Value Theorem

The Mean Value Theorem, which relates the values of a function to values of its derivative,
is one of the most useful results in real analysis. In this section we will establish this
important theorem and sample some of its many consequences.

We begin by looking at the relationship between the relative extrema of a function
and the values of its derivative. Recall that the function f : I — R is said to have a
relative maximum [respectively, relative minimum] at ¢ € [ if there exists a neighborhood
V := Vj(c) of c such that f(x) < f(c) [respectively, f(c) < f(x)]forallxin V N I. We
say that f has a relative extremum at c € / if it has either a relative maximum or a relative
minimum at c.

The next result provides the theoretical justification for the familiar process of finding
points at which f has relative extrema by examining the zeros of the derivative. However,
it must be realized that this procedure applies only to interior points of the interval. For
example, if f(x) := x on the interval I := [0, 1], then the endpoint x = 0 yields the unique
relative minimum and the endpoint x = 1 yields the unique maximum of f on 7, but neither
point is a zero of the derivative of f.

6.2.1 Interior Extremum Theorem Let c be an interior point of the interval I at which
f: I — R has a relative extremum. If the derivative of f at c exists, then f'(c) = 0.

Proof. We will prove the result only for the case that f has a relative maximum at c; the
proof for the case of a relative minimum is similar.
If f'(c) > 0, then by Theorem 4.2.9 there exists a neighborhood V C I of ¢ such that

fx) = f() S
xX—c
If x € V and x > c, then we have

fX)=fe)=x—-c)-

But this contradicts the hypothesis that f has a relative maximum at c. Thus we cannot
have f'(c) > 0. Similarly (how?), we cannot have f’(c) < 0. Therefore we must have
f'©)=0. QED.

0 for xeV, x#ec.

f&x)— f(c) S

X —C

0.

6.2.2 Corollary Let f: I — R be continuous on an interval I and suppose that f has a
relative extremum at an interior point ¢ of I. Then either the derivative of f at ¢ does not
exist, or it is equal to zero.

We note thatif f(x) := |x|on I := [—1, 1], then f has an interior minimum at x = 0;
however, the derivative of f fails to exist at x = 0.

6.2.3 Rolle’s Theorem Suppose that f is continuous on a closed interval I := [a, b], that
the derivative f’ exists at every point of the open interval (a, b), and that f (a) = f(b) = 0.
Then there exists at least one point c in (a, b) such that f'(c) = 0.

Proof. If f vanishes identically on /, then any c in (a, b) will satisfy the conclusion of
the theorem. Hence we suppose that f does not vanish identically; replacing f by — f
if necessary, we may suppose that f assumes some positive values. By the Maximum-
Minimum Theorem 5.3.4, the function f attains the value sup{f(x) : x € I} > 0 at some
point ¢ in /. Since f(a) = f(b) = 0, the point ¢ must lie in (a, b); therefore f'(c) exists.
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f1e)=0

[ S M M ——

Figure 6.2.1 Rolle’s Theorem

Since f has a relative maximum at ¢, we conclude from the Interior Extremum Theorem
6.2.1 that f'(c) = 0. (See Figure 6.2.1.) QED.

As a consequence of Rolle’s Theorem, we obtain the fundamental Mean Value
Theorem.

6.2.4 Mean Value Theorem Suppose that f is continuous on a closed interval I :=
[a, b], and that f has a derivative in the open interval (a, b). Then there exists at least one
point c in (a, b) such that

f®) - f@) = f'(c)(b - a).

Proof. Consider the function ¢ defined on I by

b —
o) = 5 - @y - LT D g

[The function ¢ is simply the difference of f and the function whose graph is the line
segment joining the points (a, f(a)) and (b, f(b)); see Figure 6.2.2.] The hypotheses of
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]
c

[~
L]

Figure 6.2.2 The Mean Value Theorem
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Rolle’s Theorem are satisfied by ¢ since ¢ is continuous on [a, b], differentiable on (a, b),
and ¢(a) = ¢(b) = 0. Therefore, there exists a point c in (a, b) such that

fb)— f(a)
b—a

Hence, f(b) — f(a) = f'(c)(b — a). QE.D.

0=9¢'(c)=f'(c) -

Remark The geometric view of the Mean Value Theorem is that there is some point on
the curve y = f(x) at which the tangent line is parallel to the line segment through the
points (a, f(a)) and (b, f(b)). Thus it is easy to remember the statement of the Mean
Value Theorem by drawing appropriate diagrams. While this should not be discouraged,
it tends to suggest that its importance is geometrical in nature, which is quite misleading.
In fact the Mean Value Theorem is a wolf in sheep’s clothing and is the Fundamental
Theorem of Differential Calculus. In the remainder of this section, we will present some of
the consequences of this result. Other applications will be given later.

The Mean Value Theorem permits one to draw conclusions about the nature of a
function f from information about its derivative f'. The following results are obtained in
this manner.

6.2.5 Theorem Suppose that f is continuous on the closed interval I := [a, b], that f
is differentiable on the open interval (a, b), and that f'(x) = 0 for x € (a, b). Then f is
constanton I.

Proof. We will show that f(x) = f(a) for all x € I. Indeed, if x € I, x > a, is given,
we apply the Mean Value Theorem to f on the closed interval [a, x]. We obtain a point ¢
(depending on x) between a and x such that f(x) — f(a) = f'(c)(x — a). Since f'(c) =0
(by hypothesis), we deduce that f(x) — f(a) = 0. Hence, f(x) = f(a) forany x € I.
QED.

6.2.6 Corollary Suppose that f and g are continuous on I := [a, b], that they are dif-
ferentiable on (a. b), and that f'(x) = g'(x) for all x € (a, b). Then there exists a constant
Csuchthat f =g+ Conl.

Recall that a function f : I — R is said to be increasing on the interval / if whenever
X, X, in I satisfy x; < x,, then f(x,) < f(x,). Alsorecall that f is decreasing on [ if the
function — f is increasing on /.

6.2.7 Theorem Let f: I — R be differentiable on the interval I. Then:

(a) f isincreasing on I if and only if f'(x) > 0 forallx € I.
(b) f is decreasing on I if and only if f'(x) <0 forallx € I.

Proof. (a) Suppose that f'(x) > 0 for all x € I. If x|, x, in I satisfy x, < x,, then we
apply the Mean Value Theorem to f on the closed interval J := [x|, x,] to obtain a point
c in (x|, x,) such that

f(xz) - f(xl) = f,(c)('xZ - Xl).
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Since f'(c) >0 and x, — x, > 0, it follows that f(x,) — f(x;) = 0. (Why?) Hence,
f(x,) < f(x,) and, since x, < x, are arbitrary points in I, we conclude that f is in-
creasingon /.

For the converse assertion, we suppose that f is differentiable and increasing on /.
Thus, for any point x # c in I, we have (f(x) — f(c))/(x — ¢) > 0. (Why?) Hence, by
Theorem 4.2.6 we conclude that

£(¢) = lim f(x) = f(o) > 0.

x>¢  X-—C
(b) The proof of part (b) is similar and will be omitted. QED.

A function f is said to be strictly increasing on an interval [/ if for any points x,, x, in
I suchthatx, < x,, wehave f(x;) < f(x,). An argument along the same lines of the proof
of Theorem 6.2.7 can be made to show that a function having a strictly positive derivative on
an interval is strictly increasing there. (See Exercise 13.) However, the converse assertion
is not true, since a strictly increasing differentiable function may have a derivative that
vanishes at certain points. For example, the function f : R — R defined by f(x) := x3is
strictly increasing on R, but f'(0) = 0. The situation for strictly decreasing functions is
similar.

Remark It is reasonable to define a function to be increasing at a point if there is a
neighborhood of the point on which the function is increasing. One might suppose that,
if the derivative is strictly positive at a point, then the function is increasing at this point.
However, this supposition is false; indeed, the differentiable function defined by

| x+2x%sin(1/x) if x#0,
() '—[ 0 if x=0,

is such that g’(0) = 1, yet it can be shown that g is not increasing in any neighborhood of
x = 0. (See Exercise 10.)

We next obtain a sufficient condition for a function to have a relative extremum at an
interior point of an interval.

6.2.8 First Derivative Test for Extrema Let f be continuous on the interval I := [a, b]
and let ¢ be an interior point of I. Assume that f is differentiable on (a, c) and (c, b). Then:

(a) If there is a neighborhood (¢ — 8,c +8) € I such that f'(x) >0 forc—8 <x <c
and f'(x) <0 forc < x < c+34, then f has a relative maximum at c.
(b) If there is a neighborhood (c — 8, c +8) € I such that f'(x) <0forc—8 <x <c
and f'(x) > 0 forc < x < c+34, then f has a relative minimum at c.

Proof. (a) If x € (¢ — §,c), then it follows from the Mean Value Theorem that there
exists a point ¢, € (x, ¢) such that f(c) — f(x) = (c — x) f'(c,). Since f'c,) >0 we
infer that f(x) < f(c) for x € (c — §, ¢). Similarly, it follows (how?) that f(x) < f(c)
for x € (c, ¢ + 8). Therefore f(x) < f(c) forall x € (c — 8, c + 5) sothat f has a relative
maximum at c.

(b) The proof is similar. QED.

Remark The converse of the First Derivative Test 6.2.8 is not true. For example, there
exists a differentiable function f : R — R with absolute minimum at x = 0 but such that
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S’ takes on both positive and negative values on both sides of (and arbitrarily close to)
x = 0. (See Exercise 9.)

Further Applications of the Mean Value Theorem

We will continue giving other types of applications of the Mean Value Theorem; in doing
so we will draw more freely than before on the past experience of the reader and his or her
knowledge concerning the derivatives of certain well-known functions.

6.2.9 Examples (a) Rolle’s Theorem can be used for the location of roots of a function.
For, if a function g can be identified as the derivative of a function f, then between any two
roots of f there is at least one root of g. For example, let g(x) := cos x, then g is known to
be the derivative of f(x) := sinx. Hence, between any two roots of sin x there is at least
one root of cos x. On the other hand, g’'(x) = —sinx = — f(x), so another application of
Rolle’s Theorem tells us that between any two roots of cos there is at least one root of sin.
Therefore, we conclude that the roots of sin and cos interlace each other. This conclusion
is probably not news to the reader; however, the same type of argument can be applied to
the Bessz1 functions J, of order n = 0, 1, 2, - - - by using the relations

x"J,@©)) =x"J,_(x), "' x)=-x"J, () for x>0.

The details of this argument should be supplied by the reader.

(b) We can apply the Mean Value Theorem for approximate calculations and to obtain
error estimates. For example, suppose it is desired to evaluate +/105. We employ the Mean
Value Theorem with f(x) := /X, a = 100, b = 105, to obtain

5

for some number ¢ with 100 < ¢ < 105. Since 10 < ./c < +/105 < /121 = 11, we can
assert that

5 5
2 05— 10 < ——,
2an < V! = 2010

whence it follows that 10.2272 < 4/105 < 10.2500. This estimate may not be as sharp as
desired. It is clear that the estimate ./c < +/105 < /121 was wasteful and can be improved
by making use of our conclusion that +/105 < 10.2500. Thus, \/c < 10.2500 and we easily
determine that

5
.24 —_— - 10.
0.2439 < 2(10.2500) < /105 -10

Our improved estimate is 10.2439 < +/105 < 10.2500. a

Inequalities

One very important use of the Mean Value Theorem is to obtain certain inequalities.
Whenever information concerning the range of the derivative of a function is available, this
information can be used to deduce certain properties of the function itself. The following
examples illustrate the valuable role that the Mean Value Theorem plays in this respect.
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6.2.10 Examples (a) The exponential function f(x) := ¢* has the derivative f'(x) =
e* forall x € R. Thus f'(x) > 1 forx > 0,and f'(x) < 1 for x < 0. From these relation-
ships, we will derive the inequality

1) e>14x for x € R,

with equality occurring if and only if x = 0.

If x = 0, we have equality with both sides equal to 1. If x > 0, we apply the Mean
Value Theorem to the function f on the interval [0, x]. Then for some ¢ with 0 < ¢ < x
we have

& — e =e(x - 0).

Since ¢® = 1 and ¢ > 1, this becomes e* — 1 > x so that we have ¢* > 1 + x for x > 0.
A similar argument establishes the same strict inequality for x < 0. Thus the inequality (1)
holds for all x, and equality occurs only if x = 0.

(b) The function g(x) := sinx has the derivative g’(x) = cos x forall x € R. On the basis
of the fact that —1 < cosx < 1 for all x € R, we will show that

(2) —x <sinx <x forall x>0.

Indeed, if we apply the Mean Value Theorem to g on the interval [0, x], where x > 0, we
obtain

sinx — sin0 = (cosc)(x — 0)

for some ¢ between 0 and x. Since sin0 = 0and —1 < cosc < 1, we have —x < sinx < x.
Since equality holds at x = 0, the inequality (2) is established.

(c¢) (Bemoulli’s inequality) If o > 1, then
3) AQ4+x)X>14ax forall x > -1,

with equality if and only if x = 0.

This inequality was established earlier, in Example 2.1.13(c), for positive integer
values of o by using Mathematical Induction. We now derive the more general version by
employing the Mean Value Theorem.

If h(x) := (1 + x)* then A'(x) = a(1 + x)*~! for all x > —1. [For rational « this
derivative was established in Example 6.1.10(c). The extension to irrational will be dis-
cussed in Section 8.3.] If x > 0, we infer from the Mean Value Theorem applied to 4 on
the interval [0, x] that there exists ¢ with 0 < ¢ < x such that A(x) — h(0) = A'(c)(x — 0).
Thus, we have

A+x)*-1=a(+c)* x.

Since ¢ > 0 and a — 1 > 0, it follows that (1 + ¢)*~! > 1 and hence that (1 + x)* >
1 +ax. If -1 < x <0, a similar use of the Mean Value Theorem on the interval [x, 0]
leads to the same strict inequality. Since the case x = 0 results in equality, we conclude
that (3) is valid for all x > —1 with equality if and only if x = 0.

(d) Let o be a real number satisfying 0 <a < 1 and let g(x) = ax — x* for x > 0.
Then g'(x) = a(l —x*'), so that g'(x) <0 for 0 <x < 1 and g’(x) > O for x > 1.
Consequently, if x > 0, then g(x) > g(1) and g(x) = g(1) if and only if x = 1. Therefore,
if x > 0and 0 < a < 1, then we have

x* <ax+(1-a).
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Ifa > 0 and b > 0 and if we let x = a/b and multiply by b, we obtain the inequality
a®b'™® < aa + (1 — a)b,
where equality holds if and only if a = b. O

The Intermediate Value Property of Derivatives

We conclude this section with an interesting result, often referred to as Darboux’s Theorem.
It states that if a function f is differentiable at every point of an interval I, then the function
f' has the Intermediate Value Property. This means that if f’ takes on values A and B, then
it also takes on all values between A and B. The reader will recognize this property as one of
the important consequences of continuity as established in Theorem 5.3.7. It is remarkable
that derivatives, which need not be continuous functions, also possess this property.

6.2.11 Lemma Let] C R be an interval, let f : I — R, let ¢ € I, and assume that f
has a derivative at c. Then:

(a) If f'(c) > O, then there is a number § > 0 such that f(x) > f (c) for x € I such that
c<x<c+3d.
() If f'(c) < O, then there is a number § > 0 such that f(x) > f(c) for x € I such that

c—d<x<c.
Proof. (a) Since
lim f&x) = f(o)

= f'(c) > 0,
xX—C X —-C

it follows from Theorem 4.2.9 that there is a number § > 0 such that if x € ] and 0 <
|x — c| < 6, then

fx) = f(o)

> 0.
xX—-c
If x € I also satisfies x > ¢, then we have
(x)— f(c
FO - fO=(x—0). LV
X —-c
Hence,if x €  andc < x < ¢ + 4, then f(x) > f(c).
The proof of (b) is similar. - QE.D.

6.2.12 Darboux’s Theorem If f is differentiable on I = [a, b] and if k is a number
between f'(a) and f’(b), then there is at least one point c in (a, b) such that f'(c) =

Proof. Suppose that f'(a) < k < f'(b). We define g on I by g(x) := kx — f(x) for
x € I.Since g is continuous, it attains a maximum value on /. Since g'(a) = k — f'(a) > 0,
it follows from Lemma 6.2.11(a) that the maximum of g does not occur at x = a. Similarly,
since g'(b) = k — f'(b) < 0, it follows from Lemma 6.2.11(b) that the maximum does not
occur at x = b. Therefore, g attains its maximum at some c in (a, ). Then from Theorem
6.2.1 we have 0 = g’'(c) = k — f'(c). Hence, f'(c) = k. QED.

6.2.13 Example The function g: [—1, 1] — R defined by

1 for 0<x <1,
gx) = 0 for x =0,
-1 for —-1<x <0,
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(which is a restriction of the signum function) clearly fails to satisfy the intermediate value
property on the interval [—1, 1]. Therefore, by Darboux’s Theorem, there does not exist a
function f such that f'(x) = g(x) forall x € [—1, 1]. In other words, g is not the derivative
on [—1, 1] of any function. ' O

Exercises for Section 6.2

10.

11.

12.

13.

14.

For each of the following functions on R to R, find points of relative extrema, the intervals on
which the function is increasing, and those on which it is decreasing:

@ f(x):=x*-3x+5, () g(x) :=3x —4x2,

©) h(x):=x*-3x-4, d) k(x):=x*+2x?-4.

Find the points of relative extrema, the intervals on which the following functions are increasing,
and those on which they are decreasing:

(@ f(x):=x+1/xforx #0, ®) gx):=x/(x*+1)forx €R,

©) h(x):=x—-2J/x+2forx >0, (d) k(x) :=2x +1/x%forx #0.

Find the points of relative extrema of the following functions on the specified domain:

@ f(x):=|x>-1|for—-4<x<4, ® gx):=1-(x-1*for0<x <2,
© h(x):=x|x2-12|for-2<x <3, d) k(x):=x(x—-8)3for0<x <9.

Leta,,a,, -, a, bereal numbers and let f be defined on R by

f(x) = z(a,. - x)? for x € R.
i=1

Find the unique point of relative minimum for f.

Leta > b > 0 and let n € N satisfy n > 2. Prove that a'/" — b'/" < (a — b)!/". [Hint: Show
that f(x) := x'" — (x — 1)!/" is decreasing for x > 1, and evaluate f at 1 and a/b.]

Use the Mean Value Theorem to prove that | sinx — siny| < |[x — y| for all x, y in R.

Use the Mean Value Theorem to prove that (x — 1)/x < Inx < x — 1 forx > 1. [Hint: Use the
factthat DInx = 1/x for x > 0.]

Let f: [a, b] = R be continuous on [a, b] and differentiable in (a, b). Show that if lim f'(x) =
A, then f'(a) exists and equals A. [Hinr: Use the definition of f’(a) and the Mean Value
Theorem.]

Let f : R — R be defined by f(x) := 2x* + x*sin(1/x) for x 3 0 and £(0) := 0. Show that
f has an absolute minimum at x = 0, but that its derivative has both positive and negative values
in every neighborhood of 0.

Let g : R — R be defined by g(x) := x + 2x?sin(1/x) for x # 0 and g(0) := 0. Show that
g'(0) = 1, but in every neighborhood of O the derivative g’(x) takes on both positive and
negative values. Thus g is not monotonic in any neighborhood of 0.

Give an example of a uniformly continuous function on [0, 1] that is differentiable on (0, 1) but
whose derivative is not bounded on (0, 1).

Ifh(x) := O0forx < Oand h(x) := 1forx > 0, prove there does not exist a function f : R - R
such that f'(x) = h(x) forall x € R. Give examples of two functions, not differing by a constant,
whose derivatives equal A(x) for all x # 0.

Let I be an interval and let f : I — R be differentiable on I. Show that if f’ is positive on 7,
then f is strictly increasing on /.

Let 7 be an interval and let f : I — R be differentiable on /. Show that if the derivative f’ is
never 0 on /, then either f'(x) > Oforallx € I or f'(x) <Oforall x € I.
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15. Let I be an interval. Prove that if f is differentiable on / and if the derivative f’ is bounded on
I, then f satisfies a Lipschitz condition on /. (See Definition 5.4.4.)
16. Let f: [0, 00) — R be differentiable on (0, 0o) and assume that f'(x) — b as x — oo.
(a) Show that for any h > 0, we have lim (f(x + h) — f(x))/h =b.
(b) Show thatif f(x) — a as x — oo, then b = 0.
(c) Show that lim ( f(x)/x) =b.

17. Let f, g be differentiable on R and suppose that f(0) = g(0) and f'(x) < g'(x) for all x > 0.
Show that f(x) < g(x) forallx > 0.
18. Let I :=[a,b] and let f : I — R be differentiable at ¢ € /. Show that for every £ > O there
exists § > Osuchthatif0 < |[x — y| <danda <x <c <y < b, then
x)— f(y) )
xX=y
19. A differentiable function f : I — R is said to be uniformly differentiable on / := [a, b] if for
every € > 0 there exists § > O such thatif 0 < |x — y| <dand x, y € I, then
X) — ’
fO = SO _ iy
xX=Yy
Show that if f is uniformly differentiable on 7, then f’ is continuous on /.
20. Suppose that f : [0, 2] — R is continuous on [0, 2] and differentiable on (0, 2), and that
fO)=0fM=1f2)=1
(a) Show that there exists ¢, € (0, 1) such that f'(c,) = 1.
(b) Show that there exists ¢, € (1, 2) such that f'(c,) =0.
(c) Show that there exists ¢ € (0, 2) such that f'(c) = 1/3.

<E.

< E.

Section 6.3 L’Hospital’s Rules

The Marquis Guillame Frangois L’ Hospital (1661-1704) was the author of the first calculus
book, L’Analyse des infiniment petits, published in 1696. He studied the then new differential
calculus from Johann Bernoulli (1667-1748), first when Bernoulli visited L'Hospital’s
country estate and subsequently through a series of letters. The book was the result of
L'Hospital’s studies. The limit theorem that became known as L'Hospital’s Rule first
appeared in this book, though in fact it was discovered by Bemnoulli.

The initial theorem was refined and extended, and the various results are collectively
referred to as L’Hospital’s (or L' Hopital’s) Rules. In this section we establish the most basic
of these results and indicate how others can be derived.

Indeterminate Forms

In the preceding chapters we have often been concerned with methods of evaluating limits.
It was shown in Theorem 4.2.4(b) that if A := lim f(x) and B := lim g(x), and if B # 0,
X—>C X—>C

then
fx) A

xot gx) B’
However, if B = 0, then no conclusion was deduced. It will be seen in Exercise 2 that if
B = 0 and A # 0, then the limit is infinite (when it exists).
The case A = 0, B = 0 has not been covered previously. In this case, the limit of the
quotient f/g is said to be “indeterminate”. We will see that in this case the limit may



- ‘ L

6.3 L'HOSPITAL'S RULES 177

not exist or may be any real value, depending on the particular functions f and g. The
symbolism 0/0 is used to refer to this situation. For example, if « is any real number, and
if we define f(x) := ax and g(x) := x, then

tim £ = i 2% = lima =a.

x=0 g(x) x—=0 Xx x—0
Thus the indeterminate form 0/0 can lead to any real number « as a limit.

Other indeterminate forms are represented by the symbols co/00, 0 - 00, 0°, 1°°, o0?,
and oo — 0o. These notations correspond to the indicated limiting behavior and juxtaposi-
tion of the functions f and g. Our attention will be focused on the indeterminate forms 0/0
and 00/00. The other indeterminate cases are usually reduced to the form 0/0 or co/oco by
taking logarithms, exponentials, or algebraic manipulations.

A Preliminary Result

To show that the use of differentiation in this context is a natural and not surprising
development, we first establish an elementary result that is based simply on the definition
of the derivative.

6.3.1 Theorem Let f and g be defined on [a, b}, let f(a) = g(a) =0, and let g(x) # 0
fora < x < b. If f and g are differentiable at a and if g'(a) # 0, then the limit off/g at
a exists and is equal to f'(a)/g'(a). Thus

| , fx) _ fl(a)
im =—5.
x=a+ g(x) g (a)

Proof. Since f(a) = g(a) = 0, we can write the quotient f(x)/g(x) fora <x < b as
follows:
f(x) = f(a)
f&) _f®-f@ _—_x-a
g(x) g(x)—gla)  gkx)—gl)’

X —a

Applying Theorem 4.2.4(b), we obtain
i fx) = f(a)
fx) x-»T-i— xX—a — f'(a)
lim £X)—8@  g'@)’
xX-—+>a+ xX—a

: lim

.E.D.
x-+a+ g( x) Q

Warning The hypothesis that f(a) = g(a) = Oisessential here. For example, if f(x) :=
x + 17 and g(x) := 2x + 3 for x € R, then

f(x) 17 whi flo _1
x—>0 gx) 3’ go 2

The preceding result enables us to deal with limits such as

x +x 2:041 _l
o sin2x ~ 2cos0 2’

To handle limits where f and g are not differentiable at the point a, we need a more general
| version of the Mean Value Theorem due to Cauchy.
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6.3.2 Cauchy Mean Value Theorem Let f and g be continuous on [a, b] and differen-
tiable on (a, b), and assume that g’'(x) # O for all x in (a, b). Then there exists c in (a, b)
such that

f®) - f@ _ f©)
gb) -g@a) g'c)

Proof. As in the proof of the Mean Value Theorem, we introduce a function to which
Rolle’s Theorem will apply. First we note that since g'(x) # O for all x in (a, b), it follows
from Rolle’s Theorem that g(a) # g(b). For x in [a, b], we now define

f(b) — f(a)

hex) 1= Z = - - .
(x) 2(b) — (ex) —g@) — (f(x) — f@)

Then A is continuous on [a, b], differentiable on (a, b), and h(a) = h(b) = 0. Therefore,
it follows from Rolle’s Theorem 6.2.3 that there exists a point c in (a, b) such that

, f®b) - fla) ,
0 — h —
(0) = 25— 2@ - f'@©.
Since g’(c) # 0, we obtain the desired result by dividing by g’(c). QED.

Remarks The preceding theorem has a geometric interpretation that is similar to that of
the Mean Value Theorem 6.2.4. The functions f and g can be viewed as determining a curve
in the plane by means of the parametric equations x = f(t), y = g(¢t) wherea <t <b.
Then the conclusion of the theorem is that there exists a point ( f(c), g(c)) on the curve for
some c in (a, b) such that the slope g’(c)/f’(c) of the line tangent to the curve at that point
is equal to the slope of the line segment joining the endpoints of the curve.

Note that if g(x) = x, then the Cauchy Mean Value Theorem reduces to the Mean
Value Theorem 6.2.4.

L’Hospital’s Rule, I

We will now establish the first of L'Hospital’s Rules. For convenience, we will consider
right-hand limits at a point a; left-hand limits, and two-sided limits are treated in exactly the
same way. In fact, the theorem even allows the possibility that a = —o0. The reader should
observe that, in contrast with Theorem 6.3.1, the following result does not assume the
differentiability of the functions at the point a. The result asserts that the limiting behavior
of f(x)/g(x) as x — a+ is the same as the limiting behavior of f'(x)/g'(x) as x — a+,
including the case where this limit is infinite. An important hypothesis here is that both f
and g approachO as x — a+.

6.3.3 L’Hospital’s Rule,I Let—oo <a < b < oo andlet f, g be differentiable on (a, b)
such that g'(x) # 0 for all x € (a, b). Suppose that

¢)) Jim f(x) =0= lim g(x).
f'(x) f(x)

(a) Ifxl_1m+ 70 =L € R, then x1_151+ 200) =1L.

(b) If lim m_Le{ —00, 00}, then lim &—L

x—at g'(x) x—a+ g(x)
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Proof. If a < @ < B < b, then Rolle’s Theorem implies that g(8) # g(«). Further, by
the Cauchy Mean Value Theorem 6.3.2, there exists u € («, 8) such that

fB - f@ _ f'w
gB)—gla) g'w)
Case (a): If L € R and if ¢ > 0 is given, there exists ¢ € (a, b) such that

f'(w)

L-e<——<L+e¢ for u € (a,c),

g'(w)

()

whence it follows from (2) that

3) L - <‘;—§%:£%<L+s for a<a<p<ec
If we take the limit in (3) as « — a+, we have
s<%<L+s for B € (a,c).

Since € > 0 is arbitrary, the assertion follows.
Case (b): If L = +o00 and if M > 0 is given, there exists ¢ € (a, b) such that
f'(u)
g' ()
whence it follows from (2) that
f(B)— fla)
g(B) — g(a)

If we take the limit in (4) as « — a+, we have

m>M for B e (a,c).

g(B)

Since M > 0 is arbitrary, the assertion follows.
If L = —o0, the argument is similar. Q.ED.

>M for ue€e(a,c)),

C)

>M for a<a<pB<ec.

6.3.4 Examples (a) We have

. sinx ) cos x
i, 5 = Ji [ ) = 2R =0
Observe that the denominator is not differentiable at x = 0 so that Theorem 6.3.1
cannot be applied. However f(x) :=sinx and g(x) := /x are differentiable on (0, c0)
and both approach 0 as x — 0+. Moreover, g'(x) # 0on (0, 00), so that 6.3.3 is applicable.

) 1 —cosx sinx

(b) We have }l_[:(l) [—xz——] }l_l}(l) ?
We need to consider both left and right hand limits here. The quotient in the second
limit is again indeterminate in the form 0/0. However, the hypotheses of 6.3.3 are again
satisfied so that a second application of L'Hospital’s Rule is permissible. Hence, we obtain

lim = —

x—0

3 —

[l —Ccosx sin x cosx 1
X x—»O 2x —x—ro 2 2°
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X
-1
(¢) We have lim ¢ = lim £ = 1.
X

-0 b q -0 1
Again, both left- and rigjilt-hand limits need to be considered. Similarly, we have

x_1-— x _ x 1
lim[;]=ﬁme 1=lime—=—.

X

x-»0 2x x—0 2 2

1
(@ Wehave lim [ nx ] = lim
x—

L’Hospital’s Rule, I1

This Rule is very similar to the first one, except that it treats the case where the denominator
becomes infinite as x — a+. Again we will consider only right-hand limits, but it is possible
that a = —oc. Left-hand limits and two-sided limits are handled similarly.

6.3.5 L’Hospital’s Rule, I Let —oo <a < b < o0 and let f, g be differentiable on
(a, b) such that g'(x) # O for all x € (a, b). Suppose that

) Jlim g(x) = oo.
(b) If lim f’(x) = L € {—o0, 00}, then lim f& _ L.
x—a+ g'(x) x—a+ g(x)

Proof. We will suppose that (5) holds with limit co.

As before, we have g(B8) # g(a) fora, B € (a, b), a < B. Further, equation (2) in the
proof of 6.3.3 holds for some u € («, B).

Case (a): If L € R with L > 0 and € > 0 is given, there is ¢ € (a, b) such that (3) in
the proof of 6.3.3 holds whena < @ < B8 < c. Since g(x) — 00, we may also assume that
g(c) > 0. Taking B = c in (3), we have

e fO-f@
g(c) — g(e)

Since g(c)/g(a) = 0 as @ — a+, we may assume that 0 < g(c)/g(a) < 1 for all a €
(a, c), whence it follows that

g)—gl) _,_8@ _,

6) L <L+e¢ for o € (a,c).

for « € (a,c).

g(a) g(a@)
If we multiply (6) by (g(a) — g(c))/g(a) > 0, we have
g(c) ) fl@) f(o) ( g(c) )
7 L - | - L 1-=—.
™ L=9 ( g(a) = gla) gl <@+ g(a)

Now, since g(c)/g(a) = O0and f(c)/g(a) = Oasa — a+,thenforanyd with0 < é < 1
there existsd € (a, c) suchthat0 < g(c)/g(a@) < éand|f(c)|/g(x) < éforalla € (a, d),
whence (7) gives

f(a)
(8) (L—e)(l—8)—8<m<(L+e)+8.
If we take § := min{l, ¢, ¢/(|L| + 1)}, it is an exercise to show that
L—-2< -fﬁ <L + 2.

~gla) T
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Since ¢ > 0 is arbitrary, this yields the assertion. The cases L = 0 and L < 0 are handled
similarly.

Case(b): If L = +o00,letM > 1begivenandc € (a, b) besuchthat f'(u)/g'(u) > M
for all u € (a, c). Then it follows as before that
f(B) — fle)
g(B) — g(@)
Since g(x) = oo as x — a+, we may suppose that ¢ also satisfies g(c) > O, that
|f(©)l/g@) < 1, and that 0 < g(c)/g(a) < 1 for all @ € (a,c). If we take B =c in
(9) and multiply by 1 — g(c)/g(a) > , we get

9)

>M for a<a<p<ec.

fl@)— f(o) ( g(c)) .
——— S>M(l-—7—})>:M,
g(@) g@)) 2
so that
f(a) 1 f(o) 1
—>:M+ >(M-1 for «a € (a,c).
gla) ~ 2 gla) 2
Since M > 1 is arbitrary, it follows that lim+ f(@)/g(a) = oo.
a—>a
If L = —o0, the argument is similar. QED.
. . Inx
6.3.6 Examples (a) We consider hr{.no .
x— x
Here f(x) :=Inx and g(x) := x on the interval (0, 00). If we apply the left-hand
1 1
version of 6.3.5, we obtain lim nx_ lim ﬁ- =0.
X=00 X X=>00 l
(b) We consider lim e *x2.
X—>00
Here we take f(x) := x2 and g(x) := €* on R. We obtain
2
X . 2x 2
L T
Insinx

(c¢) We consider lim
x>0+ X

Here we take f(x) := Insinx and g(x) := Inx on (0, 7). If we apply 6.3.5, we obtain

Insinx . cosx/sinx

X
m m = lim [— - [cos x] .
x=»0+ Inx x—0+ 1/x x—0+ Lsinx

Since lir(r)1+ [x/sinx] =1 and lir& cosx = 1, we conclude that the limit under considera-
X =p X=—>
tion equals 1. a

Other Indeterminate Forms

Indeterminate forms such as 0o — 00, 0 - 00, 1%, 0°, oo? can be reduced to the previously
considered cases by algebraic manipulations and the use of the logarithmic and exponential
functions. Instead of formulating these variations as theorems, we illustrate the pertinent
techniques by means of examples.

6.3.7 Examples (a) Let ! := (0, 7/2) and consider

iy (- 1)
x=0+ \ X sinx
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which has the indeterminate form 0o — 00. We have

) 1 1 . sinx—x cosx — 1
Iim|{-—— )= lim — = lim —
x—+0+ \ X sinx x=0+ xSinx x—0+ SInXx + X COS X

. —sinx 0
= lim —==-=0.
x—=0+2cosx — xsinx 2

(b) Let! := (0, oo) and consider liI‘I)l+ x In x, which has the indeterminate form 0 - (—o0).
x>
We have
Inx lim 1/x

lim xInx = lim — = = lim (—x) =0
x>0+ x—0+ l/x x>0+ _]/x x—0+

(¢) Let 7 := (0, o0) and consider lix(r)l_l_ x*, which has the indeterminate form 0°.
x>

We recall from calculus (see also Section 8.3) that x* = ¢**. It follows from part (b)
and the continuity of the function y > e” at y = 0 that lix&x" =l =1.
x—

(d) Let! := (1, 00) and consider lincl° (1 + 1/x)*, which has the indeterminate form 1°°.

We note that
(10) (1 + 1/x)* = e*A+1/n)
Moreover, we have
Jim <1+ 1/5) = Jim ST
1, -
- tim O i

Since y — ¢’ is continuous at y = 1, we infer that lim (1 + 1/x)* =e.
X=—>00

(e) Let! := (0, oo) and consider lix& (1 + 1/x)*, which has the indeterminate form oo?.
X =
In view of formula (10), we consider

In +1/x) . 1

xl_g&xln(l +1/x) = xl—l»r(r)l+T = xl—l:(r)l+ 1+1/x =0.
Therefore we have li%1+ AQ+1/xy*=€"=1. 0
X . .

Exercises for Section 6.3

1. Suppose that f and g are continuous on [a, b], differentiable on (a, b), that ¢ € [a, b] and that
g(x) #0forx € [a,b),x #c.Let A := hmfandB = hmg IfB=0, andlfhmf(x)/g(x)

exists in R, show that we must have A = 0 [Hmr fx)= {f(x)/g(x)}g(x) ]

2. In addition to the suppositions of the preceding exercise, let g(x) > O for x € [a, b], x # c.
If A > 0and B = 0, prove that we musthave}iin}f(x)/g(x) =00. If A <0and B =0, prove

that we must have 11‘1_13 f(x)/g(x) = —o0.

3. Let f(x) := x2sin(1/x) for 0 < x <1 and f(0) := 0, and let g(x) := x2 for x € [0, 1]. Then
both f and g are differentiable on [0, 1] and g(x) > O for x 7# 0. Show that lin(x,f(x) =0=
x—>

}in(l,g(x) and that ;i_% f(x)/g(x) does not exist.



_;, - : "

6.4 TAYLOR'’S THEOREM 183

4, Let f(x) := x2 for x rational, let f(x) := 0 for x irrational, and let g(x) := sinx for x € R.
Use Theorem 6.3.1 to show that lirrb f(x)/g(x) = 0. Explain why Theorem 6.3.3 cannot be
X—>

used.

5. Let f(x) :=x?sin(1/x) for x #£ 0, let £(0) := 0, and let g(x) := sinx for x € R. Show that
lin}) f(x)/g(x) = 0 but that lin}) f'(x)/g'(x) does not exist.

6. Evaluate the following limits, where the domain of the quotient is as indicated.

1 1 tan
@ lim 25D 0 22, ® tim 22X 0, x/2),
x—0+ sinx =0+ X
. Incosx . tanx —x
(c) xlg& - 0, ©/2), (d) xl_ﬁt&—;— 0, /2).
7. Evaluate the following limits:
1
a lim —OO. 00 s i EE—— Or l )
(@ lim (=00, 00) ® lim s (©.1)
3
© lim x*lnx (0, 00), @ lm = (0, o00).
x—0+ X—00 @
8. Evaluate the following limits:
.1 . In
@ lim = (0,00), ® lim —= (0, 0),
xX—00 x . X =00 X
(¢) limxInsinx (0, n), (d) lim x+lnx (0, 00).
x—0 x-»2 xlinx
9. Evaluate the following limits:
(a) li151+x2‘ (0, 00), ®) lim(1+3/x)" (0, 00),
1 1
lim (1 4+ 3/x)* (0, 00), d) 1l - = , 00).
() lim (1+3/x)" (0,00) (d x-'.'5'+(x Amanx) (0, o0)
10. Evaluate the following limits:
(@ lim x'/* (0, 00), (®) lim (sinx)* (0, m),
x—>00 x—0+
(©) 1irg+xsi"* (0, 00), d) l'm/12 (secx —tanx) (0, 7/2).

11. Let f be differentiable on (0,00) and suppose that lim ( f)+ f'(x)) = L. Show that
lim £(x)=Land lim f'(x) = 0. [Hint: f(x) = &* f (x)/* ]

tan
12. Try to use L'Hospital's Rule to find the limit of gec—i as x — (1r/2)—. Then evaluate directly
by changing to sines and cosines.

Section 6.4 Taylor’s Theorem

A very useful technique in the analysis of real functions is the approximation of functions
by polynomials. In this section we will prove a fundamental theorem in this area which
goes back to Brook Taylor (1685-1731), although the remainder term was not provided
until much later by Joseph-Louis Lagrange (1736-1813). Taylor’s Theorem is a powerful
result that has many applications. We will illustrate the versatility of Taylor’s Theorem by
briefly discussing some of its applications to numerical estimation, inequalities, extreme
values of a function, and convex functions.

Taylor’s Theorem can be regarded as an extension of the Mean Value Theorem to
“higher order” derivatives. Whereas the Mean Value Theorem relates the values of a
function and its first derivative, Taylor’s Theorem provides a relation between the values
of a function and its higher order derivatives.
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Derivatives of order greater than one are obtained by a natural extension of the dif-
ferentiation process. If the derivative f’(x) of a function f exists at every point x in an
interval I containing a point c, then we can consider the existence of the derivative of the
function f’ at the point c. In case f' has a derivative at the point ¢, we refer to the resulting
number as the second derivative of f at ¢, and we denote this number by f”(c) or by
f@(c). In similar fashion we define the third derivative f”(c) = f®(c), - - -, and the nth
derivative £ (c), whenever these derivatives exist. It is noted that the existence of the nth
derivative at ¢ presumes the existence of the (n — 1)st derivative in an interval containing c,
but we do allow the possibility that ¢ might be an endpoint of such an interval.

If a function f has an nth derivative at a point x,, it is not difficult to construct
an nth degree polynomial P, such that P,(x,) = f(x,) and P®(xy) = f ® (x,) for k =
1,2,---,n. Infact, the polynomial

f” ( xo)
2!

(x - o)n

(1) P, (x) = f(xp) + f'(xp)(x — x) + (x — x)?

(n)
+. +f (o)

has the property that it and its derivatives up to order n agree with the function f and its
derivatives up to order n, at the specified point x,. This polynomial P, is called the nth
Taylor polynomial for f at x,,. It is natural to expect this polynomial to provide a reasonable
approximation to f for points near x,, but to gauge the quality of the approximation, it
is necessary to have information concerning the remainder R, := f — P,. The following
fundamental result provides such information.

6.4.1 Taylor’s Theorem Letn €N, let I :=[a,b), and let f : I — R be such that f
and its derivatives f', f”,---, f™ are continuous on I and that f®*" exists on (a, b). If
X, € I, then for any x in I there exists a point c between x and x such that

(2 F) = flxg) + f(xp)(x —xp) +

f(n)( 0) f(n+l)(c) _ xo)n-H.

+---+ (x — xp)" + n_(x

Proof. Let x,and x be given and let J denote the closed interval with endpoints x, and x.
We define the function F on J by

FO):i=f) — f@O) = (x =D f () = — (_";'_‘) FO

for ¢t € J. Then an easy calculation shows that we have

F(1)=- ("—_,')—f"'*"(r).
n: )

If we define G on J by

x—1

G@):=F(@) — (

n+1
) F(x,)
0

fort € J, then G(x,) = G(x) = 0. An application of Rolle’s Theorem 6.2.3 yields a point
¢ between x and x,, such that

(x—o)

0=G'(c)=F{©)+@n+1) —— F(xy).
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Hence, we obtain

1 (x _ xo)n+l

F = — !
(xo) n+1 (x—-o) F©)
— 1 (- xo)n+l (x - c)n (n+1) — f(n+l)(c) n+1
=o¥l G w J O=Ginpr TR
which implies the stated result. Q.ED.

We shall use the notation P, for the nth Taylor polynomial (1) of f, and R, for the
remainder. Thus we may write the conclusion of Taylor’s Theorem as f(x) = P,(x) +
R, (x) where R, is given by

f(n+l) ( C)

3 R =

(3) (%) nF D!

for some point ¢ between x and x,. This formula for R, is referred to as the Lagrange

form (or the derivative form) of the remainder. Many other expressions for R, are known;
one is in terms of integration and will be given later. (See Theorem 7.3.18.)

(x _ xo)n+l

Applications of Taylor’s Theorem

The remainder term R, in Taylor’s Theorem can be used to estimate the error in approx-
imating a function by its Taylor polynomial P,. If the number n is prescribed, then the
question of the accuracy of the approximation arises. On the other hand, if a certain accuracy
is specified, then the question of finding a suitable value of n is germane. The following
examples illustrate how one responds to these questions.

6.4.2 Examples (a) Use Taylor's Theorem with n =2 to approximate VYT+7x,
x> —1.

We take the function f(x) := (1 + x)'/?, the point x, = 0, and n = 2. Since f'(x) =
1a+x)7% and f"(x) =} (-%) (1 + x)™, we have f'(0) = § and f"(0) = —2/9.
Thus we obtain

’ f(x) = Py(x) + Ry(x) = 1 + $x — Ix? + R, (),

where R,(x) = & f"(c)x* = § (1 + ¢)¥?x> for some point ¢ between 0 and x.
For example, if we let x = 0.3, we get the approximation P,(0.3) = 1.09 for V13,
Moreover, since ¢ > 0 in this case, then (1 + ¢)~%3 < 1 and so the error is at most

R(03)<i 3 3— ! <0.17 x 1072
2277 =81\10/ T 600 ' '

Hence, we have [3/1.3 — 1.09] < 0.5 x 1072, so that two decimal place accuracy is assured.

(b) Approximate the number e with error less than 107>

We shall consider the function g(x) := ¢* and take x, =0 and x = 1 in Taylor’s
Theorem. We need to determine n so that |R, (1)| < 1073. To do so, we shall use the fact
that g’(x) = ¢* and the initial bound of e* <3 for0 <x < 1.

Since g'(x) = €*, it follows that g® (x) = ¢* for all k € N, and therefore g®(0) = 1
for all k € N. Consequently the nth Taylor polynomial is given by

2 n

x X
_+...+.__.
n!

P(x):=14x+ o



186 CHAPTER 6 DIFFERENTIATION

and the remainder for x =1 is given by R (1) = e/(n+ 1)! for some c satisfying
0 < ¢ < 1. Since € < 3, we seek a value of n such that 3/(n + 1)! < 107>, A calcu-
lation reveals that 9! = 362, 880 > 3 x 10° so that the value n = 8 will provide the desired
accuracy; moreover, since 8! = 40, 320, no smaller value of n will be certain to suffice.
Thus, we obtain

1 1
e~P(1)—1+1+2'+ +§—271828

with error less than 107>, O
Taylor’s Theorem can also be used to derive inequalities.

6.4.3 Examples (a) 1— 1x? <cosx forall x € R.
Use f(x) := cosx and x, = 0 in Taylor’s Theorem, to obtain

1
cosx =1-— 5x’ + R, (%),

where for some ¢ between 0 and x we have:

If0 < x <, then0 < ¢ < x; since ¢ and x? are both positive, we have R,(x) > 0. Also,
if —r <x <0, then — < ¢ < 0; since sinc and x> are both negative, we again have
R (x) > 0. Therefore, we see that 1 — x2 < cosx for |x| < n.If |x| > m, then we have
1-— : 2x IR< —3 < cosx and the mequallty is trivially valid. Hence, the inequality holds for
all x € R.

(b) Forany k € N, and for all x > 0, we have

1, 12k 1, 1 2%k+1
X 2x+ 2% 3 .- 2k+1x .

Using the fact that the derivative of In(1 + x) is 1/(1 + x) for x > 0, we see that the
nth Taylor polynomial for In(1 + x) with x, =0 is

1 1
P(x)=x— x4 ...+ (—1)"_'—x"
2 n
and the remainder is given by
(=1)"c+!
n+1

for some c satisfying 0 < ¢ < x. Thus for any x > 0, if n = 2k is even, then we have
R, (x) > 0; and if n = 2k + 1 is odd, then we have R,, ,(x) < 0. The stated inequality
then follows immediately. O

Rn(X) = xn+l

Relative Extrema

It was established in Theorem 6.2.1 that if a function f : I — R is differentiable at a point
¢ interior to the interval /, then a necessary condition for f to have a relative extremum at
c is that f’(c) = 0. One way to determine whether f has a relative maximum or relative
minimum [or neither] at ¢, is to use the First Derivative Test 6.2.8. Higher order derivatives,
if they exist, can also be used in this determination, as we now show.
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6.4.4 Theorem Let] be aninterval, let x, be an interior point of I, and letn > 2. Suppose
that the derivatives f’, f”,---, f™ exist and are continuous in a neighborhood of x,, and
that f'(xy)) = --- = f® D(x,) =0, but f™(x,) # 0.

(@ Ifnisevenand f™ (x,) > O, then f has a relative minimum at x,,.
(i) Ifn isevenand f™(xy) <O, then f has a relative maximum at x,,.
(iii) Ifn is odd, then f has neither a relative minimum nor relative maximum at x,,.

Proof. Applying Taylor’s Theorem at x,,, we find that for x € I we have

(n)
f@) = Py + R, ) = £+ L2 = 5,

where c is some point between x, and x. Since f® is continuous, if ™ (x,) # 0, then
there exists an interval U containing x,, such that ™ (x) will have the same sign as f ™ (x,)
for x € U. If x € U, then the point ¢ also belongs to U and consequently f®(c) and
f® (x,) will have the same sign.

(i) Ifnisevenand f™(xy) > 0,thenforx € U wehave f®(c) > Oand (x — x,)" >
0 so that R, _,(x) > 0. Hence, f(x) > f(x,) for x € U, and therefore f has a relative
minimum at x,,.

(ii) Ifnisevenand f® (xy) < O, then it follows that R, _,(x) < Oforx € U, so that
f(x) < f(x,) for x € U. Therefore, f has a relative maximum at x,,.

(iii) If n is odd, then (x — x,,)" is positive if x > x, and negative if x < x,. Conse-
quently, if x € U, then R,_, (x) will have opposite signs to the left and to the right of x,.
Therefore, f has neither a relative minimum nor a relative maximum at x,,. QED.

Convex Functions

L4

The notion of convexity plays an important role in a number of areas, particularly in the
modern theory of optimization. We shall briefly look at convex functions of one real variable
and their relation to differentiation. The basic results, when appropriately modified, can be
extended to higher dimensional spaces.

6.4.5 Definition Let I/ C R be an interval. A function f : I — R is said to be convex
on / if for any ¢ satisfying 0 < ¢ < 1 and any points x,, x, in I, we have

F(A=Dx,+1tx)) <A =0)f(x)+tf(x,).

Note that if x, < x,, then as ¢ ranges from O to 1, the point (1 — 7)x, + tx, traverses
the interval from x, to x,. Thus if f is convex on / and if x|, x, € I, then the chord joining
any two points (x,, f(x,)) and (x,, f(x,)) on the graph of f lies above the graph of f.
(See Figure 6.4.1.)

A convex function need not be differentiable at every point, as the example f(x) := |x|,
x € R, reveals. However, it can be shown that if / is an open interval and if f: I —
R is convex on I, then the left and right derivatives of f exist at every point of /.
As a consequence, it follows that a convex function on an open interval is necessarily
continuous. We will not verify the preceding assertions, nor will we develop many other
interesting properties of convex functions. Rather, we will restrict ourselves to establishing
the connection between a convex function f and its second derivative f”, assuming that
" exists.
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y=(-01(x) + 1f (x))

y=f((1- 1) x; + tx5)

] | ] —
x1 (I—I)XI'PIXZ X2

Figure 6.4.1 A convex function.

6.4.6 Theorem Let I be an open interval and let f : I — R have a second derivative
on I. Then f is a convex function on I if and only if f”(x) > O forallx € I.

Proof. (=) We will make use of the fact that the second derivative is given by the limit

fla+h)—2f(a) + f(a—h)

h2
for each a € I. (See Exercise 16.) Given a € I, let h be such that a + h and a — h belong
to I. Then a = }((a + h) + (a — h)), and since f is convex on I, we have

f@=f(l@+m+ia-m)<if@+m+if@—-h.

Therefore, we have f(a + h) — 2f(a) + f(a — h) > 0. Since h> > Oforall h # 0, we see
that the limit in (4) must be nonnegative. Hence, we obtain f”(a) > O foranya € I.

(«<=) We will use Taylor’s Theorem. Let x,, x, be any two points of /,let0 < ¢ < 1,
and let x, := (1 — #)x, + tx,. Applying Taylor’s Theorem to f at x, we obtain a point c,
between x,, and x, such that

Fx) = flxg) + f'(xg)(x; — xg) + 17 (c)(x; — xp)%,
and a point c, between x,, and x, such that
) = f(xg) + f/(x)(x, — %) + § " (€;)(x, — %)
If f” is nonnegative on /, then the term
R:= (1= f"(c)(x, — x)* + 32" (c,)(x, — x,)°
is also nonnegative. Thus we obtain
(1 =0 f(x) +tf(xy) = f(xg) + f'(xg) ((1 = )x; + tx, — x,)
+3A =0 f"(c)(x; — xp)? + 3£ () (x, — x,)?
= f(x)) + R
> f(xg) = fF((1 = Dx, +1x,).

Hence, f is a convex function on /. QE.D.

C) (@)= lim



g

64 TAYLOR’S THEOREM 189

Newton’s Method

It is often desirable to estimate a solution of an equation with a high degree of accuracy. The
Bisection Method, used in the proof of the Location of Roots Theorem 5.3.5, provides one
estimation procedure, but it has the disadvantage of converging to a solution rather slowly.
A method that often results in much more rapid convergence is based on the geometric
idea of successively approximating a curve by tangent lines. The method is named after its
discoverer, Isaac Newton.

Let f be a differentiable function that has a zero at r and let x, be an initial estimate of r.
The line tangent to the graph at (x,, f(x,)) has the equation y = f(x,) + f’(xl)(x - x,),
and crosses the x-axis at the point

I Y
27T f(xy)
(See Figure 6.4.2.) If we replace x, by the second estimate x,, then we obtain a point x,,

and so on. At the nth iteration we get the point x, , from the point x,, by the formula

v ey = T
B n+l °— “n fl(xn)'
Under suitable hypotheses, the sequence (x,) will converge rapidly to a root of the equation

f(x) =0, as we now show. The key tool in establishing the rapid rate of convergence is
Taylor’s Theorem.

y y=f(x)

(xl.f(xl))

|
|
|
|
|
|
|
>
/X3 X2 X1

Figure 6.4.2 Newton’s Method

6.4.7 Newton’s Method Let] := [a,b] andlet f: I — R be twice differentiable on 1.
Suppose that f (a) f (b) < O and that there are constants m, M such that | f'(x)| > m > 0
and | f"(x)] < M for all x € I and let K := M/2m. Then there exists a subinterval I*
containing a zero r of f such that for any x, € I* the sequence (x,) defined by

f@x,)
) et =5 TG

belongs to I* and (x,) converges to r. Moreover

forall neN,

©) oo —r| <K|x,—r|>  forall neN.
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Proof. Since f(a) f(b) < 0, the numbers f(a) and f(b) have opposite signs; hence by
Theorem 5.3.5 there exists r € I such that f(r) = 0. Since f’ is never zero on I, it follows
from Rolle’s Theorem 6.2.3 that f does not vanish at any other point of 1.

We now let x’ € I be arbitrary; by Taylor’s Theorem there exists a point ¢’ between x’
and r such that

0=f(r)=f&)+ f/&)r—x)+ 3 () — ')V,
from which it follows that
—f&) = FONr =x)+ 3 —xH2

If x” is the number defined from x’ by “the Newton procedure"":

wo_ o JO&N

X = = TN
&)
then an elementary calculation shows that
(4 l f, (C,) 7
x’ =x"+ (r—x')+ Em(r—x)z,

whence it follows that

|
\

xll_r____

"(c) (x' — r)z

2 f'(x')

Since ¢’ € I, the assumed bounds on f’ and f” hold and, setting K := M/2m, we obtain
the inequality

@) |x" —r| <K |x’—r|2.

We now choose § > 0 so small that § < 1/K and that the interval I* := [r — §,r + 5]
is contained in /. If x, € I*, then |x, — r| < 4§ and it follows from (7) that |x, , —r| <
K|x, — r|*> < K8% < §; hence x, € I* implies that x, , € I"*. Therefore if x| € I*, we
infer that x, € I"* for all n € N. Also if x, € I*, then an elementary induction argument
using (7) shows that |x, , —r| < (K8)"|x, — r| for n € N. But since K3 < 1 this proves
that lim(x,) = r. QED.

6.4.8 Example We will illustrate Newton’s Method by using it to approximate /2.
If we let f(x) :=x2 — 2 for x € R, then we seek the positive root of the equation
f(x) = 0. Since f’(x) = 2x, the iteration formula is

o, e
5T )

_ x3—2_l +2
= *n 2x. 2 *n x ]

If we take x, := 1 as our initial estimate, we obtain the successive values x, = 3/2 = 1.5,
x;=17/12=1.416666-- -, x, = 577/408 = 1.414215. - -, and x4 = 665 857/470 832
= 1.414213562374 - - -, which is correct to eleven places. O

Remarks (a) If we let e, := x, —r be the error in approximating r, then inequality
(6) can be written in the form |Ke, | < |K enlz. Consequently, if |Ke,| < 107" then
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|Ke, | < 10~2™ so that the number of significant digits in Ke, has been doubled. Be-
cause of this doubling, the sequence generated by Newton’s Method is said to converge
“quadratically”.

(b) Inpractice, when Newton’s Method is programmed for a computer, one often makes an
initial guess x, and lets the computer run. If x, is poorly chosen, or if the root is too near the
endpoint of I, the procedure may not converge to a zero of f. Two possible difficulties are
illustrated in Figures 6.4.3 and 6.4.4. One familiar strategy is to use the Bisection Method
to arrive at a fairly close estimate of the root and then to switch to Newton’s Method for
the coup de gréce.

Y ————

Figure 643 x, — oo. Figure 6.4.4 x, oscillates
between x, and x,.

Exercises for Section 6.4

10.

Let f(x) := cosax for x € R where a # 0. Find f®(x) forn € N, x € R.

Let g(x) := |x3| for x € R. Find g’(x) and g"(x) for x € R, and g"'(x) for x # 0. Show that
£"”(0) does not exist.

Use Induction to prove Leibniz’s rule for the nth derivative of a product:

fO" @ =) (:) FOP )" (x).

k=0
Show thatif x > O,then 1 + 3x — 1x < VT+x <1+ §x.

Use the preceding exercise to approximate +/1.2 and +/2. What is the best accuracy you can be
sure of, using this inequality?

Use Taylor’s Theorem with n = 2 to obtain more accurate approximations for +/1.2 and V2.

If x > 0 show that [(1 4+ x)'/* — (1 + 1x — 1x?)| < (5/81)x>. Use this inequality to approxi-
mate 3/1.2 and V2.

If f(x) := €*, show that the remainder term in Taylor’s Theorem converges to zero as n — 00,
for each fixed x,, and x. [Hint: See Theorem 3.2.11.]

If g(x) := sin x, show that the remainder term in Taylor’s Theorem converges to zero asn — 00
for each fixed x,, and x.

Let h(x) := e-V/** forx # 0 and h(0) := 0. Show that k™ (0) = O forall n € N. Conclude that

the remainder term in Taylor’s Theorem for x, = 0 does not converge to zero as n — oo for

x # 0. [Hint: By L'Hospital’s Rule, lin}) h(x)/x* = 0for any k € N. Use Exercise 3 to calculate
X =

h™(x) for x # 0.]



192 CHAPTER 6 DIFFERENTIATION

11. Ifx € [0, 1] and n € N, show that

2 3 n n+1

X X X X
In(1 - - 4., -l .
n(1 + x) (x 2+3+ +(-1) n)<n 1

Use this to approximate In 1.5 with an error less than 0.01. Less than 0.001.

12. We wish to approximate sin by a polynomial on [—1, 1] so that the error is less than 0.001.

Show that we have
) P &
sxnx—(x—z+m)
13. Calculate e correct to 7 decimal places.

1

m for |x| <1.

14. Determine whether or not x = 0 is a point of relative extremum of the following functions:
(@ fx):=x+2, (b) g(x):=sinx —x,
(¢) h(x):=sinx+ -éx3, d) k(x):=cosx—1+ %xz

15. Let f be continuous on [a, b] and assume the second derivative f” exists on (a, b). Suppose
that the graph of f and the line segment joining the points (a, f(a)) and (b, f(b)) intersect
at a point (xo, f(xy)) where a < x, < b. Show that there exists a point ¢ € (a, b) such that
f” ( C) =

16. Let /I C R be an open mterval let f : I — R be differentiable on /, and suppose f”(a) exists

ata € I. Show that -
” f(a+h)—2f(a)+f(a_h)
fa)= 2

Give an example where this lumt exists, but the function does not have a second derivative at a.

17. Suppose that I C R is an open interval and that f”(x) > Oforall x € I.If ¢ € 1, show that the
part of the graph of f on 7 is never below the tangent line to the graph at (¢, f(c)).

18. Let I C R be an interval and let c € /. Suppose that f and g are defined on / and that
the derivatives f™, g™ exist and are continuous on /. If f®(c) =0 and g®(c) =0 for
k=0,1,---,n—1,but g™ (c) # 0, show that

(n)
i F0) _ @)
x—c g(x) 8(")(0)

19. Show that the function f(x) := x3 — 2x — 5 has a zero r in the interval / := [2, 2.2). If x, :
2 and if we define the sequence (x,) using the Newton procedure, show that |x,  —r|
(0.7)|Jc'l — r|2. Show that x, is accurate to within six decimal places.

4

Al

20. Approximate the real zeros of g(x) := x* —x — 3.

21. Approximate the real zeros of h(x) := x> — x — 1. Apply Newton's Method starting with the
initial choices (a) x, := 2, (b) x, := 0, (c) x, := —2. Explain what happens.

22. The equation lnx = x — 2 has two solutions. Approximate them using Newton’s Method. What
happens if x, 2 is the initial point?

23. The function f(x) = 8x> — 8x% + 1has two zeros in [0, 1]. Approximate them, using Newton’s
Method, with the starting points (a) X, = s , (b) x, = —. Explain what happens.

24. Approximate the solution of the equation x = cos x, accurate to within six decimals.
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CHAPTER 7

THE RIEMANN INTEGRAL

We have already mentioned the developments, during the 1630s, by Fermat and Descartes
leading to analytic geometry and the theory of the derivative. However, the subject we
know as calculus did not begin to take shape until the late 1660s when Isaac Newton
created his theory of “fluxions” and invented the method of “inverse tangents” to find areas
under curves. The reversal of the process for finding tangent lines to find areas was also
discovered in the 1680s by Gottfried Leibniz, who was unaware of Newton’s unpublished
work and who arrived at the discovery by a very different route. Leibniz introduced the
terminology “calculus differentialis” and “calculus integralis”, since finding tangent lines
involved differences and finding areas involved summations. Thus, they had discovered that
integration, being a process of summation, was inverse to the operation of differentiation.
During a century and a half of development and refinement of techniques, calculus
consisted of these paired operations and their applications, primarily to physical problems.
In the 1850s, Bernhard Riemann adopted a new and different viewpoint. He separated the
concept of integration from its companion, differentiation, and examined the motivating
summation and limit process of finding areas by itself. He broadened the scope by consid-
ering all functions on an interval for which this process of “integration” could be defined:
the class of “integrable” functions. The Fundamental Theorem of Calculus became a result
that held only for a restricted set of integrable functions. The viewpoint of Riemann led
others to invent other integration theories, the most significant being Lebesgue’s theory of
integration. But there have been some advances made in more recent times that extend even

Bernard Riemann
(Georg Friedrich) Bernard Riemann (1826-1866), the son of a poor Lutheran
minister, was born near Hanover, Germany. To please his father, he enrolled
(1846) at the University of Gottingen as a student of theology and philosophy,
but soon switched to mathemtics. He interrupted his studies at Gottingen to
study at Berlin under C. G. J. Jacobi, P. G. J. Dirichlet, and F. G. Eisenstein,
but returned to Gottingen in 1849 to complete his thesis under Gauss. His
thesis dealt with what are now called “Riemann surfaces”. Gauss was so
enthusiastic about Riemann’s work that he arranged for him to become a
privatdozent at Gottingen in 1854. On admission as a privatdozent, Riemann was required to
prove himself by delivering a probationary lecture before the entire faculty. As tradition dictated,
he submitted three topics, the first two of which he was well prepared to discuss. To Riemann’s
surprise, Gauss chose that he should lecture on the third topic: “On the hypotheses that underlie
the foundations of geometry”. After its publication, this lecture had a profound effect on modern
geometry.

Despite the fact that Riemann contracted tuberculosis and died at the age of 39, he made
major contributions in many areas: the foundations of geometry, number theory, real and complex
analysis, topology, and mathematical physics.
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the Lebesgue theory to a considerable extent. We will give a brief introduction to these
results in Chapter 10.

We begin by defining the concept of Riemann integrability of real-valued functions
defined on a closed bounded interval of R, using the Riemann sums familiar to the reader
from calculus. This method has the advantage that it extends immediately to the case of
functions whose values are complex numbers, or vectors in the space R". In Section 7.2,
we will establish the Riemann integrability of several important classes of functions: step
functions, continuous functions, and monotone functions. However, we will also see that
there are functions that are not Riemann integrable. The Fundamental Theorem of Calculus
is the principal result in Section 7.3. We will present it in a form that is slightly more
general than is customary and does not require the function to be a derivative at every
point of the interval. A number of important consequences of the Fundamental Theorem
are also given. In Section 7.3 we also give a statement of the definitive Lebesgue Criterion
for Riemann integrability. This famous result is usually not given in books at this level,
since its proof (given in Appendix C) is somewhat complicated. However, its statement is
well within the reach of students, who will also comprehend the power of this result. The
final section presents several methods of approximating integrals, a subject that has become
increasingly important during this era of high-speed computers. While the proofs of these
results are not particularly difficult, we defer them to Appendix D.

An interesting history of integration theory, including a chapter on the Riemann inte-
gral, is given in the book by Hawkins cited in the References.

Section 7.1 Riemann Integral

We will follow the procedure commonly used in calculus courses and define the Riemann
integral as a kind of limit of the Riemann sums as the norm of the partitions tend to 0.
Since we assume that the reader is familiar—at least informally—with the integral from a
calculus course, we will not provide a motivation of the integral, or disuss its interpretation
as the “area under the graph”, or its many applications to physics, engineering, economics,
etc. Instead, we will focus on the purely mathematical aspects of the integral.

However, we first recall some basic terms that will be frequently used.

Partitions and Tagged Partitions

If I := [a, b] is a closed bounded interval in R, then a partition of / is a finite, ordered set
P = (x4, x;, - -+, X,_;, x,) of points in I such that

a=xy,<x <---<Xx, ,<x,=b.

(See Figure 7.1.1.) The points of P are used to divide I = [a, b] into non-overlapping
subintervals

I :=[xg, x,), L:=[x;, %)+, I :=I[x,_;,x,]

| | 1 | ! 1 | L
a=xp Xy X2 X3 Xp_1 x,,=b

Figure 7.1.1 A partition of [a, b].
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Often we will denote the partition P by the notation P = {[x,_,, x;]}"_,. We define the
norm (or mesh) of P to be the number

(1) 1Pl := max{x, = Xgs Xy T Xy, X, = xn—l}'

Thus the norm of a partition is merely the length of the largest subinterval into which the
partition divides [a, b]. Clearly, many partitions have the same norm, so the partition is not
a function of the norm.

If a point #; has been selected from each subinterval I, = [x;_,, x;],fori =1,2,.--,n,
then the points are called tags of the subintervals /;. A set of ordered pairs

P o= {(lx;_po %), ti)}:;l
of subintervals and corresponding tags is called a tagged partition of I; see Figure 7.1.2.
(The dot over the P indicates that a tag has been chosen for each subinterval.) The tags
can be chosen in a wholly arbitrary fashion; for example, we can choose the tags to be the
left endpoints, or the right endpoints, or the midpoints of the subintervals, etc. Note that an
endpoint of a subinterval can be used as a tag for two consecutive subintervals. Since each
tag can be chosen in infinitely many ways, each partition can be tagged in infinitely many
ways. The norm of a tagged partition is defined as for an ordinary partition and does not
depend on the choice of tags.
H
| .J |

A 4

3 ty
=‘/1 11\;1

2 X3 Xp-1 Xy = b

—l o

7]
;/ |
a=xq x) x

Figure 7.1.2 A tagged partition of [a, b]

If P is the tagged partition given above, we define the Riemann sum of a function
f :[a, b] — R corresponding to P to be the number

) S(fiP) =) FU)x; —x;_)).
i=l1

We will also use this notation when P denotes a subset of a partition, and not the entire
partition.

The reader will perceive that if the function f is positive on [a, b], then the Riemann
sum (2) is the sum of the areas of n rectangles whose bases are the subintervals I, =
[x;_,, x;] and whose heights are f(z,). (See Figure 7.1.3.)

Figure7.13 A Riemann sum.
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Definition of the Riemann Integral

We now define the Riemann integral of a function f on an interval [a, b].

7.1.1 Definition A function f : [a, b] — R is said to be Riemann integrable on [a, b]
if there exists a number L € R such that for every ¢ > 0 there exists §, > 0 such that if P
is any tagged partition of [a, b] with ||P|| < §_, then

IS(f;P)—-L| <e.
The set of all Riemann integrable functions on [a, b] will be denoted by R|[a, b].

Remark It is sometimes said that the integral L is “the limit” of the Riemann sums
S(f; P) as the norm ||P|| = 0. However, since S(f; P) is not a function of || P||, this limit
is not of the type that we have studied before.

First we will show that if f € R[a, b], then the number L is uniquely determined. It
will be called the Riemann integral of f over [a, b]. Instead of L, we will usually write

L=[abf or /;bf(x)dx.

It should be understood that any letter other than x can be used in the latter expression, so
long as it does not cause any ambiguity.

7.1.2 Theorem If f € Rfa, b], then the value of the integral is uniquely determined.

Proof. Assume that L' and L” both satisfy the definition and let ¢ > 0. Then there exists
8¢ /2 > O such that if P, is any tagged partion with || P, || < &;,, then

&
IS(f; P) = L'| < ¢g/2.

Also there exists §,/, > 0 such that if P, is any tagged partition with || P,|| < ¢/2» then
IS(f; P,) = L"| < &/2.

Now let &, := min{8; ,, 5;,,} > O and let P be a tagged partition with [|P|| < §,. Since
both ||P|| < 8;/, and ||P|| < 8;,, then

IS(f;P)—L'|<e/2 and  |S(f;P)—L"| <¢/2,
whence it follows from the Triangle Inequality that

IL'~L"| =L = 5(f; P) + S(f; P) - L"|
< IL' = S(£; P +1S(f; P) - L
<ef2+e/2=c¢.

Since £ > 0 is arbitrary, it follows that L’ = L". QED.

Some Examples

If we use only the definition, in order to show that a function f is Riemann integrable
we must (i) know (or guess correctly) the value L of the integral, and (ii) construct a
8, that will suffice for an arbitrary ¢ > 0. The determination of L is sometimes done by
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calculating Riemann sums and guessing what L must be. The determination of 8, is likely
to be difficult.

In actual practice, we usually show that f € Ra, b] by making use of some of the
theorems that will be given later.

7.1.3 Examples (a) Every constant fpnction on [a, b] is in R[a, b].
Let f(x) := k forall x € [a, b]. f P := {([x;_,, x;], t;)}\_, is any tagged partition of
[a, b], then it is clear that

S(fiP) =) k(x; —x,_)) = k(b - a).
i=1
Hence, for any & > 0, we can choose 8, := 1 so that if |PIl < 3, then
IS(f; P)—k(b—a)| =0 <&

Since & > 0 is arbitrary, we conclude that f € R[a, b] and f: f =k —a).

(b) Letg : [0, 3] — Rbedefined by g(x) :=2for0 <x < l,and g(x) :=3forl <x <
3. A preliminary investigation, based on the graph of g (see Figure 7.1.4), suggests that we
might expect that f03 g =28

é

-

Figure 7.14 Graph of g.

Let P be a tagged partition of [0, 3] with norm < §; we will show how to determine
8 in order to ensure that |S(g; P) — 8| < ¢. Let 171 be the subset of P having its tags in
[0, 1] where g(x) = 2, and let P, be the subset of P with its tags in (1, 3] where g(x) = 3.
It is obvious that we have '

(3) S(g; P) = S(g; P,) + S(g; P,).

Since [Pl < §,ifu € [0,1 — 8l and u € [x;_, x;],thenx; , <1—dsothatx; <x;_, +
5 < 1, whence thetag?, € [0, 1]. Therefore, the interval [0, 1 — 8] is contained in the union
of all subintervals in P with tags ¢; € [0, 1]. Similarly, this union is contained in [0, 1 + &].
(Why?) Since g(t;) = 2 for these tags, we have

2(1 - 8) < S(g; P)) <2(1+39).

A similar argument shows that the union of all subintervals with tags ¢, € (1, 3] contains the
interval [1 + &, 3] of length 2 — §, and is contained in [1 — 8, 3] of length 2 + &. Therefore,

32— 8) < S(g: P,) <32 +9).
Adding these inequalities and using equation (3), we have
8 — 58 < S(g; P) = S(g; P,) + S(g: P,) < 8+58,
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whence it follows that
1S(g; P) — 8] < 58.

To have this final term < ¢, we are led to take 8, < ¢/5.

Making such a choice (for example, if we take 8, := &/10), we can retrace the argument
and see that |S(g; P) — 8] < € when ||P| < s, Smce ¢ > 0 is arbitrary, we have proved
that g € RI[O0, 3] and that fo g = 8, as predicted.

(c) Leth(x) := x for x € [0, 1]; we will show that h € R[O0, 1].

We will employ a “trick” that enables us to guess the value of the integral by considering
a particular choice of the tag points. Indeed, if {I;};_, is any partmon of [0, 1] and we
choose the tag of the interval /; = [x;_,, x;] to be the midpoint g; : 2(xl , +x;), then
the contribution of thlS term to the Rlemann sum corresponding to the tagged partition

= {(I ql)]l |
h(g)(x; —x;_)) = %(xi +x_ )X —x_) = %(xiz —x2)).
If we add these terms and note that the sum telescopes, we obtain

S Q=) 36t-xr)=10>-0) =1
i=1

Now let P := {(I,.1,)}]_, be an arbitrary tagged partition of [0, 1] with | P|| < & so
thatx, —x,_, <8 fori=1,---,n. Also let Q have the same partition points, but where
we choose the tag g; to be the midpoint of the interval /;. Since both ¢, and g; belong to
this interval, we have |1, — ;| < 4. Using the Triangle Inequality, we deduce

Z‘i(xi —X_)— zn:qi(xi = X;_1)
i=1 i1

<) =gl —x ) < 8Y (x; —x,_)) = 8(x, —xp) = .
i=l i=1

|S(h; P) — S(h: Q)| =

Since S(h; Q) = 1, we infer that if P is any tagged partition with || P|| < &, then
IS(h; P) - 3| < 8.

Therefore we are led to take §, < ¢. If we choose §, := ¢, we can retrace the argument to
conclude that h € R[0, 1] and fol h= fol xdx =1

(d Let F(x):=1forx =122, %, and F(x) := 0 elsewhere on [0, 1]. We will show
that F € R[0, 1] and that [ F =0,

Here there are four points where F is not 0, each of which can belong to two subin-
tervals in a given tagged partition P. Only these terms will make a nonzero contribution to
S(F; P). Therefore we choose 5, :=¢/8.

If |P| <38, let P, be the subset of P with tags different from 1, %, 2, %, and
let ’P be the subset of P with tags at these points. Since S(F; 'Po) =0, it is seen
that S(F P) = S(F; 'Po) + S(F; P D = S(F, P 1)- Since there are at most 8 terms in

S(F; P )andeachtermns< 1.6, weconcludethatO < S(F;P)=S(F; P ) <85 =e.
Thus F € R[0, 1]andfo F=0.
() LetG(x):=1/nforx =1/n (n € N), and G(x) := 0 elsewhere on [0, 1].

Given ¢ > 0, let E, be the (finite) set of points where G(x) > ¢, let n,_ be the number
of points in E_, and let8 =¢/(2n,). Let’Pbeatagged partition such that 1Pl < 3,. Let



v

7.1 RIEMANN INTEGRAL 199

P, be the subset of P with tags outside of E, and let P, be the subset of P with tags in
) E,. Asin (d), we have
0 < S(G; P) = S(G; P)) < (2n,)5, = .

l Since £ > 0 is arbitrary, we conclude that G € R[0, 1] and fol G =0. O

l Some Properties of the Integral

, The difficulties involved in determining the value of the integral and of 5, suggest that
! it would be very useful to have some general theorems. The first result in this direction
enables us to form certain algebraic combinations of integrable functions.

7.1.4 Theorem Suppose that f and g are in Ria, b]. Then:
(@) Ifk € R, the function kf is in R[a, b] and

fa"kf=kja"f.

(b) The function f + g is in Rla, b] and

/;b(f+g)=/abf+fabg

(¢) If f(x) <g(x)forallx € [a, b], then
b b
f f= f g

Proof. 1P = {(lx,_,.x;].1,)}_, is atagged partition of [a, b}, then it is an easy exercise
to show that

SKf:P)=kS(f;P),  S(f+& P =S(f;P)+ S P),

S(f; P) < S(g; P).

We leave it to the reader to show that the assertion (a) follows from the first equality.
As an example, we will complete the proofs of (b) and ().

Given & > 0, we can use the argument in the proof of the Uniqueness Theorem 7.1.2
to construct a number 5§, > 0 such that if P is any tagged partition with 1Pl < 3, then

both
b b
@  |sgm-[r]<en wma |s@B-[g <o

To prove (b), we note that

IS(f+g;1‘>)—([abf+[abg)|=|S(f;¢)+5(g;¢>—£bf—[bg|

5|S(f;7'7)—fbf|+|S(g;7")—fbg|
<e/2tye2=c¢. ‘

Since £ > 0 is arbitrary, we conclude that f + g € Rla, b] and that its integral is the sum
of the integrals of f and g.
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To prove (c), we note that the Triangle Inequality applied to (4) implies

b b
/f—e/2<S(f;’f’) and S(g;7'>)<fg+s/2.

If we use the fact that S(f; P) < S(g; P), we have

[refons

But, since £ > 0 is arbitrary, we conclude that j;b f< fab g QED.

Boundedness Theorem

We now show that an unbounded function cannot be Riemann integrable.
7.1.5 Theorem If f € R[a, b], then f is bounded on [a, b].

Proof. Assume that f is an unbounded function in R[a, b] with integral L. Then there
exists § > 0 such that if P is any tagged partition of [a, b] with ||P|| < &, then we have
|IS(f; P) — L| < 1, which implies that

(5) IS(f; P)| < L] +1.

Now let Q@ = {[x,_,, x;]}"_, be a partition of [a, b] with || Q|| < 5. Since | f| is not bounded
on [a, b], then there exists at least one subinterval in Q, say [x,_,, x,], on which | f| is not
bounded—for, if | f| is bounded on each subinterval [x;_,, x;] by M,, then it is bounded on
[a, b] by max{M,, ---, M }.

We will now pick tags for Q that will provide a contradiction to (5). We tag Q by
t, := x, fori # k and we pick ¢, € [x,_,, x,] such that

FEI® = x| > ILI+ 1+ £k, - x|
i#k

From the Triangle Inequality (in the form |A + B| > |A| — | B|), we have
ISCF O 2 1£ (1) = %l = |1 F@)0x = x| > LI+ 1,
i#k

which contradicts (5). Q.E.D.

We will close this section with an example of a function that is discontinuous at every
rational number and is not monotone, but is Riemann integrable nevertheless.

7.1.6 Example We consider Thomae’s function 4 : [0, 1] — R defined, as in Example
5.1.5(h), by h(x) := 0if x € [0, 1] is irrational, 4(0) := 1 and by h(x) := 1/nif x € [0, 1]
is the rational number x = m/n where m, n € N have no common integer factors except 1.
It was seen in 5.1.5(h) that A is continuous at every irrational number and discontinuous at
every rational number in [0, 1]. We will now show that h € R[O0, 1].

Let ¢ > O; then the set E, {x € [0, 1] : h(x) > &/2} is a finite set. We let n, be the
number of elements in E, and let 5. :=¢/(4n). If P is a tagged partition with ||’P|| <3é,
let 'P be the subset of P havmg tagsin E, and ’P be the subset of P having tags elscwhere
in [0, 1]. We observe that ’P has at most 2n mtervals whose total length is < 2n, 5, =¢/2
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and that 0 < h(t;) < 1 for every tag in 'Pl Also the total lengths of the subintervals in ’Pz
is < 1and h(t;) < ¢/2 for every tag in P,. Therefore we have

IS(h; P)l = S(h; P+ S(h; Py) < 1-2n,8, + (¢/2) - 1 =¢.

Since € > 0 is arbitrary, we infer that h € R[0, 1] with integral 0. O

Exercises for Section 7.1

10.

11.

If I := [0, 4], calculate the norms of the following partitions:
@ P,:=(0,1,24), ®) P,:=(0,2,3,4),
© P,:=(0,1,15,2,34,4), d P,:=(0,.5,25,35,4).

If f(x):= x2 for x € [0, 4], calculate the following Riemann sums, where ’P‘. has the same
partition points as in Exercise 1, and the tags are selected as indicated.

(a) ’PI with the tags at the left endpoints of the subintervals.

(b) P, with the tags at the right endpoints of the subintervals.

(c) P, with the tags at the left endpoints of the subintervals.

(d) P, with the tags at the right endpoints of the subintervals.

Show that f : [a, b] — R is Riemann integrable on [a, bj if and only if there exists L € R
such that for every £ > 0 there exists §, > 0 such that if P is any tagged partition with norm
IPll <8, then |S(f; P)— L| <.

Let P bea tagged parition of [0, 3]. ) )
(a) Show that the union U, of all subintervals in P with tags in [0, 1] satisfies [0, 1 — ||P||]] €
c 0,1+ [Pl , .
(b) Show that the union U, of all subintervals in P with tags in [1, 2] satisfies [1 + ||P||,
- IPIlS U, S 1= 1PI.2+ Pl

Let P := {(1;,1)};_, be a tagged partition of [a, b] and let ¢, < c,.

(@) Ifu belongs to a subinterval /; whose tag satisfies ¢, < t < c¢,, show thatc, — 1Pl <u<
¢, + IP. , .

(b) If v € [a; b] and satisfies ¢, + ||Pl| < v < ¢, — ||P]|, then the tag 1, of any subinterval /,
that contains v satisfies ¢, € [c,, ¢,].

(@) Let f(x):=2if0<x<land f(x):=1if 1 <x <2. Show that f € R[0, 2] and
evaluate its integral.

(b) Leth(x):=2if0<x <1,h(1):=3and h(x) :=1if 1 < x < 2. Show that h € R0, 2]
and evaluate its integral.

Use Mathematical iifduction and Theorem 7.1.4 to show that if f,---, f, are in Rla, b]
and if k, - € R, then the linear combination f = ) ; k. f; belongs to Rla, b] and

=Xkl f

If f € Rla,b] and | f(x)| < M for all x € [a, b], show thatlLb fI<M@®b-a).

If f € Rla, b] and if (’Pn) is any sequence of tagged partitions of [a, b] such that II’Pn I — 0,
prove that [ f =lim_S(f; P,).

Let g(x) := 0 if x € [0, 1] is rational and g(x) := 1/x if x € [0, 1] is irrational. Explain why

g ¢ RIO, 1]. However, show that there exists a sequence (’P ) of tagged partitions of [a, b] such
that 1P, Il - 0 and lim, S(g; P,) exists.

Suppose that f is bounded on [a, b] and that there exists two sequences of tagged partitions of
[a, b] such that 1P = 0and IIQ I = O, but such that lim, S(f; P ) # lim, S(f; Q ). Show
that f is not in R[a, b].

i=1"
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12. Consider the Dirichlet function, introduced in Example 5.1.5(g), defined by f(x) :=1 fo

x € [0, 1] rational and f(x) := 0 for x ¢ [0, 1] irrational. Use the preceding exercise to show:
that f is not Riemann integrable on [0, 1].

13. Suppose that f : [a, b] — R and that f(x) = 0 except for a finite number of points ¢, - -, ¢
in [a, b]. Prove that f € R[a, b] and that fab f=0.

14. If g € Rla, b] and if f(x) = 8(x) except for a finite number of points in [a, b], prove thy
f €Rla, bland that [* f = [* .

15. Suppose that ¢ < d are points in [a, bl.If ¢ : [a, b] — R satisfies o(x)=a >0forx e [c,d]
and ¢(x) = Oelsewherein [a, b], prove thatg € R[a, b] and that M b ¢ = a(d — c). [Hint: Givey

€ >0let §, :=¢/4a and show-that if ||P|| < 5, then we have a(d — ¢ — 28) < S(p; P) <
a(d—c+28)]

16. LetO<a <b,let Q(x) :=x2forx e [a,blandlet P := {lx,_,, x;1}i_, be a partition of [a, b)
For each i, let g; be the positive square root of

1,.2 2
§(x,- +xx,_ +x7_)).

(a) Show that q; satisfies 0 < X_; =g, <x.

(b) Show that Q(g)(x; — x_)= %(x‘? — x,-3_1).

(c) If Q is the tagged partition with the same subintervals as P and the tags g,, show tha,
S$(Q: Q) = 3(¥* - a).

(d) Use the argument in Example 7.1.3(c) to show that Q € Rla, b] and

b b
/Q:/xzdxzé(b:‘—d:;).

17. Let0<a <b and m €N, let M(x) :=x" for x € [a, b] and let P := {lx;_ ., x,1, be &
partition of [a, b]. For each i, let q; be the positive mth root of '
L (I +x A xxm g )-
m+1 i i i—1 i7i—1 i~1
(a) Show that q; satisfies 0 < X_ <¢q <x.
(b) Show that M(q,)(x; — x,_)) = Lo (x"*! — xmth),
(c) If Q is the tagged partition with the same subintervals as P and the tags g;, show that
S(M; Q) = L™+ — gy,
(d) Use the argument in Example 7.1.3(c) to show that M € Rla, b] and

b b 1
/M:/ x"dx = ——— "+~ gty
a a m+1 ’

18. If f € Rla,b] and ¢ € R, we define gonla+c,b+c] by g(») ;== f(y — ¢). Prove that!
g € Rla + ¢, b + c] and that fa b:: g= fab /. The function g is called the c-translate of f.

—

Section 7.2 Riemann Integrable Functions

—

We begin with a proof of the important Cauchy Criterion. We will then prove the Squeeze
Theorem, which will be used to establish the Riemann integrability of several classes of
functions (step functions, continuous functions, and monotone functions). Finally we wi]|
establish the Additivity Theorem.

We have already noted that direct use of the definition requires that we know the value
of the integral. The Cauchy Criterion removes this need, but at the cost of considering two
Riemann sums, instead of just one.
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7.2.1 Cauchy Criterion A function f : [a, b] — R belongs to R|a, b] if and only if for
every € > O there exists 1, > O such that if P and Q are any tagged partitions of [a, b]
with |P|| < n, and |Qll < n,, then

IS(f; P) — S(f; Q) <e.

Proof. (=) If f € Rla, b] with integral L, let 5, := §,/2 > 0 be such that if P, Q are
tagged partitions such that ||’P|| <1, and N0l < 1, then

IS(f;P)—L| <¢/2 and IS(f; @) — L| < ¢/2.
Therefore we have

IS(fi P) = S(f; DI < IS(FiP) ~ L+ L - S(f; Q)|
<IS(f;P)—-L|+|L - S(f; QI
<éef2+¢e/2=c¢.

(«) For each n € N, let §, > 0 be such that if P and Q are tagged partitions with
norms < §,, then

IS(f; P) — S(f; Q)| <'1/n.

Evidently we may assume that §, > 8, , for n € N; otherwise, we replace §, by §, :=
mln{al g }

For each n € N, let ’P be a tagged partition with II'P | <34,. Clearly, if m > n then
both ’P”l and 'P,l have norms < §,, so that

(1) IS(f;PY=S(f;P)l<1/n for m>n.

Consequently, the sequence (S(f; ’i’m))f=l is a Cauchy sequence in R. Therefore (by
Theorem 3.5.5) this sequence converges in R and we let A := lim,, S(f; P,).
Passing to the limit in (1) as m — oo, we have

IS(f;P)—Al<1l/n forall neN.

To see that A is the Riemann integral of f, given ¢ > 0, let K € N satisfy X > 2/e. If Q
is any tagged partition with || Q|| < §,, then

IS(f; Q) — Al < IS(f; Q) — S(f; P)l + IS(f: Py) — Al
<1/K+1/K <e.

Since ¢ > 0 is arbitrary, then f € R[a, b] with integral A. QED.
We will now give two examples of the use of the Cauchy Criterion.
7.2.2 Examples (a) Letg : [0, 3] - Rbe the function consnderedexample7 1.3(b).
In that example we saw that if P is a tagged partition of [0, 3] with norm IPIl < 8, then
8—-55 < S(g; P) <8+ 56.
Hence if Q is another tagged partition with || Q|| < &, then
855 <S(g; Q) <8+55.
If we subtract these two inequalities, we obtain

1S(g; P) — S(g; Q)] < 108.
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In order to make this final term < ¢, we are led to employ the Cauchy Criterion with
n, := €/20. (We leave the details to the reader.)

(b) The Cauchy Criterion can be used to show that a function f : [a,b] — R is not
Riemann integrable. To do this we need to show that: There exists &, > O such that for
any n > O there exists tagged partitions P and Q with IPIl < n and @Il < n such that
IS(f: P) — S(f; Q) = &

We will apply these remarks to the Dirichlet function, considered in 5.1.5(g), defined
by f(x) :=1if x € [0, 1] is rational and f(x) := 0 if x € [0, 1] is irrational.

Here we take ¢, := 1. If P is any partition all of whose tags are rational numbers then
S(f;P) = 1, while if Q is any tagged partition all of whose tags are irrational numbers
then S(f; Q) = 0. Since we are able to take such tagged partitions with arbitrarily small
norms, we conclude that the Dirichlet function is not Riemann integrable. O

The Squeeze Theorem

The next result will be used to establish the Riemann integrability of some important classes
of functions.

7.2.3 Squeeze Theorem Let f : [a,b] - R. Then f € R[a, b] if and only if for every
€ > 0 there exist functions a_ and w,_ in Rla, b] with

2) a,(x) < f(x) <w,(x) forall x € [a,b],
and such that b
3) / (0, —,) <e.

Proof. (=) Takea, =w, = fforalle > 0.
(<) Lete > 0. Since o, and w, belong to R[a, b], there exists §, > 0 such that if P
is any tagged partition with ||'P|| < 8 then

|S(a£; 'P) - /bae

It follows from these inequalities that

<E.

b
<¢ and IS(ws;’P)—/ o,
a

b b
/ a, —& < S,;P) and S(w,; P) < / w, +&.
In view of inequality (2), we have S(c,; P)y<S(f;P)<S (w,; P), whence
b ) b
f a,—€<S(f;P) </ w, + €.
If Q is another tagged partition with || Qll<s .» then we also have
b ) b
f a,—e<S(f; Q) <f w, +&.
If we subtract these two inequalities and use (3), we conclude that
b b
SGP -5 01 < (o, - [(a, 42
a a

b
=f (w, —a,) +2¢ < 3e.

Since ¢ > 0 is arbitrary, the Cauchy Criterion implies that f € R[a, b]. QED.
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Classes of Riemann Integrable Functions

The Squeeze Theorem is often used in connection with the class of step functions. It will be
recalled from Definition 5.4.9 that a function ¢ : [a, b] — R is a step function if it has only
a finite number of distinct values, each value being assumed on one or more subintervals
of [a, b]. For illustrations of step functions, see Figures 5.4.3 or 7.1.4.

7.24 Lemma If J is a subinterval of [a, b] having endpoints ¢ < d and if ¢,(x) := 1
forx € J and ¢, (x) := O elsewhere in [a, b], then ¢, € R[a, b] and j;b ¢, =d—c.

Proof. 1f J = [c, d] with ¢ <d, this is Exercise 7.1.15 and we can choose §, := £/4.
A similar proof can be given for the three other subintervals having these endpoints.
Alternatively, we observe that we can write

Ced) = Pled) " Py Picd) = Peat ~Pea W Ccay = Peay = Ppear
Since fab @) = 0, all four of these functions have integral equal to d — c. QED.

It is an important fact that any step function is Riemann integrable. -
7.2.5 Theorem Ifg : [a, b] — R is a step function, then ¢ € R]a, b].

Proof. Step functions of the type appearing in 7.2.4 are called “‘elementary step functions”.
In Exercise S it is shown that an arbitrary step function ¢ can be expressed as a linear
combination of such elementary step functions:

@ o= ko,

where J, has endpoints ¢ i < dj. The lemma and Theorem 7.1.4(a,b) imply that ¢ € R]a, b]
and that

b m
) f 9= k(d —c). QED.
a j=|

We will now use the Squeeze Theorem to show that an arbitrary continuous function
is Riemann integrable.

7.2.6 Theorem If f : [a, b] — R is continuous on [a, b], then f € R[a, b].

Proof. It follows from Theorem 5.4.3 that f is uniformly continuous on [a, b]. Therefore,
given ¢ > 0 there exists §, > 0 such that if u, v € [a, b] and |[u — v| < §,, then we have
If ) — f()] < &/(b —a).

Let P = {I,};_, be a partition such that || P|| < 5_, letu; € I, be a point where f attains
its minimum value on /;, and let v; € I, be a point where f attains its maximum value on I;.

Let a, be the step function defined by o, (x) := f(y;) forx € [x;,_,,x) (i =1,---,
n—1)anda (x) := fu,) forx € [x,_,, x,]. Let 0, be defined similarly using the points
v, instead of the u;. Then one has

,(x) < f(x) <o/ (x) forall x €{a,b]
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Moreover, it is clear that

0<f (, —a)—Z(f(v)—f(u))(x —x_)

< ;(b — a)(xi —Xx;_;) =€

Therefore it follows from the Squeeze Theorem that f € R|[a, b]. QED.

Monotone functions are not necessarily continuous at every point, but they are also
Riemann integrable.

7.2.7 Theorem If f : [a, b] — R is monotone on [a, b], then f € R{a, b].

Proof. Suppose that f is increasing on the interval [a, b], a < b.If ¢ > 0O is given, we let
q € N be such that

f&) - f@ _ e

h:= .
q b—a

Let y, := f(a) + kh for k=0,1,---,9 and consider sets A, := f~'([y,_;, ) for
k=1,---,q—land A, := f'(ly,_,, y,)). The sets {A,} are pairwise disjoint and have
union [a, b]. The Characterization Theorem 2.5.1 implies that each A, is either (i) empty,
(ii) contains a single point, or (iii) is a nondegenerate interval (not necessarily closed)
in [a, b]. We discard the sets for which (i) holds and relabel the remaining ones. If we
adjoin the endpoints to the remaining intervals {A,}, we obtain closed intervals {1, }. It
is an exercise to show that the relabeled intervals {A,}{_, are pairwise disjoint, satisfy
l[a,b] = Uj_, A, and that f(x) € [y,_,, y,]forx € A,.
We now deﬁne step functions &, and w, on [a, b] by setting

a,(x) =y, and w, (x) ==y, for X €A,.

Itis clear that o, (x) < f(x) < w,(x) for all x € [a, b] and that
[ (0, —@,) = Z(yk Vo)) = X_y)
= Zh (X —x,_))=h-(b—a) <e.
k=1
Since ¢ > 0 is arbitrary, the Squeeze Theorem implies that f € R|a, b]. QED.

The Additivity Theorem

We now return to arbitrary Riemann integrable functions. Our next result shows that the
integral is an “additive function” of the interval over which the function is integrated. This
property is no surprise, but its proof is a bit delicate and may be omitted on a first reading.

7.2.8 Additivity Theorem Let f : [a,b] — R and let c € (a, b). Then f € R[a, b] if
and only if its restrictions to [a, c] and [c, b] are both Riemann integrable. In this case

©) [abf=[f+/cbf.
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Proof. (<) Suppose that the restriction f, of f to [a, c], and the restriction f, of f to
[c, b] are Riemann integrable to L, and L,, respectively. Then, given & > O there exists 8 >
Osuch that 1f’P 1sataggedpart1t10nof[a c] with ||’P | <&, then |S(f,; P )— L,|<¢g/3.
Also there ex1sts 8" > 0 such that if ’P2 is a tagged partition of [c b] with ||’P | < 8" then
|S(f2; Py) — L,| < /3. If M is a bound for | f|, we define 8, := min{¢’, 8" £/6M} and
let P be a tagged partition of [a, b] with || Q|| < 8. We will prove that

@) IS(f; @ — (L, + L,)| <e.

(i) Ifcis apartition point of Q, we split Q into a partition Ql of [a, c] and a partition
Q2 of [c, b). Since S(f; Q) = S(f; Q )+ S(f; Qz), and since Ql has norm < &' and Q2
has norm < §”, the inequality (7) is clear

(ii) If c is not a partition point in Q= {(I,, t,)}y=,» there exists k < m such that
¢ € (x,_;, x;). Welet Ql be the tagged partition of [a, c] defined by

Q _{(I]at) ( k—1° tk |) ([xk lvc] C)}
and Q2 be the tagged partition of [c, b] defined by
Q, :={(le, x, 1. ©), Uy fp)r e+ +2 (L 1)),

A straightforward calculation shows that

S(fi Q) = S(f; Q) = S(f; Q,) = f(t)(x, —x,_) — f()x, — x,_))
= (f(tk) - f@©)- (xk - xk—l)’

whence it follows that

IS(f; Q) — S(f; Q) — S(f; Q)| <2M(x, —x,_,) < &/3.
But since "Q| | <& <48 and || Q2|| < & < &8”, it follows that

IS(f; Q) —L,I<e/3 and  [S(f; Q,) — L,| < ¢&/3,

from which we obtain (7). Since ¢ > 0 is arbitrary, we infer that f € R[a, b] and that (6)
holds.

(=) We suppose that f € R[a, b] and, given ¢ > 0, we let n, > 0 satisfy the Cauchy
Criterion 7.2.1. Let f; be the restriction of f to [a, c] and let ’Pl, Ql be tagged partitions
of [a, c] with ||’P | <n, and ||Q | < n,. By adding additional partmon points and tags
from [c, b], we can extend ’P and Ql to tagged partitions P and Q of [a, b] that sansfy
1Pl <n . and || QI < n,. If we use the same additional points and tags in [c, b] for both P
and Q, then

S(flr Pl) - S(fp Ql) = S(f, P) - S(f, Q)

Since both P and Q have norm < n,, then [S(f;; 751) - S(fy; QI)I < ¢&. Therefore the
Cauchy Condition shows that the restriction f, of fto[a, c]isin R[a, c]. In the same way,
we see that the restriction f, of f to [c, b] is in R[c, d].

The equality (6) now follows from the first part of the theorem. QED.

7.2.9 Corollary If f € Rla, b], and if [c, d] < [a, b], then the restriction of f to [c, d]
isin R[c, d].
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Proof. Since f € Rla, b] and c € [a, b], it follows from the theorem that its restriction
to [c, b] is in R[c, b]. But if d € [c, b], then another application of the theorem shows that
the restriction of f to [c, d] is in R[c, d]. QED.

7.2.10 Corollary If f € Rla,b] and ifa =c, <c, <--- <c, = b, then the restric-
tions of f to each of the subintervals [c,_,, c;] are Riemann integrable and

f £=3 ‘s

Until now, we have considered the Riemann integral over an interval [a, b] where
a < b. Itis convenient to have the integral defined more generally.

7.2.11 Definition If f € R[a, b] and if o, B € [a, b] with @ < B, we define

/:f::—j:f and /:‘f:=0.

7.2.12 Theorem If f € R[a, b] and ifa, B, y are any numbers in [a, b], then

® Lﬂf=/:f+/ypf,

in the sense that the existence of any two of these integrals implies the existence of the third
integral and the equality (8).

Proof. If any two of the numbers «, B, y are equal, then (8) holds. Thus we may suppose
that all three of these numbers are distinct.
For the sake of symmetry, we introduce the expression

L(a. B, 7) :=[:f+fﬂyf+/:f-

It is clear that (8) holds if and only if L(«, 8, y) = 0. Therefore, to establish the assertion,
we need to show that L = O for all six permutations of the arguments «, f and y.

We note that the Additivity Theorem 7.2.8 implies that L(a, 8, y) = 0Owhena < y <
B. But it is easily seen that both L(8, v, a) and L(y, a, B) equal L(«, B, y). Moreover, the
numbers

LB, a,y), L(a, y, B), and L(y, B, a)

are all equal to —L(«, B, y). Therefore, L vanishes for all possible configurations of these
three points. QED.

Exercises for Section 7.2

1. Let f : [a,b] — R. Show that f ¢ Rla, b] if and only if there exists &, > 0 such that for every
n € N there exist tagged partitions 'P and Q with ||'P | <1/n and IIQ | < 1/n such that
IS(f; P,) — S(f; @)1 = &,

2. Consider the function & defined by A(x) :=x + 1 for x € [0, 1] rational, and A(x) := 0 for
x € [0, 1] irrational. Show that & is not Riemann integrable.




10.

11.

12.
13.

14.

15.
16.

17.

18.

19.

20.
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Let H(x) := k for x = 1/k (k € N) and H(x) := 0 elsewhere on [0, 1]. Use Exercise 1, or the
argument in 7.2.2(b), to show that H is not Riemann integrable.

If a(x) := —x and w(x) := x and if ¢(x) < f(x) < w(x)forallx € [0, 1], does it follow from
the Squeeze Theorem 7.2.3 that f € R[0, 11?7 .

If J is any subinterval of (a, b] and if ¢, (x) := 1 forx € Jand ¢, (x) := 0 elsewhere on [a, b],

we say that ¢, is an elementary step function on (a, b). Show that every step function is a linear
combination of elementary step functions.

If ¥ : [a, b] = R takes on only a finite number of distinct values, is ¥ a step function?

If S(f;P) is any Rnemann sum of f :[a,b] - R, show that there exists a step function
¢ :[a, bl > Rsuchthatf ¢ = S(f:P).

Suppose that f is continuous on [a, b], that f(x) > 0 for all x € [a, b] and that j;" f = 0. Prove
that f(x) = 0 for all x € [a, b).

Show that the continuity hypothesis in the preceding exercise cannot be dropped

If f and g are continuous on [a, b] and if fa f= j; g, prove that there exists ¢ € [a, b] such
that f(c) = g(c).

If f is bounded by M on [a, b] and if the restriction of fto every mterval [c, b] where ¢ € (a, b)
is Riemann integrable, show that f € R[a, b] and that _[ f—- f f as ¢ = a+. [Hint: Let
a (x) ;= —-Mandow (x) := M forx € [a,c) anda (x) := w (x) := f(x) for x € [c, b]. Apply
the Squeeze Theorem 7.2.3 for c sufficiently near a.)

Show that g(x) := sin(1/x) for x € (0, 1] and g(0) := O belongs to R[O, 1].
Give an example of a function f : [a, b] > R that is in R[c, b] for every ¢ € (a, b) but which
is not in R[a, b).

Suppose that f : [, b] = R, thata = ¢, < ¢, <--- <, = bandthatthe restrictions of f to
[c;_,. c;] belong to R[c;_,. ;] fori=1,---,m. Prove that f € Rla, b] and that the formula
in Corollary 7.2.10 holds.

If f is bounded and there is a finite set E such that f is continuous at every point of [a, b]\E,
show that f € R[a, b).

If f is continuous on [a, b), @ < b, show that there exists ¢ € [a, b] such that we have j;" f=
f(c)(b — a). This result is sometimes called the Mean Value Theorem for Integrals.

If f and g are contmuous on [a, b) and g(x) > O for all x € [a, b], show that there exists
¢ € [a, b] such that f fg = f(c) f g. Show that this conclusion fails if we do not have
g(x) > 0. (Note that this result is an extension of the preceding exercise.)

1/n

Let f be continuous on [a, b], let f(x) > 0 for x € [a, b], and let M, := (f: f") . Show
that lim(M,) = sup{f(x) : x € [a, b]}.
Suppose that a > 0 and that f € R[—a, a].
(a) If f is even (that s, if f(—x) = f(x) for all x € [0, a]), show that [* f = 2fo

() If f is odd (that is, if f(—x) = —f(x) for all x € [0, a)), show that /¢ f =0.
Suppose that f : [a, b] & Rand thatn € N.Let P, be the pamnon of [a, b] into n subintervals
having equal lengths, so that x; —a+x(b—a)/nfor1 =0,1,---,n.LetL (f) := S(f; 'P,l D

and R, (f) == S(f; P.. ,), Where ‘P , has its tags at the left cndpomts and 'P , has its tags at
the nght endpoints of the submtervals [x;_» X1
(a) If f is increasing on [a, b], show that L (f) < R,(f) and that

b—
0 RN -L(H=(r®) - f@) - =2,

(b) Show that f(a)(b—a) <L (f) < f: f<R.(f) < f®)b-a).
(c) If f is decreasing on [a, b], obtain an inequality similar to that in (a).
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(d) If f € Rla, b)] is not monotone, show that j;b f is not necessarily between L _(f) and
R (f).
21. If f is continuous on [—a, a], show that f_‘_'a f(xz) dx = 2_[: f(xz) dx.

22. If fiscontinuouson[—1, 1], showthatf(;'/2 f(cosx)dx = o"’z f(Gsinx)dx = % o" f(sinx)dx.

[Hint: Examine certain Riemann sums.]

Section 7.3 The Fundamental Theorem

We will now explore the connection between the notions of the derivative and the integral.
In fact, there are two theorems relating to this problem: one has to do with integrating a
derivative, and the other with differentiating an integral. These theorems, taken together,
are called the Fundamental Theorem of Calculus. Roughly stated, they imply that the
operations of differentiation and integration are inverse to each other. However, there are
some subleties that should not be overlooked.

The Fundamental Theorem (First Form)

The First Form of the Fundamental Theorem provides a theoretical basis for the method
of calculating an integral that the reader learned in calculus. It asserts that if a function
f is the derivative of a function F, and if f belongs to R|a, b], then the integral j;b f
can be calculated by means of the evaluation F |::= F(b) — F(a). A function F such that
F'(x) = f(x) for all x € [a, b] is called an antiderivative or a primitive of f on [a, b].
Thus, when f has an antiderivative, it is a very simple matter to calculate its integral.

In practice, it is convenient to allow some exceptional points ¢ where F’(c) does not
exist in R, or where it does not equal f(c). It turns out that we can permit a finite number
of such exceptional points.

7.3.1 Fundamental Theorem of Calculus (First Form) Suppose there is a finite set E
in [a, b] and functions f, F : [a, b] — R such that:

(a) F is continuous on [a, b],

(b) F'(x) = f(x) forall x € [a, b]\E,

(c) f belongs to R[a, b].

Then we have

b
) f f = Fb) - F(a).

Proof. We will prove the theorem in the case where E := {a, b}. The general case can
be obtained by breaking the interval into the union of a finite number of intervals (see
Exercise 1).

Let ¢ > 0 be given. Since f € .'R,[a, b] by assumption (c), there exists §, > 0 such that

if P is any tagged partition with || P]| < 3,, then

b
@ [srpr= [ o] <.
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If the subintervals in P are [x;_,, x;], then the Mean Value Theorem 6.2.4 applied to F on
[x;_,, x;] implies that there exists u; € (x;_,, x;) such that

F(xi)_F(x,-_])=F’(u‘.)-(xi—x‘._l) for i = 1’...,n.

If we add these terms, note the telescoping of the sum, and use the fact that F'(x,;) = f(u,),
we obtain

n

F(b) - F@) =Y _(F(x) - F(x,_))) = > fu)(x; —x,_)).
i=1 i=1

Now let 'Pu = {(lx;,_» x;1, u;)}i_1, so the sum on the right equals S(f; 'Pu). If we substi-

tute F(b) — F(a) = S(f; P,) into (2), we conclude that

|F(b) ~ F(a) - /bf| <e.

But, since £ > 0 is arbitrary, we infer that equation (1) holds. Q.E.D.

Remark If the function F is differentiable at every point of [a, b], then (by Theorem
6.1.2) hypothesis (a) is automatically satisfied. If f is not defined for some point ¢ € E,
we take f(c) := 0. Even if F is differentiable at every point of [a, b], condition (c) is not
automatically satisfied, since there exist functions F such that F’ is not Riemann integrable.
(See Example 7.3.2(e).)

7.3.2 Examples (a) If F(x) := ix?forallx € [a, b], then F'(x) = x forall x € [a, b].
Further, f = F’ is continuous so it is in R[a, b]. Therefore the Fundamental Theorem (with
E = @) implies that

b
/ xdx = F(b) — F(a) = 1(b* — a?).

() If G(x) := Arctan x for x € [a, b}, then G'(x) = 1/(x% + 1) for all x € [a, b]; also
G’ is continuous, so it is in R[a, b]. Therefore the Fundamental Theorem (with E = @)
implies that

b

/ —21 dx = Arctanb — Arctana.
a X +1

(©) If A(x) := |x| for x € [—10, 10], then A’(x) = —1 if x € [—10,0) and A'(x) = +1

for x € (0, 10]. Recalling the definition of the signum function (in 4.1.10(b)), we have

A’(x) = sgn(x) for all x € [—10, 10]\{0}. Since the signum function is a step function, it

belongs to R[—10, 10]. Therefore the Fundamental Theorem (with E = {0}) implies that

10
/ sgn(x)dx = A(10) — A(-10) =10-10=0.
-10

(@) If H(x) := 2/ forx € [0, b], then H is continuous on [0, b] and H'(x) = 1//x for
x € (0, b). Since h := H' is not bounded on (0, b], it does not belong to R[0, b] no matter
how we define h(0). Therefore, the Fundamental Theorem 7.3.1 does not apply. (However,
we will see in Example 10.1.10(a) that & is generalized Riemann integrable on [0, b].)

(e) LetK(x) := x2cos(1/x?)forx € (0, 1]and let K (0) := 0. It follows from the Product
Rule 6.1.3(c) and the Chain Rule 6.1.6 that

K'(x) = 2xcos(1/x%) + (2/x)sin(1/x?)  for x € (0, 1].
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Further, as in Example 6.1.7(d), we have K’(0) = 0. Thus X is continuous and differentiable

at every point of [0, 1]. Since the first term in X’ is continuous on [0, 1], it belongs to

RO, 1]. However, the second term in K’ is not bounded, so it does not belong to R[0, 1].

Consequently K’ ¢ R0, 1], and the Fundamental Theorem 7.3.1 does not apply to K’

(However, we will see in Example 10.1.10(b) that K’ is generalized Riemann integrable.)
O

The Fundamental Theorem (Seconj Form)

We now turn to the Fundamental Thedrem (Second Form) in which we wish to differentiate
an integral involving a variable upper limit.

7.3.3 Definition If f € R[a, b], then the function defined by

3) F(z):= /zf for ze[a,b],

is called the indefinite integral of f with basepoint a. (Sometimes a point other than a is
used as a basepoint; see Exercise 6.)

We will first show that if f € R[a, b], then its indefinite integral F satisfies a Lipschitz
condition; hence F is continuous on [a, b].

7.3.4 Theorem The indefinite integral F defined by (3) is continuous on [a, b]. In fact,
if | f(x)] < M forall x € [a, b], then |F(z) — F(w)| < M|z~ w|forallz, w € [a, b].

Proof. The Additivity Theorem 7.2.8 implies that if z, w € [a,b] and w < z, then

F(z)=sz=wa+sz=F<w)+LZf,

z

F(z)-F(w):/ f.

w

whence we have

Now if —M =< f(&x) < M forall x € [a, b], then Theorem 7.1.4(c) implies that

—M(z— w) S/ZfSM(z—w),

o7

as asserted. Q.E.D.

whence it follows that

|F(2) — F(w)| < =Mz - wl,

We will now show that the indefinite integral F is differentiable at any point where f
is continuous.

7.3.5 Fundamental Theorem of Calculus (Second Form) Letf € R[a, b] and Iet f be
continuous at a pointc € [a, b]. Then the indefinite integral, defined by (3), is differentiable

atc and F'(c) = f(c).
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Proof. 'We will suppose that ¢ € [a, b) and consider the right-hand derivative of F at c.

Since f is continuous at ¢, given & > 0 there exists n, >0suchthatifc <x <c+n,
then ‘

) fle)—e< fx) < f(o) +e.
Let h satisfy 0 < h < 7,. The Additivity Theorem 7.2.8 implies that f is integrable on the
intervals [a, c], [a, ¢ + h] and [c, ¢ + h] and that :

— c+h
F(c+h)—F(c)=/ f.

Now on the interval [c, ¢ + k] the function f satisfies inequality (4), so that (by Theorem
7.1.4(c)) we have

c+h
(f(C)—s)-hSF(C+h)—F(C)=/ f=(fle)+e)-h.

If we divide by 4 > 0 and subtract f(c), we obtain
F(c+h)— F(c)

h
But, since & > 0 is arbitrary, we conclude that the right-hand limit is given by

. F(+h)-F(o)
lim
h—>0+ h

- f()

<e.

= f(o).

Itis proved in the same way that the left-hand limit of this difference quotient also equals
f(c) when ¢ € (a, b], whence the assertion follows. QED.

t If f is continuous on all of [a, b], we obtain the following result.

'13.6 Theorem If f is continuous on [a, b], then the indefinite integral F, defined by
(3), is differentiable on [a, b] and F'(x) = f(x) for all x € [a, b].

Theorem 7.3.6 can be summarized: If f is continuous on [a, b), then its indefinite
infegral is an antiderivative of f. We will now see that, in general, the indefinite integral
ied not be an antiderivative (either because the derivative of the indefinite integral does
ot exist or does not equal £ (x)).

137 Examples (a) If f(x) :=sgnxon[—1, 1],then f € R[—1, 1] and has the indef-
‘nite integral F(x) := |x| — 1 with the basepoint —1. However, since F’(0) does not exist,
tFis not an antiderivative of f on [—1, 1].

b) If » denotes Thomae’s function, considered in 7.1.6, then its indefinite integral
H(x) := [y h is identically O on [0, 1]. Here, the derivative of this indefinite integral
uists at every point and H'(x) = 0. But H'(x) # h(x) whenever x € QnN[o, 1], so that
H is not an antiderivative of 4 on [0, 1]. O
|

\fubstitution Theorem

\The next theorem provides the justification for the “change of variable” method that is often
ied to evaluate integrals. This theorem is employed (usually implicitly) in the evaluation by
‘means of procedures that involve the manipulation of “differentials”, common in elementary
Qurses.
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7.3.8 Substitution Theorem Let J :=[a, 8] and let ¢ : J — R have a continuous
derivativeon J. If f : I — R is continuous on an interval I containing ¢(J), then

B #(B)
(5 f fle®)-¢'(t)dt = f(x)dx.

ela)
The proof of this theorem is based on the Chain Rule 6.1.6, and will be outlined in
Exercise 15. The hypotheses that f and ¢’ are continuous are restrictive, but are used to
ensure the existence of the Riemann integral on the left side of (5).

smf

7.3.9 Examples (a) Consider the integral f

Here we substitute ¢(t) := / for ¢ € [1, 4] so that ¢'(t) = 1/(24/1) is continuous
on [1, 4). If we let f(x) := 2sinx, then the integrand has the form (f o ¢) - ¢’ and the
Substitution Theorem 7.3.8 implies that the integral equals fl2 2sinxdx = —2cosx|? =
2(cos 1 — cos 2).

4 sin f

o VI

Since ¢(t) := /t does not have a continuous derivative on [0, 4], the Substitution
Theorem 7.3.8 is not applicable, at least with this substitution. (In fact, it is not obvious
that this integral exists; however, we can apply Exercise 7.2.11 to obtain this conclusion.
We could then apply the Fundamental Theorem 7.3.1 to F(¢) := —2 cos 4/t with E := {0}
to evaluate this integral.) a

(b) Consider the integral

We will give a more powerful Substitution Theorem for the generalized Riemann
integral in Section 10.1.

Lebesgue’s Integrability Criterion

We will now present a statement of the definitive theorem due to Henri Lebesgue (1875-
1941) giving a necessary and sufficient condition for a function to be Riemann integrable,
and will give some applications of this theorem. In order to state this result, we need to
introduce the important notion of a null set.

Warning Some people use the term “null set” as a synonym for the terms ‘“‘empty set”
or “void set” referring to @ (= the set that has no elements). However, we will always use
the term “‘null set” in conformity with our next definition, as is customary in the theory of
integration.

7.3.10 Definition (a) A set Z C Ris said to be a null set if for every & > 0 there exists
a countable collection {(a,, b,)} .., of open intervals such that

(6) zc|Ja,b) and ) (b,—a) <e
k=1 k=1

(b) If Q(x) is a statement about the point x € I, we say that Q(x) holds almost every-
where on I (or for almost every x € I), if there exists a null set Z C I such that
Q(x) holds for all x € I'\Z. In this case we may write

Q(x) for ae. xe€l.

It is trivial that any subset of a null set is also a null set, and it is easy to see that the
union of two null sets is a null set. We will now give an example that may be very surprising.
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7.3.11 Example The Q, of rational numbers in [0, 1] is a null set.

We enumerate Q, = {r,,r,,---}. Given & > 0, note that the open interval J, :=
(r, — &/4,r, + ¢/4) contains r, and has length ¢/2; also the open interval J, := (r, —
/8, r, + €/8) contains r, and has length £/4. In general, the open interval

. € £
Jk = rk—w,rk+ﬁ

contains the point r, and has length ¢ /2*. Therefore, the union Ukz, J, of these open
intervals contains every point of Q, ; moreover, the sum of the lengths is Y -, (¢/ 25 =e.
Since ¢ > 0 is arbitrary, Q, is a null set. O

The argument just given can be modified to show that: Every countable set is a null
set. However, it can be shown that there exist uncountable null sets in R; for example, the
Cantor set that will be introduced in Definition 11.1.10.

We now state Lebesgue’s Integrability Criterion. It asserts that a bounded function on
an interval is Riemann integrable if and only if its points of discontinuity form a null set.

7.3.12 Lebesgue’s Integrability Criterion A bounded function f : [a, b] — R is Rie-
mann integrable if and only if it is continuous almost everywhere on [a, b).

A proof of this result will be given in Appendix C. However, we will apply Legesgue’s
Theorem here to some specific functions, and show that some of our previous results follow
immediately from it. We shall also use this theorem to obtain the important Composition
and Product Theorems.

7.3.13 Examples (a) The step function g in Example 7.1.3(b) is continuous at every
point except the point x = 1. Therefore it follows from the Lebesgue Integrability Criterion
that g is Riemann integrable.

In fact, since every step function has at most a finite set of points of discontinuity,
then: Every step function on [a, b] is Riemann integrable.

(b) Since it was seen in Theorem 5.5.4 that the set of points of discontinuity of a monotone
function is countable, we conclude that: Every monotone function on [a, b] is Riemann

integrable.
(c) The function G in Example 7.1.3(e) is discontinuous precisely at the points D :=
{1,1/2,---,1/n,---}. Since this is a countable set, it is a null set and Lebesgue’s Criterion

implies that G is Riemann integrable.
(d) The Dirichlet function was shown in Example 7.2.2(b) not to be Riemann integrable.

Note that it is discontinuous at every point of [0, 1]. Since it can be shown that the
interval [0, 1] is not a null set, Lebesgue’s Criterion yields the same conclusion.

(e) Leth: [0, 1] & R be Thomae’s function, defined in Examples 5.1.4(h) and 7.1.6.

In Example 5.1.4(h), we saw that & is continuous at every irrational number and is
discontinuous at every rational number in [0, 1]. By Example 7.3.11, it is discontinuous on
a null set, so Lebesgue’s Criterion implies that Thomae’s function is Riemann integrable
on [0, 1], as we saw in Example 7.1.6. O

We now obtain a result that will enable us to take other combinations of Riemann
integrable functions.
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7.3.14 Composition Theorem Let f € R[a, b] with f([a, b]) € [c,d]andlety : [c, d]
— R be continuous. Then the composition ¢ o f belongs to R[a, b).

Proof. If f is continuous at a point u € [a, b], then ¢ o f is also continuous at u. Since
the set D of points discontinuity of f is a null set, it follows that the set D; € D of points
of discontinuity of ¢ o f is also a null set. Therefore the composition ¢ o f also belongs
to R[a, b). QED.

It will be seen in Exercise 22 that the hypothesis that ¢ is continuous cannot be dropped.
The next result is a corollary of the Composition Theorem.

7.3.15 Corollary Suppose that f € R[a, b]. Then its absolute value | f| is in R[a, b],

and
[ 1= [ 1nsme-a,

where | f(x)| < M for all x € [a, b].

Proof. We have seen in Theorem 7.1.5 that if f is integrable, then there exists M such
that | f(x)| < M forall x € [a, b]. Let p(t) := |t| fort € [—-M, M]; then the Composition
Theorem implies that | f| = ¢ o f € R[a, b]. The first inequality follows from the fact that
—|fl < f <|f] and 7.1.4(c), and the second from the fact that | f (x)| < M. QED.

7.3.16 The Product Theorem If f and g belong toR[a, b), then the product fg belongs
to R|a, b).

Proof. If (1) :=t* for t € [-M, M), it follows from the Composition Theorem that
f*=gpo f belongs to R[a, b). Similarly, (f + g)* and g? belong to R[a, b]. But since
we can write the product as

fe=1[(f+?-r-g%.
it follows that fg € R[a, b]. QED.

Integration by Parts

We will conclude this section with a rather general form of Integration by Parts for the
Riemann integral, and Taylor’s Theorem with the Remainder.

7.3.17 Integration by Parts Let F, G be differentiable on [a, b] and let f := F’ and
g := G’ belong to R[a, b). Then

b b b
@ /fG=FG| —f Fg.

Proof. By Theorem 6.1.3(c), the derivative (FG)’ exists on [a, b] and
(FGY =F'G+ FG' = fG + Fg.

Since F, G are continuous and f, g belong to R[a, b], the Product Theorem 7.3.16 implies
that fG and Fg are integrable. Therefore the Fundamental Theorem 7.3.1 implies that

b b b b
ff (FG)'=[ fG+f Fg,

from which (7) follows. Q.ED.

FG
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A special, but useful, case of this theorem is when f and g are continuous on [a, b]
and F, G are their indefinite integrals F(x) := [ f and G(x) := [ g.
We close this section with a version of Taylor’s Theorem for the Riemann Integral.

7.3.18 Taylor’s Theorem with the Remainder Suppose that f', - - -, f®, fF®+D exist
on [a, b) and that f"**V e R[a, b]. Then we have

(n)
® 1o =@+ L2 a4 1 Doy,
where the remainder is given by
b
9 R, = % f o0 - b -n"dr.

Proof. Apply Integration by Parts to equation (9), with F(t) := f®™(¢) and G(r) :=
(b—1)"/n!,sothatg(t) = —(b— )"~ /(n — 1)!, to get

R =L ™). -
" nl

(n) n-1
ot _1),ff ©- (b —aydt

™)
n! (n—-1)!
If we continue to integrate by parts in this way, we obtain (8). QE.D.

b-a)y + — f F®@) - (b~ 1y dr.

Exercises for Section 7.3

Extend the proof of the Fundamental Theorem 7.3.1 to the case of an arbitrary finite set E.

2. IfneNand Hn(x) :=x"*!'/(n + 1) for x € [a, b], show that the Fundamental Theorem 7.3.1
implies that [” x" dx = (b"*' — a"*')/(n + 1). What is the set E here?

3. If g(x):=x for |x| > 1 and g(x) := —x for |x| <1 and if G(x) := }|x? — 1|, show that
f ,8(x)dx = G(3) - G(-2) =5/2.
4. Let B(x) := —-x for x < 0 and B(x) := %xz for x > 0. Show that j;b x| dx = B(b) — B(a).
5. Let f:[a,b] > RandletC € R.
(a) Ifd:[a,b] > Risan antiderivative of fonla,b], show that & c(x) == ®(x) + Cisalso
an antiderivative of f on [a, b).
(b) If &, and ®, are antiderivatives of f on [a, b], show that &, — ®, is a constant function
on [a, b).
6. If f € Rla,b)andif c € [a, b], the function defined by F (2):= f:f for z € [a, b] is called the
indefinite integral of f with basepoint c. Find a relation between F ,and F_.

7. We have seen in Example 7.1.6 that Thomae’s function is in R[0, 1] with integral equal to 0. Can
the Fundamental Theorem 7.3.1 be used to obtain this conclusion? Explain your answer.

8. Let F(x) be defined for x >0 by F(x) :=(n—1)x —~(n—1)n/2 forx € [n—1,n),n € N.
Show that F is conunuous and evaluate F’(x) at points where this derivative exists. Use this
result to evaluate f [x1dx for0 < a < b, where [x] denotes the greatest integer in x, as defined
in Exercise 5.1.4.

9. Let f € Rla, b) and define F(x) := [* f for x € [a, b].

(a) Evaluate G(x) := f f in terms of F, where ¢ € [a, b).
(b) Evaluate H(x) := L f in terms of F.
(c) Evaluate S(x) := [;"" f interms of F.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
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Let f : [a, b] — R be continuous on [a, b] and let v : [c, d] = R be differentiable on [c, d]
with v([c, d]) € [a, b]. If we define G(x) := fa"(x) f,show that G'(x) = f(v(x)) - v'(x) forall
x € [c,d].

Find F'(x) when F is defined on [0, 1] by:

@ F():= fo A+ de. () Fx):=[2V1+1%ds.

Let f:[0,3] > R be defined by f(x):=x for0<x <1, f(x):=1for 1 <x <2 and
f(x) := x for2 < x < 3. Obtain formulas for F(x) := f: f and sketch the graphs of f and F.
Where is F differentiable? Evaluate F’(x) at all such points.

If f : R — Ris continuous and ¢ > 0, define g : R — R by g(x) := [ f(t) dt. Show that
g is differentiable on R and find g’(x).

If f:[0, 1] = R is continuous and f; f= j;' f forall x € [0, 1], show that f(x) = O for all
x €[0,1].

Use the following argument to prove the Substitution Theorem 7.3.8. Define F (1) := f:(a) f(x)dx
foru € 1,and H(t) := F(p(t)) fort € J. Show that H'(t) = f(¢(t))¢'(¢) fort € J and that

o(B) B
F(x)dx = F(p(8)) = H(B) = / FO®)0 @) dr.
o(a) a
Use the Substitution Theorem 7.3.8 to evaluate the following integrals.
1 2
[ tV1+12dr, (b) / 2(1 + 3712 dr = 4/3,
JO J
4
©) / —“1}‘5 dr, ) [ cos ‘f =2(sin2 — sin 1).
1 1

Sometimes the Substitution Th